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Formulas for the calculation of two·body central interactions in the first approximation of the K· 
harmonics method are presented. These formulas are exact and account for diagonal and off·diagonal 
matrix elements as well. 

1. INTRODUCTION 

Simonov and Badalyanl
-

4 have developed the so-called 
K-harmonics method to obtain the energy levels and 
the corresponding wavefunctions of the bound states of 
the nuclear many-body problem with two-body inter
actions. The essence of the method is to expand the 
wavefunction of the system, in the c. m. frame, in 
terms of angular functions which form a complete set 
of functions in the vector space E 3 (A_1) spanned by the 
3(A -1) coordinates of the relative vectors of the A 
particles which constitute the nuclear system. These 
angular functions, called K harmonics, also contain 
the spin and isospin coordinates of the nucleons, are 
totally antisymmetric, and constitute the angular part 
of harmonic polynomials of degree K in the 3(A -1) 
spatial variables. Due to the antisymmetry of the K 
harmonics, the label Kcan assume only the values 
Km!n' Km!n + 1, .. " where Km!n is a nonnegative integer 
which depends on Z and N = A - Z. 

Successive approximations of the method are obtained 
by considering, in the expansion of the wavefunction, 
only the K harmonics with K up to Km!n' Km!n + 1,' ... 

Homogeneous polynomials of degree K, totally anti
symmetric, can be constructed by filling a Slater 
determinant with orbitals whose space parts are har
monic polynomials of degree Ki in the relative variables 
Pi = r i - R (R= center of mass). When K=z'iKi has its 
minimum value, the polynomial turns out to be har
monic, the corresponding K harmonic being obtained 
by normalizing it and dividing it by pKm!n where 
P= [z':=lP~y/2 is the hyperdistance in E 3 <A_1)' 

Even for K = Km!n' the calculation of matrix elements 
of the two-body interactions between these determinantal 
wavefunctions, for medium and heavy nuclei, is 
complicated by the fact that the orbitals are not, in 
general, orthogonal, since the integration is performed 
in S 3(A-1)' the unit sphere of E 3 (A-1)' For K=Km!n' this 
difficulty was overcome by Baz and Zhukovs by 
introducing a complex contour integral. However, the 
integrals involved cannot be calculated and they use the 
saddle point method to obtain approximated expressions 
for the matrix elements of the two-body interactions. 
Gorbatov,6 by introducing a new set of orbitals and a 
convenient representation of the solid angle element 
in E 3(A-t>' obtained an exact expression for the diagonal 
matrix elements of the two-body interactions. The 
purpose of the present paper is to extend Gorbatov's 
paper to account for the off-diagonal matrix elements. 

a)Work supported by FINEP, Rio de Janeiro, Brazil. 

Introducing generalized Gorbatov coefficients, the 
resulting formulas that we obtained can be put in a way 
that shows a structural similarity with the correspond
ing ones of the nuclear shell model. 7 

2. THE K min K HARMONIC 

Following Gorbatov, we construct the Km!n K harmonic 
by filling a Slater determinant with orbitals 

<f>~;c(i)= (Pxi)·(P,Y(p.;l"a"T(i) , i= 1,2, ... , A, 

a, b, c=O, 1,2,"', Il,T=+l, -1, (1) 

where Pxi ' P,i' and p.i are the Cartesian components 
of the relative vector of the particle i and a"T(i) accounts 
for its spin-isospin variables. The Km!n K harmonic 
can be conveniently written in an operational form ass 

'KB A 

U K(S13(A-t» =~DK(A)t exp{iD kJ • PJ}' P }"1 

where B is a normalization constant and DK(At ) is an 
antisymmetrizer operator given by 

with 
A 

(2) 

(3) 

f;t(aj+bJ+cj)=K, (4) 

Ep =E(p1)(P2)"'(PA)' (5) 

In the evaluation of matrix elements in S3(A_1>' it is 
convenient to write the solid angle element ass 

2A3 / 2 

dS13(A_1) = (21T)4 p-(3A-S)Jdfexp[if'(P1+"'+PA) 

f
~ A A 

X _~ dt exp[it(~p~ - p2)].r:,\ dP •• 

Using Eqs. (2) and (6), the matrix element between 

(6) 

a K harmonic U~ with orbitals <f> :,~~, and UK with orbitals 
<f> ~;c' is given by 

< U~ I UK> '" J dS13(A_1)U~t(S13('4_1»U K(S13(A_1» 

2A3
/

2BB' r- (i1T)3A/2 ·2 
= (21T )4p2K+3A -S J _ dt t exp( - ztp ) 

x jdf exp[ - iAf2/(4f)]D~t(A)t,DK(A)t 
x [exp (-4i ±[(k2 + k,2) - 2f' (k' -k )]\] f-=l •• _. IJ 

xexp(i..tk 'k') 2t s=l _ s , (7) 
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where in the last step the integrations in Pi were 
performed. 

Gorbatov proved that when K is equal to K
m1n

, then, 
for any symmetric function 5 of {k

j
} and an arbitrary 

function p, it holds that 

DK (A)kS({kj})P=S({O})DK (A)kP, (8) 
~n ~n 

Using this result, with 5 being the quantity between 
the large square brackets in Eq. (7), the integration in 
f is immediate and the result of the antisymmetrizer 
operators acting over the last exponential in Eq. (7) 
gives 

(2
i)K(B GjlbjlC) ~ €pEp..fr I), .a . 
t 1-1 ~J P,P' 1.=1 ap't. pJ. 

The product of deltas in Eq. (9) shows that only the 
P's and p' 's, such that 

(9) 

(a, b, c, [.L, T)Pi=(a', b', c', [.L', T')P'i' for i=l, 2, ... A, 

contribute to the matrix element. On the other hand, 
conditions (10) imply that the orbitals of V~ and VK 

(10) 

must be equal, up to an irrelevant permutation, We then 
conclude that K m1n K harmonics with a different set of 
orbitals of the form (1) are orthogonal in S3(A. -1 l' For 
V~=VK' the substitution of Eq. (9) into Eq. (7), the 
integrations in f and t and the requirement that V k be 
normalized in S3(A. _I 1 yield for B2 the value 

(11) 

3. MATRIX ELEMENTS OF TWO-BODY 
CENTRAL INTERACTIONS 

Let us now turn to the evaluation, in S3(A."P of matrix 
elements of two-body central interactions which are 
linear combinations of operators of the form 

(12) 

where QU, j) is an operator which acts on the spin
isospin variables of the pair of particles (i, j). Using 
Eqs. (2), (6), and (12), one obtains 

(V'! F2! V) '" J dn3(A._Ilv~t(n3(A._I)F2U(n31A._I) 
2A3/ 2BB' (A) 1~ (irr)3 1A.-21/2 

= (2rr)4 p2K+3A.-5 2 _ dt t exp(- itp2) 

2 

x fdf exp[ - iAf2/(4t)) D~t(A\"O(1, 2)DK(A)" 

x [exp(_.i. t [(k" + k,2) 
4t'=1 .• s 

- 2f . (k~ - k.)DJ expGt s~ks • k;) 

x exp (4t [(f + k, - k;J2 + (f + k2 - k~)2)) 

X fdPl flP2 v( Ipi - P21) exp{i[(f - kl + k , )' P, 

+(f-~+k2)'P2+t(p~+p~)1}, (13) 
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where we have used the fact that V~tF2UK is symmetric 
under the p~rmutation of all coordinates of the particles 
to replace F2 by (t)dIPI -P21)O(1, 2) and we have 
performed the integrations in P3' PH •.. 'PA.' 

Introducing center of mass coordinates for the pair 
(1, 2), 

(14) 

the integration in X is easily performed, glvmg 

(ffiY /2 

exp (- ~t (2f +k, -k; +k2 _k&)2). (15) 

Using Eqs. (15) and (8) and performing the integration 
in f, Eq. (13) becomes 

, ~ ,_ 2A3/ 2BB' (A) j® (irr)3(A.-21/2(2rr2)3 / 2 
(V !F2!U)-(2rr)4p2K+3A.-5 2 _~ dt t A 

xexp(-itP")D~t(A)k,O(I, 2)DK(A)k 

xexP{2i I;k 'k'} t .=3 s S 

xexp(ft [(k, - kz)2 + (k.; - k~)2 + 2(k, + kz) 

. (k; + 1<;,)] )fr r(r) exp(~ [(k, - k; - k2 + k;) 

. r + trl ). (16) 

The only dependence on k" ... ,kA' k;, ... , k~ is given 
by 

D~(A)k,O(1, 2)D K (A\ eXP(2i tks' k;) 
t '=3 

x lim n(2..)OP'i(--.l.)bp'i(-.l..)CP'i 
«i,kil-Oi=1 Ok;i rll<~i ak~i 

(
a )aPi( (I \ bPi( (l )CPi 

x okxi ol?,i) 13k zi • (17) 

The product of the o's in Eq. (17) gives the result that 
only the p's and P' 's, such that 

(a, b, c, 11, T)Pi = (a', /)', c', 11', T'), i= 3,4, ... ,A, (18) 

contribute to the matrix element, which fixes P; for 
i = 3, 4, ... ,A. Therefore, the summation in P3, • .. , 
PA, p'3, P'4, . .. ,p'A simply give (A - 2)!. Besides 
that, Eqs. (18) imply that U~ and UK must have at 
least (A - 2) orbitals in common in order that the matrix 
element (U~ I F21 UK) be nonvanishing. 

The integration in the angular part of r is accom
plished by using the plane wave expansion theorem. 
Finally, we make a power series expansion of 
exp{(i!8t)[(k , - 1<2)2 + ... ]} and integrate in t, obtaining 

(U'!F2I U ) 

2BB'vv'rr'A./2 \__ -0 (_)s 
--":"'''::'''''''_Af u~' u 

rr2 'Pl,P2 PIP2'=n (2s + 1)1 
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where 

XfOl dz zS+I/2(1 - z )Kp IP2 +n+3.A /2-4 V(pv'2z) 

X[J~(1~2(P1P210(1, 2)lplP2) 

- J~\j2 (P2P1 1 0(1, 2) I PIP2) ], (19) 

(
a). j ( iI ).j ( a ) bj 

(. a ) bj I- a )C} ( a ) cj 
x Ok"2 ok~1 'l!k y 2 \ak~l \;Jk.2 ak~l 
x (kl - k2 + k~ - k~)2<!+s) (k l • k~ + k2 . k~)n-I, (25) 

(i l j / 10(1, 2)liJ> = <;'Ti,(l)a:;.r)2)O(I, 2) 

x a .. r (l)a .. T (2). 
~i i ~} } 

(26) 

From Eqs. (24) and (25) one sees that only the n's 
and 5 's, such that 5 + n = d~lP2> contribute to the matrix 
elements. Therefore, in Eq. (19) one may replace the 
sums in nand 5 by substituting n by d~lP2 - 5 and sum
ming in 5 from 0 to d~lP2' 

Defining the generalized Gorbatov coefficients 9 

d~ }"_, 

e(Q)(i . 5)= ~ij(-)s '.0 (d;j -5\2-2IJ~(.) 1 2 
,J, 2S5!(d~. -5)! 1=0 l J '}' q= , , 

I) 

one obtains 

(V'I F I V ) = r(3(A -1)/2 +K) .0 dP±f2 [r(K - 5 
K 2 K YTl Pl,P2 8=0 

+ 3A/2 - 3)(25 + 1)!!]-1 

X [< P1P21 U(1, 2)P1P2) CO )(Pl, P2, 5) 

- (P2P1Io(1, 2) 1 PIP2) e(2)(PI ,P2,5)] 

(27) 

1 
x fa dz Z·+l /2(1 - z f- S - 3.A /2-4 v(pfu). (28) 

To make the summation in PI and P2 explicit, one has 
to consider the three following possibilities: 
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(0 when Vk and UK have the same orbitals, 
.A dj} 

(V/IFIV )=r(3(A-l)/2+K).0 .0 [r(K-5+3A/2-3) 
K 2 K ,,(if J>I=I ._0 

x v(pffi){e(J)(i,j, 5 )[( ij 10(1,2) I ij) 

+(jiI0(1,2)1Ji> ] 

-e(2)(i,j,5)[(ijI0(1,2)iJi) 

+ (ji10(1,2)1iJ)J}; (29) 

(ii) when U~ and UK have only (A - 1) orbitals in 
common (numbered 1, 2, ... , A - 1), PI or P2 must be 
equal to A, and one has . 

( Vk 1 ;21 V K > = r(K + 3~2 - 3/2)~~ ~ [r(K - 5 + 3A/2 - 3) 

x (25 + I)!! rlfl dz z.+1/2(1_ zY-·+3.A/ 2-4 

a 

x v(p{2z){ e(J) (i,A, 5 )[( iA I 0(1,2) I iA) 

+(AiI0(1,2)IAi) 1 
- e!2l(i,A, 5 )[( iA I 0(1,2) I Ai) 

+( Ai I0(1,2)liA) l}; 

(iii) when U~ and VK have only (A - 2) orbitals in 
common (numbered 1, 2, ... , A - 2), P1 and P2 can 
assume only the values A and A - 1 and one has 

(30) 

I 
h I r(K+3A/2-3/2)

dA
i,.A[r(K_5+3A/2_3) 

(U~F2VK) ..[if S=o 

X(25 + 1)!!J-li1dZ Z.+1/2(1_ Z)K-.+3.A /2-4 

Xl_'(p{2z){e(I)(A -1 ,A, 5) 

X[(A -1A 10(1, 2)IA -1A) 

+ (AA - 110(1,2) IAA - 1) 1 
_ e(2)(A -1,A,5)[(A -1AI0(1,2)IAA -1) 

-(AA- 110(1,2)IA-1A)l}. (31) 

For nuclear potentials of the form 

+ V 13 ( I Pi - Pj I )P~P; + I'll (I Pi - Pj 1 )P~P;t, (32) 

where P~ and P; are the triplet and singlet projection 
operators which act, respectively in the spin and isospin 
variables of the pair of particles (i, j), one has 

(33) 

provided one uses the convention that r (or 5) is equal to 
1 for the singlet and 0 for the triplet. 

Substituting Eq. (33) in the diagonal matrix element 
Eq. (29) one recovers Gorbatov's Eq. (20). 

For the Coulomb potential 
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F2=e 2 6 ,Qi
Qj 

, 
j>i=l I Pi - Pj I 

(34) 

where eQ i is the charge operator of particle i, one has10 

(ij I Q1 Q21 nO = A(1 - 27;)(1 - 27;)(1 - 27n ) 

X(1-271)0I'~" 01"." ' 
1 n J I 

(35) 

For the diagonal case, Eqs. (29), (34), and (35) give 

r(K + 3A/2 - 3/2) e2 ~ 
< UK I F21 UK) 2l'ir(K + 3A/2 _ 2) Pl2A11 (1 - 27i )(1 - 27j ) 

dij ., 

x" S. [G(l)(" ) ° G(2)(")] #, (2s +1)!! 1,J,S - l'il'J Z,),S 0 

(36) 
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Self-avoiding random walks: Some exactly soluble cases 
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We use the exact renonna1ization group equations to detennine the asymptotic behavior of long self
avoiding random walks on some pseudolattices. The lattices considered are the truncated 3-simplex, the 
truncated 4-simplex, and the modified rectangular lattices. The total number of random walks Cn , the 
number of polygons Pn of perimeter n, and the mean square end to end distance (RA) are assumed to 
be asymptotically proportional to /Lnn Y-l, /Lnn a-3, and n 2v respectively for large n, where n is the total 
length of the walk. The exact values of the connectivity constant /L, and the critical exponents A, a, v 
are determined for the three lattices. We give an example of two lattice systems that have the same 
effective nonintegral dimensionality 3/2 but different values of the critical exponents "Y, a, and v. 

I. INTRODUCTION AND OUTLINE 

The self avoiding random walk was originally pro
posed as a model of polymer chains, to study the effect 
of excluded volume. 1 The properties of such walks are 
connected with some properties of the Ising model. 2 

The study of the configurational problems encountered 
in this problem may be expected to shed some light on 
the more general problem of second order phase transi
tions. The problem has been attached using a variety of 
analytical and numerical techniques, 3-5 but the number 
of exact results known is small. It has resisted a com
plete solution in the physically interesting case of three 
dimensions, or even in the considerably simpler case of 
two dimensions. 

It is thus of some interest to study the problem for 
some pseudolattices, where the exact solution may be 
worked out and its behavior analyzed in detail. An 
example of such lattices is the Bethe lattice, which has 
been very important historically in the development of 
the theory of phase transitions. Detailed study of the 
Ising model on this lattice has suggested the possibility 
of a new kind of phase transition (phase transitions of 
continuous order),6 which have subsequently been 
realized on more conventional lattices. 7 

Part of the motivation for the study of pseudolattices 
springs from the fact that they are very good pedagogical 
examples of renormalization group techniques at work. 
Despite enormous progress in the application of re
normalization techniques to the field of phase transitions 
since the pioneering work of Kadanoff and Wilson, 8 the 
number of cases which show nontrivial phase transitions 
and where the exact renormalization transformation may 
be explicitly implemented, has remained rather small. 
The only other exceptions are the Gaussian model9 and 
the hierarchial model. 10 These lattices may also be used 
to test the validity of new approximation schemes. 

The problem of self avoiding random walks on a Bethe 
lattice is trivial, of course, because of the absence of 
any closed loops. In this paper we study the self avoiding 
random walk problem for the truncated tetrahedron 
lattice, the truncated 4-simplex lattice, and the modified 
rectangular lattice. 

The truncated tetrahedron lattice was defined by Nel
son and Fisher. 11 In a previous paper12 (hereafter 
referred to as I) we have generalized their construction 

to define the truncated n- simplex lattice for arbitrary 
integer n, and shown that the effective dimensionality 
of this lattice is 2In(n)/ln(n + 2). We have also defined 
the modified rectangular lattice, which is planar and is 
obtained by deleting some bonds from a planar square 
lattice. For details of the construction of these lattices, 
the reader is referred to 1. In the following discussion 
familiarity with its contents is assumed. 

These lattices are defined recursively, and the exact 
renormalization equations may be written down for these 
lattices in terms of only a small number of coupling 
constants. In I, we used this property to determine the 
critical behavior of the classical X Y model (the results 
may easily be extended to arbitrary integral spin dimen
sionality) and the Fortuin-Kasteleyn cluster model on 
these lattices. No phase transition at a finite (nonzero) 
temperature is found. The analysis in this paper differs 
fro'm I mainly in that for the self avoiding random walk 
problems, the recursion equations have nontrivial fixed 
points, even for lattices with effective dimensionality 
less than two. The system shows a phase transition in 
the sense that the generating functions of the random 
walk become singular as a function of their argument. 
We can determine the critical exponents using the 
standard renormalization group techniques. The recur
sion equations are coupled algebraic equations and their 
derivation and analysis is quite straightforward. In the 
parameter space of the coupling constants, we observe 
the phenomena of the point specifying the effective inter
action approaching the fixed point of renormalization 
transformation initially. Eventually the point escapes 
away from the fixed point after a large number of itera
tions unless the starting system was exactly critical. 
Linearizing the recursion equations about the fixed 
point, we determine the critical exponents from the 
eigenvalues of the linearized renormalization trans
formation matrix. 

II. PRELIMINARIES AND NOTATION 

A self avoiding random walk on lattice is a random 
walk with the constraint that no lattice point is visited 
more than once. We associate weight factor x with each 
step of the random walk and define the generating 
functions 

(1) 
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P(x) == lim ~ f; Pn(N)xn• 
N" DO n=2 

(2) 

Here Cn(N) is the total number of distinct self avoiding 
randon walks of n steps on a large lattice consisting of 
N lattice points. Pn(N) is the number of distinct closed 
simple polygons of perimeter n on the lattice. The 
random walks may start from any point on the lattice. 
For large N, the numbers Cn(N) and Pn(N) are asymp
totically proportional to N, and the limit exists. For 
regular lattices, where all the lattice point are equiva
lent, this limiting procedure is unnecessary because 
the number of self avoiding walks of length n is inde
pendent of the vertex from which the walk starts (so 
long as the starting vertex is not too close to the 
boundary of the lattice). This is not the case for the 
spatially inhomogeneous lattices studied here, and the 
averaging over all possible positions of the starting 
point is necessary. We define 

Pn == limPn(N)/N, (3) 
N- "" 

en == limCn(N)/N. (4) 
N-"" 

We know that for large n, P n and Cn increase geometri
cally with n. Let us assume that for large n 

(5 ) 

(6) 

where Kl and K2 are some coefficients of proportionality. 
In general, we represent a constant of proportionality 
by K, with or without subscripts. Its numerical value is 
not necessarily the same in different equations. !.L is 
called the connectivity constant of the lattice and 0' and 
yare the critical indices for the random walk. Substi
tuting the asymptotic behavior of C nand P n in Eq. (2) 
we find that as x tends to 1/!.L from below, the asymp
totic behavior of C(x) and P(x) is given by 

C(x) '" K 2(1- X!.L)"r + less singular terms, (7) 

P(x) ." Kl (1- x!.L)2-et + less singular terms. (8) 

The average number of self avoiding walks per site 
that return to the origin (porygonal closures) after ex
actly n steps is given by 2nPn• We also define the gen
erating function for the mean squared end to end dis
tance by 

R(x) == lim.!... L [R(L)]2 Xn(L), 
N-'" N L 

(9) 

where R(L) is the end to end distance for the random 
walk L with total number of steps given by n(L). The 
summation extends over all possible self avoiding ran
dom walks L on a large lattice of size N. We define the 
critical exponent lJ by the relation 

(R~) '" Kn2v for large n, (10) 

where (R;) is the mean squared end to end distance for 
n-step self avoiding random walks, all walks being 
weighted equally. Since the number of such walks in
creases as !.L nnr-1 [Eq. (6)], we find that the asymptotic 
behavior of R(x) as X!.L -1 from below is given by 

R(x) - K(1- x!.L)"r-2v + less singular terms. (11) 

6 J. Math. Phys., Vol. 19, No.1, January 1978 

In the next section, we use the renormalization 
group techniques to determine the values of the con
stants !.L, ('t, Y, and lJ for the truncated 3-simplex, 
the truncated 4- simplex lattice and the modified rec
tangular lattices, by determining the singular behavior 
of their generating functions C(x), P(x), and R(x). We 
show that for the truncated 3-simplex lattice 

!.L=1.6180, ('t=0.7342, y=1.3752, lJ=0.7986. 

(12a) 

For the modified rectangular lattice 

!.L = 1. 6909, ('t = O. 6699, y=1. 4403, lJ=0.6650. 
(12b) 

And for the truncated 4-simplex lattice 

!.L =2.2866, 0' =0. 5413, y=1.4461, lJ=0.7294. 
(12c) 

III. CALCULATION OF THE CRITICAL EXPONENTS 

In this section we derive the connectivity constants 
and the critical indices mentioned in the previous sec
tion. The analysis of all the three lattices is quite 
similar and some of the details in the treatment of the 
truncated 4-simplex lattice and the modified rectangular 
lattice have been omitted. The treatment may be ex
tended to other recursively defined pseudolattices, but 
the number of variables that have to be considered to 
form a closed set of recursion equations soon becomes 
very large and the analysis becomes difficult. 

A. The truncated 3-simplex lattice 

We would like to determine the behavior of the gen
erating functions of the random walks C(x), p(x), and 
R(x) for the truncated 3-simplex lattice. These func
tions are weighted sums over self avoiding walks. The 
weight of a walk of length n is x\ [For R(x), there is 
an additional multiplicative weight factor depending on 
the end to end distance of the walk, Eq. (9) J. Instead 
of assigning a weight x to each step of the walk, we 
may equivalently assign a weight x to each vertex that 
the walk passes through, and a weight Ix to each of the 
two vertices that are the starting or the end of the walk. 
Then, for example, P(x) is the sum over all possible 
configurations with a single loop. 

The renormalization transformation consists of sum
ming over all the internal configurations of the rth 
order triangles, as was done for the Fortuin-Kasteleyn 
cluster model in 1, We define the rth order restricted 
partition function as shown in Fig. 1. Here A(r) is the 
weight of an rth order triangle with one line going in, 
The end point of the line may be any of the vertices 

iA.~iA 
A(d B(d C(d o(r) 

FIG. 1. Restricted partition functions for an rth order triangle. 
The shaded triangles denote rth order triangles. of which only 
the corner vertices and the end points of the self-avoiding walks 
are shown. 
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FIG. 2. All possible configurations of an open self avoiding 
walk of order r. The shaded triangles denote (r -l)th order 
graphs of which only the corner vertices are shown. The factor 
3 is for the three possible orientations of the figures. 

inside the rth order triangle, We sum over all possible 
configurations of the rth order triangle consistent with 
the constraint that one of the end points of the walk lies 
inside the rth order triangle. Similarly B( T) is the 
weight of an rth order triangle in which a line goes in 
from one of the corner vertices and comes out from the 
other. (The lines are undirected. We use the term going 
in and coming out rather loosely.) The weights CIT} and 
D(T} are defined similarly, The starting values of these 
weights are 

A(O} =I-X , (13a) 

B(O} =x, (13b) 

(13c) 

We call a closed or open walk L of order r if r is the 
minimum value of p such that L can be completely de
scribed inside a pth order triangle. The sum of weights 
of all rth order closed loops inside one rth order tri
angle is clearly (B(r-1})3. Since there are 3T points in 
each rth order triangle, the contribution of rth order 
closed loops per site is (B(T-l})3/3T, Hence we get 

~ 

P(x) = L; 3-T(B(T-l})3. (14) 
T=l 

Similarly we get (Fig. 2) 

C(x) = f 3-T [3A (T_l}2 + 3B(T-l) (A (T-l})2 
T=l 

(15) 

It is easy to write down the recursion equations for 
the weightsA(T), B(T}, CIT}, D(T} by drawing graphically 
all possible ways a configuration of (r + l)th order tri
angle may arise out of the configurations of (r)th 
order triangles, Figure 3 shows all the possible con
figurations that contribute to B(T+l). This shows that 

B( T+l} = (B( T})2 + (B( T})3, (16a) 

The recursion equations for A (T), 

written down similarly and we get 

CIT} , and D(T} are 

A (T+l) =A(l + 2B + 2B2) + C(2B2), 

D(T+l} = (A2 + 2A2B +4ABC + 6BC2) +D(2B + 3B2), 

where we have suppressed the superscripts of A (T) , 

B(T}, C(T}, and D(T} in the right-hand sides of Eqs. 
(16b)- (16d). 

(16b) 

(16c) 

(16d) 

Equations (13)-(16) determbe the functions P(x) and 
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AA 
FIG. 3. All possible configurations of rth order triangles (de
noted by shaded triangles in the diagram) that contribute to 
B(T+!}. 

C(x) completely. We also notice that the recursion equa
tion for B(T+l} involves only B(T}. Also the recursion 
equations for A (r+1) and C( T+1} are independent of D( T} • 

From Eq. (16a) and (14), we see that the P(x) satis
fies the functional equation 

This equation has fixed points given by the equation 

x" =x*2 + x*3 

(17) 

(18) 

which gives the fixed points x* == 0, (15 - 1)/2, 00 in the 
allowed (real nonnegative) range of x. The fixed points 
x* = 0 and x* = 00 are attractive fixed points while the 
point x* = (15 - 1)/2 is repulsive. If the starting value 
B(O) is less than (/5 - 1)/2, from Eq. (16a) we see that 
with successive iterations, the value of B(T) decreases 
to zero, If B(O} is greater than (/5 -1)/2, for large 
r, B(T) tends to infinity and P(x) is infinite. This shows 
that the connective constant of this lattice is given by 

/l = 2/(15 - 1) c;" 1. 6180. 

Putting x = 1/ /l in Eq. (17) we get 

p(/l-1)==/l-3/2. 

(19) 

(20) 

Consider x = /l -1 - a where a is a small positive number. 
Then Eq. (17) gives 

P(/l -1_ a) =t/l -3 - /l -2a + tp(/l -1 _ a(2 + /l -2» + 0(a2). 

(21) 

We assume that the singular part of p(/l -1 - a) varies 
as a2-",. This gives us, from Eq. (20), 

ll' = 2 - ln3/1n(2 + /l -2)"" 0.7342. (22) 

Let us define 

a(T}=/l-l_B(T} • (23) 

Then to lowest order in a, Eq, (16a) gives the recursion 
relation 

a(T+l}=(2+/l-2)a(T}. (24) 

We choose a small positive number E, and choose 
a starting value a( O} sufficiently small so that 

1» E» a(O} 

and 

(25) 

Then for r< ro, a(T} is less than E and we may replace 
B(T} in Eqs. (16b)- (16d) by W 1, This gives us a set of 
coupled linear recursion equations for the constants 
A (T) and CIT} , 
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c(r.t) ""A(r)J.l-2 +c(r)3J.l-2 , 

which imply that 

A(r) ""KtXr , 

(26a) 

(26b) 

(27a) 

(27b) 

where Kl and K2 are some constants of proportionality. 
X is the larger eigenvalue of the matrix 

[

1 + 2W
1 + 2w

2 
2J.l-

2
] 

W 2 3J.l-2 

which gives 

X = (3 + 3W2 + (9 - 18J.l-2 + 17 J.l-4)t/ 2]/2. (28) 

Substituting from Eqs. (27a)- (27b) into Eq. (16d), we 
see that the recursion equation for n(r.t) has the form 

n(nt) "'KA2r +n(r)(2 + J.l-2). (29) 

Since X 2 is greater than (2 + J.l-2), we see that this 
equation implies 

n(r)""Kt x2r for1<r<ro. (30) 

For r> ro, the constants B(r) and c(r) rapidly approach 
zero and the constants A (r) and n( T) tend to finite 
asymptotic values approximately given by 

(31a) 

(31b) 

Here Kl (E) is again a constant of proportionality which 
depends on E, but is independent of 6. We sUbstitute 
these values from Eqs. (31) and (27) in Eq. (15), and 
approximating the sum by its largest term we see that 

X2ro 
C(x)-K Vo . (32) 

Substituting for ro from Eq. (25) we get 

(33) 

with 

y=ln(X2/3)/ln(2 + W 2) '" 1. 3752. (34) 

In Eq. (33), the constant of proportionality K must 
vary as E-r ; so that C(x) is independent of E as should be 
obvious from its definition. 

The critical exponent II may be determined similarly. 
We note that for r< ro, the contribution of the rth order 
open loops to R(x) is approximately 

(2r)2KA2r /3". 

For r> ro, the coefficient B(r) rapidly become zero. 
And in a configuration of the type A (T) (Fig. 1) the end
point of the line stays close to the corner vertex from 
which it entered the triangle. Thus for r> ro, the con
tribution of the rth order open loops to R(x) varies as 
K(4X 2),03-T so that we have 

R(x) - K{(4X)2 /3Yo • (35) 

Substituting for ro from Eq. (25) and comparing its 
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FIG. 4. The restricted partitions for an rth order square. 
Only the corner vertices of the square and the connections of 
the walks joining them are shown. 

dependence on 6 with Eq. (11) we get 

ln2 
v= In(2 + J.l-Z) '" O. 7986. (36) 

This determines all the critical exponents ('J/, Y, II. 

We remark here that though a more complete and 
rigorous analysis of the recursion equations is certain
ly possible, it is unnecessary since all the constants 
J.l, Ct, Y, and v are determined exactly. 

B. The truncated 4-simplex lattice 

The analysis for this lattice is very similar to that of 
the truncated 3-simplex lattice discussion in A. We 
define the restricted partition functions A (r), B(r), 
c(r), n(r), E(T), and F(r), for the rth order square, 
as shown in Fig. 4. Due to the permutation symmetry 
between the vertices of the rth order square, only six 
different restricted portion functions are needed. The 
starting values of these weights are 

A(O) =x, (37a) 

C(O) =[ x, (37b) 

(37c) 

The recursion equations for these weights are written 
down by constructing graphically all possible ways an 
(r + l)th order square may be constructed out of its con
stituting rth order squares. We get 

(38a) 

B(r.l) =A4 + 4A3B + 22B4, (38b) 

(38d) 

where again the superscripts (r) on each term in the 
right-hand side of Eq. (38) have been suppressed. We 
have not written down the explicit expressions for 
E(r.t) and F(r+l) because, as with Eq. (16d), they are 
not needed for the determination of critical exponents. 
The expressions for E(r.t) and F(r+ll involve a sum of 
terms that are linear in E(T) and F(T) but independent 
of c(r) and n(T), and terms that are quadratic in 
c(r) and nIT) but independent of E(T) and F(r). The 
asymptotic behavior of Itr) ",nd F(r) is determined by 
the rate at which CIT) and n(r) grow with r. 

Explicit expression for P(x) is easily written down, 
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.. 3 4 
P(X)=L4-r{4A(r-1) +3A(r-1)}, (39) 

,.,.1 

and a similar but more complicated expression for 
C(x). Again we notice that the recursion equations are 
quite simple. A(r.1) and B(r+1l depend only on A(r) and 
B(r). For any given value of x, we can determine P(x) 
with the help of Eqs. (37)-(39). If x is less than 1/1l, 
where Il is now the connective constant for this lattice, 
A (r) and B(r) tend to zero for large r, and p(x) is 

finite. The reverse is the case if x> Il -1. This allows 
a very easy determination of Il numerically. We start 
with the obvious bounds Xmin < 1/ Il < Xmax with Xmln 
=t and xmax=1. Determination of the behavior of P(x) 
for x = (xmln + xmax)/2 allows us to reduce the range of 
uncertainty (xmax - xmln) by a factor of 2. The procedure 
may be repeated till any arbitrary desired accuracy is 
obtained. Numerically, we find that 

Il ~ 2. 2866. (40) 

Equations (38a) and (38b) have a fixed point given by 

A* '" O. 4294 and B* '" 0.04998. (41) 

There are other fixed points of these recursion equa
tions. The fixed points A * = B* = 0 and A * = B* = 00 are 
the trivial attractive fixed points. Other fixed pOints of 
Eqs. (38a) and (38b) are not relevant for the determina
tion of the critical behavior because if we start with 
x = 1/1l, the successive values of A (r) and B(T) tend to 
the fixed point given by Eq. (41) and hence this is the 
fixed point which determines the critical behavior of the 
generating functions C(x), P(x), and R(x). 

Let us write 

A(r) =A* + liA(r), (42a) 

(42b) 

Then to first order in liA and liB, we have the linearized 
recursion equations 

(43a) 

liB(T+1) = T21liA (T) + T22 liB(r). (43b) 

Here Tij are the elements of a (2 x 2) matrix whose 
value in terms of A * and B* is easily written down, and 
its eigenvalues and eigenvectors determined. We find 
that the matrix T has the eigenvalues 

(44a) 

A2 ~ O. 2538. (44b) 

We note that only one of the eigenvalues is greater than 
zero. This implies that 

(45a) 

(45b) 

where (a1, a2) is the eigenvector corresponding to the 
eigenvalue A1• Ii is defined equal to (Il -1 - X) and K is 
some constant of proportionality same for Eqs. (45a) and 
(45b). These equations hold when r is not too large (so 
that the linear approximation is adequate) and not too 
small (so that the "irrelevant" part of liA and liB, which 
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is proportional to A2 is negligible). Let us denote by 
p'lng(1/1l - Ii) the singular part of P(1/1l -Ii). Then from 
Eq. (39) we get 

p'lng(~ _ Ii) '" tP'ing(i - A11i) • (46) 

Assuming that 

p'lng (~ _ Ii) - li2-" 

we get 

01=2 -ln4/ln~1 ~ 0.5413. (47) 

Again we choose a small positive number E, and choose 
a value of x sufficiently close to Il -1 so that 

1»E»1i (48) 

and 

(49) 

Then for r< ro we have A(r) '"A*, B(T) '"B* and the re
cursion equations for CIT) and D(T) become, from Eqs. 
(38c) and (38d), 

c(r+1) '" c(r) (1 + 3A* + 6A*2 + 6A *3 + 6A*2B* 

+ D(T) (6A*2 + 12A*3 + 18A *2B*), 

D( T+1) '" C( T) (A *2 + 2A *3 + 3A *2 B*) 

(50a) 

+ D(Y) (3A.,:l + 7A *3 + 16A *2B* + 22B*2A * + 22B*\ 
(50b) 

These are linear recursion equations and show that, 
for r< ro, CIT) and D(r) increase as A:, where A. is the 
larger eigenvalue of the matrix that characterizes the 
linear transformation of Eq. (50). Numerically, sub
stituting the values of A * and B* we find that 

A+ "'4. 2069. (51) 

For r> ro, the coefficients A (T), B(T), and D(T) rapidly 
approach zero and C( r) tends to its asymptotic value 
which is proportional to A:O. The argument as before 
shows that 

C(x)-K(A~/4)ro, (52) 

Substituting for ro from Eq, (49) and comparing with 
Eq, (7) we get 

Y=ln(A:;4)/ln(A1) ,"1. 4461. (53) 

And since 

R(x)- K(2ro)2(~!/4ro 

we get from Eqs. (49) and (9) 

v = ln2/lnA1 '" O. 7294. 

C. The modified rectangular lattice 

(54) 

(55) 

The restricted partition functions for the rth order 
block13 of lattice sites are defined in Fig, 5. We have 
shown only the configuration with no or only one end 
point of the walk. As before, the restricted partition 
functions with two end points of restricted walks, may 
be defined and are necessary to calculate the generating 
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'''_11 
__ lIIf!_ 
FIG. 5. Restricted partition functions for the rth order block 
of lattice sites of a modified rectangular lattice. Only the 
restricted partition functions correspondings to zero or one 
end points of the self avoiding walk are shown. 

function C(x), but do not affect the critical exponents. 
The recursion equations are complicated by the fact that 
the number of coupling constants is much larger than in 
the previous two cases. This is, of course, more 
representative of real life renormalization calculations 
where the total number of coupling constants is in 
principle infinite. 

The starting values of the different weights are 

A(l) =B<1l =x2 +X4, (56a) 

(56b) 

(56c) 

(56d) 

(56e) 

(56f) 

Again we may write down the recursion equations for 
these weights by drawing all possible configurations of 
self avoiding random walks on the (r + l)th order block. 
Figure 6 shows the configurations that contribute to 
C(T+1). Other recursion equations are similarly written 
down. We get 

A(T+1) =B(l +D), (57a) 

B(T+1) =A2 +C2, (57b) 

C(T+1) =2AC, (57c) 

D(T+l) =B2 + 2DE , (57d) 

E(T+1) =D2 (57e) 

F(T+1) =F(l +A + C) + GB +IB, (57f) 

G(T+1) =FB +GE +IE +H(D +A +C), (57g) 

H(T+ll =G(A +D) +IC, (57h) 

IT.ll = GC + I(A + D), (57i) 

where again we have suppressed the superscripts (r) 
in the right-hand sides of Eq. (57). We have quite a 
simple expression of P(x), 
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nn 
FIG. O. Configurations of random walks that contribute to 
C(T+ll for the modified rectangular lattice. The shaded rectan
gles are the rth order blocks with only the corner vertices and 
the walk going through them shown. 

ro 4 
P(x) = L:- (B(T))2j2 r+2 + ~ . 

1"=1 4 
(58) 

Numerically, we find the largest value of x for P(x) to 
converge is 

Xc ~ O. 5914 (59) 

which corresponds to the connective constant 

J-L = l/x c '" 1. 6909. (60) 

If we start with the value x = J-L -1, the sequence (A (rl, 
B(rl,c(rl,D(r),E(r)) converge tothe fixed point 

(0.5000, 0.4201, 0.4124, 0.1902, 0.0362). (61) 

Linearizing the recursion equations about this fixed 
point, we find the eigenvalues of the transformation 
matrix. Only one eigenvalue is larger than 1. Numeri
cally, its value is 

Thus arguing as before, we find 

ln2 
Ct = 2 - lnA1 '" O. 6699, 

(62) 

(63) 

Substituting for A (r), B(r), c(r), D(r), and E(r) the fixed 
point values given by (61) in the recursion equations 
(57f)-(57i), we find numerically, the largest eigenvalue 
of the corresponding transformation matrix, This is 
found to be 

A+ '" 2. 0582. (64) 

Then analogous to Eqo (53) we find 

y = In(A:/2)/lnA1 '" 10 4403, (65) 

The diameter of an (r + 2)th order block is twice the 
diameter of an rth order block, the diameter being 
defined as the largest distance between any two points 
in the block. Thus, arguing as for the truncated 4-
simplex lattice, we get 

v = (In2) /2 InA1 '" 00 6650 (66) 

which determines all the critical exponents for the 
lattice. 

IV. DISCUSSION 

We note that in all the cases considered, the critical 
indices satisfy the relation 

dv=2 - Ct, (67) 

where d is the dimensionality of the lattice as defined 
by Nelson and FisheL On the other hand, we know that 
in other cases (e. go, the XY model discussed in 1) the 
dimensionality of the lattice is more usefully defined by 
the power law behavior of the cumulative frequency 
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FIG. 7. A generalization of the modified rectangular lattice. 
The figure shows the graph of an (r+ l)th order rectangle. 
Shaded rectangles denote rth order graphs of which only the 
corner vertices are shown. The case depicted is p = 3. 

distribution function for low frequencies. Perhaps the 
self avoiding random walks are atypical in that the 
generating functions whose singularities determine the 
critical exponents are not given in terms of the partition 
function of a Hamiltonian. The critical behavior of the 
self avoiding random walks depends strongly on the 
connectivity properties of the lattice and not on the 
dimensionality alone. For example, we expect the 
critical indices Ci, ')', II to be different for the self 
avoiding walks for planar and nonplanar two-dimen
sional lattices. This is because planarity determines 
if the walk can cross itself or not. On the other hand, 
the critical exponents for the Ising model in two dimen
sions are expected to remain unchanged if a small next
nearest neighbor interaction is added to the original 
nearest neighbor Hamiltonian (which makes the lattice 
nonplanar). 

It is possible to construct pseudolattices that have the 
same effective dimensionality, but different critical 
exponents for the self avoiding walk problem. Consider, 
for example, the lattice defined in Fig. 7. This is a 
simple generalization of the modified rectangular lat
tice. The first order rectangle is a cyclic graph on 
four points. An (r + l)th order rectangle is formed by 
taking p2 rth order rectangles (p is any integer> 1) 
and arranging them in a p x p array. We connect the 
rectangles in the same row by horizontal bonds connect
ing the corner vertices of adjacent rectangles in the 
same adjacent rectangles in the same row. Finally 
2 (p - 1) vertical bonds are added to connect the corner 
vertices of adjacent rows. In Fig. 7 the construction is 
illustrated for the case p = 3. 

It is easy to see that the lattice is planar and has 
coordination number 3. Using the same method as used 
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to determine the effective dimensionality of the modified 
rectangular lattice in I, it may be shown that the effec
tive dimensionality of the lattice is ~, independent of p. 
The modified rectangular lattice corresponds to the 
special case p = 2. Also, we see that the dimensionality 
of the lattice is 2 (again independent of p) if we use Nel
son and Fisher's definition. Though the coordination 
number and the dimensionality of the lattice is indepen
dent of p (whichever definition of dimensionality is used), 
it is easy to verify that the critical exponents for the self 
avoiding walks on these lattices do depend on p. In 
particular for p = 3 we find 

Ci=0.6589, ')'=1.4601, 11=0.6705 (68) 

which differs from the exponents for p = 2 (Eq. (12b). 

It appears that the connectivity structure of these 
lattices is quite complicated, and a single value of 
"effective dimenSionality" is not sufficient to completely 
characterize the critical behavior of self avoiding 
walks on such lattices. More study in this area is needed 
to identify the parameters that can be used to complete
ly characterize the critical behavior of different systems 
on such pseudolattices. 
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The present paper is concerned with symmetry transformations of a dynamical system defined on the 
tangent bundle of a Riemannian manifold. Of present interest are infinitesimal symmetry transformations 
of the vector field which defines the dynamical system on the tangent bundle. It is known that a class of 
such transformations entails infinitesimal projective transformations leaving the vector field invariant. 
Symmetry algebras formed by such projective transformations are studied. It is shown which dynamical 
systems admit large symmetry algebras. As a result, two kinds of dynamical systems are determined, 
which have the base Riemannian manifolds of constant curvature with dimensions n ~ 4. The systems are 
generalizations of the classical harmonic oscillator and Kepler problem usually considered in Euclidean 
spaces. First integrals quadratic in the velocities are obtained, which are also generalizations of the well
known quadratic integrals for the above classical systems. 

1. INTRODUCTION 

It is generally recognized that symmetry plays a 
fundamental role in studying particular aspects of 
physical systems. A great number of investigations 
have been carried on into symmetries of mechanical 
systems. One of the approaches to the subj ect is based 
on the symplectic structure (or the Poisson brar.:ket) of 
the Hamiltonian formalism, in which the relation be
tween dynamical symmetries and constants of the mo
tion is well established. 

Recently, there have been many attempts to find 
symmetries of dynamical systems not restricted within 
the Hamiltonian formalism, with or without reference 
to constants of the motion. Katzin and Levine maintain, 
in their recent works, 1_7 that a dynamical symmetry is 
a transformation which maps the set of all dynamical 
paths into itself. Under their view, they set up a 
"Related integral theorem" which provides a means for 
deriving new constants of the motion from the old. 

In a previous paper, 8 the author reformulated in a 
more geometric way the idea of symmetry mappings 
due to Katzin and Levine. That is, a vector field is de
fined on the tangent bundle of a Riemannian manifold as 
a geometric obj ect in the place of the equations of mo
tion. A symmetry is then thought of as a certain auto
morphism for the vector field. In this setting, the 
related integral theorem is an immediate consequence 
of the symmetry. 8 In the same paper the conditions for 
an infinitesimal traj ectory collineation were determined 
by a method different from Katzin's. 2 

This article is a continuation of the previous paper 
and shows what dynamical systems admit large sym
metry algebras (i. e., Lie algebras consisting of in
finitesimal traj ectory collineations). Katzin2 was in
terested in the opposite situation, namely, in the prob
lem of determining the symmetry algebras for given 
dynamical systems, especially, the familar harmonic 
oscillator and Kepler problem. 

Let M be an n-dimensional Riemannian manifold 
endowed with a positive-definite metric tensor K and 

a}The main results of this paper are contained in a doctoral 
thesis (unpublished) submitted by Kyoto University. 

T(M) the tangent bundle of M. Let (Xi) 9 be a local co
ordinate system in M and (xi, Vi) the induced coordinate 
system in T(M). Given a vector field V on M with local 
components (Vi), one may define a vector field Z on 
T(M) by 

Z=v' - - .. v'vJ -- +V'--. , . a {k}.. a . a 
axi lJ al'~ aI" 

(1.1 ) 

where the {M's denote the Christoffel symbols. It is 
easily verified that (1.1) is independent of the choice 
of the local coordinate system. Since integral curves 
of Z determine dynamical trajectories when projected 
on M, a couple (T(M) , Z) may be called a (Newtonian) 
dynamical system. The vector field Z is a fundamental 
obj ect in place of the equations of motion. 

In order to deal with path invariances (or trajectory 
collineations) of the system, it is convenient to intro
duce an infinitesimal transformation X of T(M) which is 
raised from an infinitesimal transformation X = (~i) of 
M through 

- a a ~i a . a 
X= ~i --. + -. vi -. - 21jm' --. , 

ax' ax' aI" aI" 
11. 

1/!= -- divX= -- Y'.~' 
11+1 11+1' ' 

(1.2) 

where Y'. denotes the covariant derivative with respect 
to the {t}. In this setting, a path invariance can be put 
in the form 

[X,Z]"'O (modZ), (1.3) 

'Yhere [ , ] denotes the bracket operation. We may call 
X an infinitesimal projective symmetry of the dynam
ical system (T(NJ),Z), when (1.3) is satisfied. Equation 
(1.3) in turn entails the following equations, 10 

Lxlt;} = 1/!i6/ + lji;6/, 
(1. 4) 

[X, Vj=-4W, 

where L x denotes the Lie derivative with respect to X 
and 1/. = a'lJ/axi (see Ref. 8, for details). Since the map-, -
ping XI-- X is a Lie algebra homomorphism (i. e. , 
[X, Y] r [2, Yj), the Lie algebra of X's satisfying (1.4) 
may be called a symmetry alKebra of the dynamical 
system (TvW), Z). 
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Equations (1.4) are to be investigated in the following 
sections. Before working with (1.4), it seems appropri
ate to point out that (1.4) contains the subordinate 
conditions 

(1.5) 

This has been already discussed in Ref. 11. We shall 
study (1.4) on the basis of the results obtained there. 

Section 2 deals with the integrability conditions of 
(1,4) and evaluates the maximum possible dimensions of 
the symmetry algebra determined by (1.4). 

Section 3 is concerned with maximal symmetry al
gebras having maximal subalgebra defined by (1.5). It 
is shown that if M admits a maximal subalgebra de
termined by (1.5), then the maximum dimensions of the 
symmetry algebra evaluated in Sec. 2 are not attained. 

Section 4 is devoted to the case where lid admits a 
lower dimensional Lie algebra determined by (1.5). In 
this case, there is a function U in (an open subset of) 
AI, referred to as a potential, such that V = - grad U 0 11 

Furthermore, (1.5) contains the restricted conditions 

(1.6) 

Symmetry algebras determined by (1.4) are discussed 
under the condition that they have subalgebras defined 
by (1.6). Two kinds of marked symmetry algebras are 
determined on a space of constant curvature (n>- 4). 

In Section 5 dynamical systems admitting the sym
metry algebras obtained in Sec. 4 are discussed. These 
dynamical system;::; are considered as generalizations of 
the harmonic oscillator and the Kepler problem usually 
treated in the Euclidean space. First integrals of the 
dynamical systems are obtained by the related integral 
theorem, which are also generalizations of the familiar 
quadratic integrals. Katzin2 derived (1.4) for a generic 
Riemannian space M but applied the equations only to 
the case of AI = lR3

• He also applied the related integral 
theorem to obtain the familiar quadratic first integrals. 2 

It is to be understood throughout this paper that all 
manifolds, vector fields, functions, etc., introduced 
are tacitly assumed to be of class C~. 

2. INTEGRABILITY CONDITIONS 

Equations (1.4) can be put into a normal form, 

Vi ~j = ~/, 

Vk~/ = - R'k/ ~' + WkO/ + 4:iO/, (2.1) 
1 

Vjl);k=- n-l (~IVIRjk+RlkV+Rjl~k" 

~kV Vi _ ~ '(0 iVk __ 4_)0 kVi =0 (2.2) 
k k I n+l I , 

where (R ,k /) and (Rik ) are the curvature and Ricci 
tensors, respectively. Equations (2.1) are partial dif
ferential equations in n2 + 2n unknowns (~i, ~/, </i,) with 
the constraints (2.2). If V vanishes identically, the 
integral curves of the dynamical systems (T~'I1), Z) re
duce to geodesics, and hence (1.4) merely shows that 
X is an infinitesimal projective transformation without 
constraints. For this reason we assume that the vector 
field V does not vanish identically but may h-ave isolated 
zeros. 
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The first integrability conditions of (2.1) are written 
in the form 

~IVIWiik+~/W'jk +~/Wilk +~kIWtj/+Wijkll/J,=O, 
(2.3) 

where Wii/ and Ww are, respectively, defined by 

WW' =Rij / - n ~ 1 (O;'Rjk - O/R ik ), (2.4) 

1 
W".=- --1 (V,R'k-V,R,.). (2,5) 

tJ/C n _ 1 J J t", 

The covariant derivatives of (2.2) take the form 

ev V Vi+t k(O 'V Vi-O iV VI+_
4

_ 0 'V Vi) 
I i '" J k kin + 1 k i 

(2.6) 

We now show that (2.6) is independent of (2.2) and 
hence gives independent constraints on (~i, ~J k, W,), In 
fact, if (2.6) depends on (2.2), each equation of (2.6) is 
a linear combination of the equations of (2.2). Then 
0=30/Vi -OJiVk. By contracting this with respect to k 
and j, we get (3n - 1)Vi = 0, so that V = 0, contradicting 
the assumption. 

Theorem 2.1: Symmetry algebras determined by (1.4) 
are at most of dimension n2

, 

Proof: Assume that the first integrability conditions 
(2.3) are valid for (~i,V,If!/) satisfying (2.2) and (2.6). 
Define the coefficient of ~k' in (2.2) and of If!k in (2.6) to 
be Si ,. and Tk

J 
i respectively, 

Sik=OiVk __ 
4 _ 0 kVi Tk' 30 kV' 'Vk 

I I n + 1 I ' / = i • - 0/ . 

Let Si,. =SiA and Tk/ = TkB , where A = (7) and B = (;) are 
double indices. By choosing a local coordinate system 
such that (Vi) = (1,0, ... ,0) and writting out nonzero 
elements of the (n,n2) matrices (Si A ) and (Tk B ), we find 
that these matrices are both of rank n. Thus (2.2) and 
(2.6) contain 2n linearly independent equations at least, 
and consequently Eqs. (2.1) with (2.2) admit 
n2 (=n 2 + 2n - 211) linearly independent solutions at most. 
This completes the proof. 

Remark: Theorem 2.1 also holds good even if the 
second equation in (1.4) is replaced by [X, vj = - 2wV 
(see Theorem 3.2). In this case we have a Lie algebra 
which does not come from the path invariance of the 
dynamical system (T(M), Z) . 

We now refer to a theorem, due to Egorov,12 with 
regard to infinitesimal proj ective transformations. 

Proposition 2.2: If an n-dimensional manifold with an 
affine connection has no torsion and if it admits an 
effective13 group of projective transformations of order 
greater than n2 -2n+5, then it is projectively flat. 

The following theorem is an immediate consequence 
of this proposition. 

Theorem 2.3: If an n-dimensional Riemannian mani
fold M admits the maximal Lie algebra stated in 
Theorem 2. 1 and if 11 >- 3, then M is of constant 
curvature. 

Toshihiro Iwai 13 



                                                                                                                                    

Proof: By Proposition 2. 2 a Riemannian manifold M 
(n'" 3) admitting the maximal Lie algebra stated in 
Theorem 2.1 is proj ectively flat and hence of constant 
curvature. This is consistent with (2.3), because W. / 

Ijk 

and WUk vanish on M (n'" 3) of constant curvature. 
This ends the proof. 

3. THE CASE WHERE M ADMITS A MAXIMAL 
SUBALGEBRA OF INFINITESIMAL ISOMETRIES 
PRESERVING A VECTOR FIELD 

As mentioned in Sec. 1, (1,4) contains the condition 
(1.5) for X to be an infinitesimal isometry which pre
serves a vector field V. Structures of M's which ad
mit maximal Lie algebras (being of dimension 
n(11 -1)/2 + 1) determined by (1.5) have been specified 
in Ref. 11. There it was shown that, if 11? 4, M is 
locally isometric to either a Riemannian manifold of 
constant negative curvature or the direct product of 
ffi and an (n - 1 )-dimensional manifold of constant 
curvature. The latter cannot be of constant curvature 
unless it is flat. In view of this and Theorem 2.3, we 
are interested in manifolds (11? 4) of constant nonposi
tive curvature. 

The following proposition is well known about infini
tesimal projective transformations (see Ref. 14, for 
example). 

Proposition 3.1: If an Einstein manifold with non
vanishing scalar curvature admits an infinitesimal pro
jective transformation X, then X is uniquely decomposed 
into 

X= y - (1/2K)graM, (3.1) 

where Y is a Killing vector field, K is the sectional cur
vature, and grad~' is a gradient vector field defining the 
infinitesimal proj ective transformation. 15 

Now we consider spaces of constant nonpositive cur
vature which admit maximal Lie algebras determined 
by (1.5).11 First, let M be a space of constant negative 
curvature with the sectional curvature K = - 1. We 
choose a coordinate system such that 

" ds 2 = ~ (dxi)2 /(X")2. (3.2) 
i =1 

According to Proposition 3 1, there is such a function 
IjJ that ~grady) gives a set of infinitesimal proj ective 
transformations of M. By substituting ~grady) for X in 
the first equations of (1.4) and solving the resulting 
equations, we can obtain 

~,= [lI(x")2] (A (xx) + bxxxr2 + cr4
] +c', 16 

where 

A(xx) = ~ax~xxx~ + axxx + a (ax~ = a~ x), 

(3.3) 

(3.4) 

r=2:"i=1(Xi)2, and ax~' ax' a, iJ x' c, and c' are constants. 

For the space of constant negative curvature (3.2), a 
basis of the Lie algebra determined by (1.5) consists of 

. a 
x, ax i ' 

x-" ~ x~ _0_ a 
~ ax~ - ~ ax'" ax"' (3.5) 

This Lie algebra is isomorphic with the Lie algebra of 
the Lorentz group 0(11,1). The preserved vector field 
is given by 
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V= x" _0_ 
. ax" 

within a constant multiple. 

(3.6) 

In case M is flat [ds2 = 2: (dx")2 + (dX")2], the Lie alge
bra determined by (1.5) has a basis consisting of 

a a a a 
ax"' x" ax" - x~ a-;I:' ax"' 

The preserved vector field is then given by 

V=_a_ 
ax" . 

(3.7) 

(3.8) 

We are now in a position to gain insight into the Lie 
algebra of the maximum dimension n2 stated in Theorem 
2.1. 

Theorem 3.2: If an n-dimensional Riemannian mani
fold Ai admits a maximal subalgebra defined by (1.5), 
then ,tj (11? 4) admits no symmetry algebras of dimen
sion 112 determined by (1.4). However, in case the 
second equation in (1. 4) is replaced by [X, V] = -2IjJV, 
Ai (11? 4) admits a Lie algebra of dimension 112. 

Proof: As is written above, under the condition of 
the theorem, we have already obtained preserved vector 
fields and subalgebras of all Killing vector fields 
satisfying (1.5) in the both cases where II is of constant 
negative curvature and where M is flat. Accordingly, 
we need only to try to look for the infinitesimal projec
tive transformations which satisfy (1.4) but are not 
Killing vector fields. First we suppose that M is of con
stant negative curvature, so that, according to (3.1), 
we devote ourselves to considering gradient vector 
fields. The function (3.3) with c' = 0 satisfies 

n ~ 1 divO grad~l) = 2 (11\ 1) tr(a,,~) + 4', (3.9) 

where tr(ax~) = 2: ax,,; this may be verified in a straight
forward manner. On the other hand, by expanding out 
the bracket of ~grad~' and V given by (3.6), we see that 
V is preserved by the infinitesimal transformation 
~grady) if and only if Ii" = c = O. That is, under the con
ditions Ii" = c = 0, V satisfies 

[~grad~, V] = - 20V. (3.10) 

From (3.9) and (3.10) it follows that if tr(axJ=bx=c=O 
then 

[~gradJ, V]=- -~1 rdiv(~gradljJ)]V. (3.11) 
11+ 

Since tgradljJ with tr(a).~) = bx = c = 0 gives rise to 
n(11 + 1)/2 - 1 linearly independent fields, the linearly 
independent infinitesimal proj ective transformations we 
have obtained amount to 112 in number; there are 
11(11 -1)/2 + 1 linearly independent Killing vector fields 
and n(11 + 0/2 - 1 linearly independent gradient vector 
fields. This proves the theorem for M of constant ne
gative curvature. We suppose in turn that M is flat. As 
is well known, a basis of the infinitesimal projective 
transformations which are not Killing vector fields 
consists, in the standard coordinate system, of 

Xi ~ + xi _a_ XiXk _a_ (3.12) 
ax} 'axi' a0 . 

By substituting (3.12) and (3.8) for X and V in (1.4), 
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respectively, we can easily prove that there are no 
symmetry algebras of dimension n 2 satisfying (1.4). 
This completes the proof. 

4. THE CASE WHERE M ADMITS A LOWER 
DIMENSIONAL SUBALGEBRA OF INFINITESIMAL 
ISOMETRIES PRESERVING A VECTOR FIELD 

This section is devoted to a study of the Lie algebra 
defined by (1.4) under the condition that (1.5) de
termines a subalgebra of dimension n(1I - 1)/2. We have 
already analyzed what Riemannian manifolds admit 
such subalgebras. 11 This section is based on the re
sults obtained in Ref. 11, which we summarize as 
follows: 

Proposition 4.1: If an II-dimensional Riemannian 
manifold J1 (11:" 5) admits a Lie algebra of dimension 
n(11 - 1)/2 determined by (1.5), then there is a function 
U such that (1.6) holds, and the preserved vector field 
tr is the gradient of U, V = - grad V." The structures of 
Ai are classified into two cases, 

ds 2 =A(r) i1 (dxi)2 + B(r) (~XidXI) 2, 

U = VCr) (r = E (X/)2) , 

ds 2 = (dt)2 + f(t)da2 , 

V=V(t), 

(4.1) 

(4.2) 

where da 2 is a metric defining an (n - 1 )-dimensional 
Riemannian space of constant curvature. In the case 
(4.1) grad V vanishes at the point r = 0, but in the case 
(4.2) gradV never vanishes. 

On the basis of Proposition 4.1, we investigate Eqs. 
(1.4) in what follows. First we prove 

TheorCI11 4.2: If symmetry algebras determined by 
(1.4) have Lie subalgebras of dimension n(n - 1)/2 
(11 > 5) defined by (1.5), the former algebras are of 
dimension 112 - 1 at most. 

Proof. The proof proceeds analogously to that of 
Theorem 2.1. We need only to observe that the second 
equation in (1.6) is independent both of (2.2) and of 
(2.6) with (Vi) replaced by (VI), local components of 
gradV. This completes the proof. 

From Proposition 2.2 and Theorem 4.2, we obtain 

Theorem 4.3: If an n-dimensional Riemannian mani
fold Ai (11 > 5) admits the symmetry algebra of dimen
sion 112 - 1 described in Theorem 4.2, then M is of con
stant curvature. 

Now we proceed to the study of what dynamical sys
tems admit the symmetry algebra of dimension n2 - 1 
stated above. To do this, we deal with (1. 4) in a space 
of constant curvature. W8 begin with specifying co
ordinate systems. 

Lemma 4.4: A space of constant curvature (n:,. 3) 18 
has the following coordinate systems which are con
sistent with that given in Proposition 4.1: 
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V=V(r) (r=t(xij2), 
1:::1 

n 
ds 2 =6(dx i )2, V=V(r), 

i=l 

n-1 

ds2 = 6 (dX~)2 + (dt?, V = v(t), 

(4.3) 

(4.4) 

(4.5) 

where K(t 0) is the sectional curvature. The origin 
(Xi) = 0 is included or not according as the metrics (4.3) 
and (4.4) arise from (4.1) or (4.2). The metric (4.5) 
aris es from (4.2). 

Proof: First we suppose that Ai has the structure 
(4.1). By setting 

A(r)=l/K(r+1!K), B(r)=-I/K(r2 +1!K)2, (4.6) 

we obtain a metric defining a space of constant curva
ture with the sectional curvature K*-O [Le" (4.3)]. By 
setting A = 1 and B = 0, we get a metric defining a flat 
space [i.e., (4.4)]. Next we assume that the structure 
(4.2) is the case. Then Ai becomes a space of constant 
curvature with the sectional curvature K, if f (I) is 
given by 

f(t)=(1/K)sin 2 (v'J{t) forK>O, 

j(t)=(1/-K)sinh2 (V-K t) for[«O, 

j(l)=f forK=O, 

(4.7a) 

(4.7b) 

(4.7c) 

together with da 2 defining an (n -I)-dimensional space 
of constant curvature with the sectional curvature 1. 
Since the metrics for (4.7) degenerate at f = 0, we as
sume that t is positive. By a change of the coordinate 
system,19 these metrics can be put into the form 

ds2=(1 +~Kt2)-2 (E(dXi )2) , E(X i )2=t2*-0. (4.8) 

By a further change of coordinate systems, this form 
(K *- 0) can be written in the same form as in (4.3) in 
the region (Xi) *- O. If K = 0, (4.8) is nothing but the 
metric in (4.4) in the region (xi) *- O. In both cases K = 0 
and," 0, f is expressed as a function of r. Thus we have 
the same form as in (4.3) and (4.4) in the region 
(xi) '" O. On the other hand, if we set j(t) = 1 in the case 
(4.2), we have another structure (4.5). This ends the 
proof. 

In the coordinate systems described in Lemma 4.4, 
an infinitesimal projective transformation (~i), a solu
tion to the first equation in (1.4), takes the form20 

(4.9) 

where aj , b/ and ci constants. A basis of the infini
tesimal proj ective transformations of M is chosen as 

y = _0_. + Kxj:xi' _0_ L _.i _~ _ ) _0_ (4.10) 
j ax) o:xi" i) - X ax) x oxi ' 

A =x1:xi'_o_ 5 =Xi ~ +x1 ~ (4.11) 
J axk' iJ c.X'" - (lx') 

no matter whether J{ vanishes or not. The linear space 
spanned by (4.10) is a Lie algebra of all the Killing 
vector fields. The set of Vs generates a Lie subalgebra 
of dimension n(n -I)/2 which preserves V given in (4.3) 
01'(4.4). 

In this setting) we proceed with solving (1.4). First 
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we deal with the case K * O. To do this we write out 
gradU and divX in the coordinate system (4,3). A 
straightforward calculation shows that gradU and divX 
take the form 

gradU = K2 Y' + - - xl' -( 
1 )2 U' a 
K r ax" ' 

(4.12) 

divX='VI~i=0 --::;; - (n+1) Y'+- 0Xk~k, n a ~k (1 )-1 n 

k=1 ax- K k=1 
(4.13) 

where U' denotes the derivative of U with respect to r. 

We now prove the following lemma which provides 
solutions to (1,4). 

Lenz ma 4.5: Under the condition that (1.6) determines 
a Lie algebra (If dimension 11(11 _1)/2,21 a solution to 
(1.4) with V = - gradU takes one of the following forms 
(n> 4) in the coordinate system (4.3): 

(4.14a) 

U=~cr+e' (c*O,c'.consts), (4.14b) 

(4.15a) 

U(r) = - c/r+ c' (e*0, c': consts), (4.15b) 

where OJ' bij = - bji and eij = cjl are constants. The 
vector fields A's, Vs and 5's are given in (4.10) and 
(4.11). 

Proof: Since we have already obtained the Lie sub
algebra of dimension n(n - 1 )/2 determined by (1.6), 
i.e" the Lie algebra spanned by Vs, it is sufficient 
for us to solve the second equation in (1.4) for infini
tesimal projective transformations which are not Kill
ing vector fields. 

Let X be such a transformation. Then X must be a 
linear combination of Aj and 5 ii' 

(4.16) 

where OJ and cij = cji are constants. Formula (4.13) 
applied to (4.16) gives 

divX= K(1~:11/K) 0ojx j +2tr(ci) 

(4.17) 

Substituting (4.12), (4.16), and (4.17), respectively, 
for - V, X and divX in (1.4) results in 

20Ciryixj 1~ d~ (~') + 0 0 j X
J [r d~ (~') +3 ~'] 

8 U' 
+ --1 tr(c.

J
) - =0. 

n+ 'r 
(4.18) 

Let Xi = rzi. Then (4.18) becomes 

20c. Zizi r - -- +0a.z i r r- - +3-d (U
I
) [ d (U

I
) UI] 

.} dr r J dr r r 
8 U' 

+-- tr(c.j) - =0 (4.19) 
n + 1 'r 

with the constraint 

0Z i Z i -1 =0. (4.20) 
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Denote the left-hand sides of (4.19) and (4.20) by 
P(r,z) and Q(z), respectively. P and Q are polynomials 
in (Zi). By the Hilbert zero theorem, 22 there is an in
teger p and a polynomial H(r,z) in (Zl) such that 
P(r,z)p =H(r,z)Q(z). From this, Q(z) must be a factor 
of P, because Q is irreducible. As P and Q are of the 
same degree, there is a function h(r) such that 

P(r, z) = h(r)Q(z). (4.21) 

From (4.19), (4.20), and (4.21) we obtain the following 
identities in (z'), 

2r ~ (U') 0 e. zizi =h(r) 0z iz i (4.22a) 
dr r" ' 

r r- - +3- 0az}=O [ d (U') U'] 
dr r r J ' 

8 UI 

n + 1 tr(cii) r = - h(r), 

If (a) * 0, then (4. 22b) provides 

U(r)=- c/r+c l (c*O,c/:consts). 

(4. 22b) 

(4.22c) 

(4.23) 

The constant c never vanishes, because if so, then 
gradU=O, contradicting the assumption. If (4.23) is the 
case, (4.22a), and (4.22c) yield 3cij =tr(ci)oii' so that 
tr(ci') =0 or n=3. Under the condition n> 4, we have 
tr(e) = 0 and hence (ci) = O. Conversely, when (cij) 
=0, we may suppose that (a;l*O. For otherwise, (4.16) 
vanishes. 

Suppose that (a) = O. Equations (4.22) imply that 

d (U I

) 4 UI 

r dr r eij = - n + 1 tr(ci) rOw (4.24) 

If cij * 0 for some distinct i and j, then (4.24) gives 

U(r)=~cY'+c' (c*O,c':consts). (4.25) 

The reason for c*O is the same as in (4.23). If (4.25) 
is the case, then tr(cij)=O holds by means of (4.24). 
Conversely, if the constants (eiJ) * 0 satisfy the condi
tion tr(c;j) =0, then we have (a,)=O from (4.22). This 
proves the lemma. 

We now turn to the case K=O, 

Lemma 4.6: Under the same condition as in Lemma 
4.5, a solution to (1,4) with V = - gradU takes the same 
form as in that lemma also in the coordinate system 
(4.4). 

This may be proved through the same method as 
above. We now work with (1.4) in the coordinate sys
tem (4.5). It is to be noted in advance that gradU never 
vanishes in this case. 

Lemma 4.7: Under the same condition as in Lemma 
4.5, a solution to (1.4) with V = - gradU takes one of 
the following forms (n> 4) in the coordinate system 

(4.5): ( 1 ) 
X=0b~Y).+0b)."L).jJ.+0a"A).+0e)." 5).J.L+;;o"jJ.5nn ' 

(4.26a) 

U(tl = - c/t2 + C' (c * 0, e': consts), (4.26b) 

X =0 b~ Y). + 0 b).jJ.L).jJ. + 0 C).jJ. (5).jJ. + n ~ 3 O).jJ.5nn) , 

(4.27a) 
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{
ct+c' k*O,c':consts), iftr(c~)==O, 

u(t)= 
an arbitrary function, if tr(c~,,) = 0, (4. 27b) 

where ax' bA" == - b,,~, b~, and CAl' =: c"X are constants. 
The vector fields Y's, L's, A's, and 5's are given in 
(4.10) and (4.11) together with K=O. 

Proof: It is easily seen that the Lie algebra of dimen
sion n(n -1)/2 determined by (1.6) is spanned by 
L",,'s and Y/s with K=O. 

Let X be an infinitesimal proj ective transformation 
which is not a Killing vector field. It takes the same 
form as (4. 16), if x" is replaced by t. By substituting 
this X and V=- u'a/axn into the second equations in 
(104), we have 

(2cn• + anx")U' =0, (4.28) 

(xnU"+3U')6a.xJ +2U"6c .Xi 
] nJ 

-2U'(C __ 4_ tr(c.)-axnU'=0 
nn 11 + 1 'J 'I n , 

(4.29) 

where U' and U" denote the derivatives of U with re
spect to xn. 

Since U'io, (4.28) gives c =a =0. By substituting 
nK n 

this into (4.29), we obtain the following identities, 

(U" + 3U') 6 axxx + 2cnnU"x" - 2U' (cn" - n: 1 tr(c/J») 

=0. (4.30) 

If (ax) i 0, then from (4.30) it follows that 

U" x" + 3 U' = o. (4.31) 

Since U'*O, this implies that x"iO. Equation (4.30 is 
integrated to give 

U(t)=-c!t2 +c, (t=x"; ciO, c':consts) 

Substituting (4.32) into (4.30) results in 

(4.32) 

(4.33) 

Conversely, if (4.33) holds, (a~) does not necessarily 
vanish because of (4.30). Thus we obtain (4.26). 

If (a) =: 0, then from (4.30) we have 

C U"xn - U' (c --~ tr(c. »)=0 
"n nn n + 1 '1 . (4.34) 

The first term of (4.34) vanishes on the hypersurface 
xn = 0. However, as U' never vanishes, the coefficient 
of U' must vanishes, so that cnn =4tr(cxu)/(n-3). Con
sequently, (4.34) gives cnt,u" = O. If cnn i 0, U" vanishes, 
so that 

U(t)=ct+c' (t=xn ; ciO, c':consts). 
(4.35) 

Conversely, if cnn =4tr(cx,,)/(n-3)iO, then (4.30) 
implies that (ax) = O. If cnn = 0, that is, tr(c

AU
) = 0, then 

U is arbitrary. Thus we have (4.27). This completes 
the proof. 

Weare now in a position to show the existence of the 
symmetry algebra stated in Theorem 4.3. On the basis 
of Lemmas 4.5,4.6, and 4.7, we obtain 

Theorem 4.8: Let M be an n-dimensional Riemannian 
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manifold (n ~ 5) which admits a Lie algebra of dimension 
n(n -1)/2 defined by (1. 5).23 Then symmetry algebras of 
dimension n2 

- 1 determined by (104) are attained, when 
M is a space of constant curvature. If M has nonzero 
sectional curvature, the symmetry algebra is spanned 
by the elements (4 .14a) in the coordinate system (4.3). 
When M is flat, two kinds of symmetry algebras are 
realized. One is a symmetry algebra generated by the 
elements (4. 14a) in the coordinate system (4.4). The 
other is spanned by the elements (4. 26a) in the co
ordinate system (4.5). 

5. DISCUSSION AND APPLICATION 

We have studied a class of symmetries of the dy
namical system (T(Nl) , Z), which are determined by 
(1.3). It seems to be a Cartan's idea24 to formulate 
symmetries for differential equations in the form of 
vector fields. Equation (1.3) is an application of his 
idea. For a study of the symmetry, infinitesimal 
transformations (1.2) are not the most general allowed 
in T(M), since they are lifts of transformations of the 
base space M. However, we chose such transformations 
for the reason that the vector field Z defining the dy
namical system are originally attributable to the equa
tions of motion on ;VI 0 

Within this class of symmetries, our results ob
tained in the last section show what dynamical systems 
admit large symmetry algebras. Before describing this, 
we recall that such dynamical systems are determined 
on the assumption that (a) M (n ~ 5) admits a Lie algebra 
of dimension n(n -0/2 defined by (1.5) or (b) M (n ~ 4) 
admits a Lie algebra of dimension n(11 -0/2 defined by 
(1.6) (see Refs. 17 and 23). In the former case (a) the 
existence of a potential U is a consequence of the as
sumption, but in the latter case (b) it is assumed against 
the lower dimensionality n? 4. 

Now, Theorem 4.8 shows what dynamical systems 
admit maximal symmetry algebras determined by (1.4). 
We describe them by pointing out Riemannian metrics 
and potentials. One is a dynamical system which 
possesses the Riemannian metric (4.4) or (4.3) with 
constant curvature and the potential (4.14bL Another is 
given by the flat metric (4.5) and the potential (4.26b). 

Aside from the maximality of dimensions of symmetry 
algebras, we here direct our notice to the fact that 
Lemma 4.5 provides two kinds of symmetry algebras 
realized on a space of constant curvature (n ~ 4). One 
is given by (4.14a) and the other by (4.15a). From po
tential form, the dynamical systems admitting these 
symmetry algebras are thought of as generalizations of 
the harmonic oscillator and the Kepler problem usually 
considered in Euclidean spaces. 

Each system has the energy integral 

where U is equal to cr /2 or - c/ r. 

In general, any conservative dynamical system always 
possesses the energy integral 
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(5.2) 

This integral yields a new first integral, when the sys
tem admits a proj ective symmetry. We can easily prove 
the following theorem by use of (1.3), which was first 
proved by Katzin and Levine by a different method. 2,4 

Theorem 5.1; Let X be an infinitesimal projective 
transformation which satisfies (1.4) but is not a Killing 
vector field, and X be its lift defined by (1.2). Further, 
~sume that the energy integral (5.2) is given. Then 
X(E), the derivative of the energy integral E with re
spect to X, is a new first integral which is expressed 
as 

X(E)==~(Lxgij- n!1 (diVX),!;iJ)vivJ+XU. (5.3) 

We now apply this theorem to the energy integral 
(5.1). Infinitesimal proj ective transformations which 
satisfy (10 4) but are not Killing vector fields are already 
obtained in Lemma 4.5, i. e., A's and 5's. 

First suppose that we have the energy integral (5.1) 
with U == - clr. Then Eq. (5.3) applied to Ak provides 

Ak(E) == 2I~(r ~ 17K)2 :0 (Ok}X
i + 0ki Xi - 2oijxk)V

i
l,i 

'J 

+ cxklr. (5.4) 
This is an integral corresponding to the so-called 
Runge-Lenz vector in classical mechanics. Katzin2 
obtained this integral for the Euclidean space. 

Suppose in turn that we are given the energy integral 
(5.1) with U == cr /2. We then obtain from (5.3) 

0CijSij(E) 

== ---~-- ;, c (Xii'" - ·J>I,i)(vi 1,k - vk1.i) K(r + llK)2 LJij . X'. A ., 

ltJ tk 

+ 2 j~ ciJ (K2(X~ilIK>"2) + xixi). (5.5) 

It should be noted that the first terms of the right-hand 
members of (5.5) is a sum of the products of the linear 
first integrals. Indeed, for the Killing vector field Lij 

with local components (~~), the function 

g ~k 1'1 ==l ___ l __ )(xivi _xiVi) 
kl ii' \K(r + 1/K) 

(5.6) 

is a first integral. Subtract the first terms from (5.5), 
we have new first integrals quadratic in (Vi), 

(5.7) 

These integrals are generalizations of the well-known 
quadratic integrals for the harmonic oscillator. Katzin2 
obtained these integrals in the Euclidean space. 

We conclude this section with a remark on quadratic 
first integrals. Nishin025 studied quadratic first in
tegrals for a space of constant curvature. He treated 
the dynamical system constituted by the metric ds 2 and 
the potential U such that 
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Though he assumed that the potential is central, that is, 
depends on only r, the central potential in our case [see 
(4.3) and (4.4) 1 is not an assumption but a consequence 
of the symmetry. 

Nishino25 analyzed the condition for Q == ~lJji Ih)i + 1; to 
be a first integral and found out two kinds of potentials 
to admit a large number of Q's. They are 

U==cr(1-tKr)-2 and cy-l(l-iKr). 
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We present here a new and easy method, a natural extension of Lax's method, for obtaining general "IST
solvable" nonlinear evolution equations. These are evolution equations for the potential function(s), v. of a 
Hamiltonian, H, when the logarithmic t derivatives of H's inverse scattering data are given by a t

dependent ratio of entire functions of E, fl(t, E). Here E is the energy variable and n is the "dispersion 
relation" of Abowitz, Kaup, Newell, and Segur (AKNS). We pose the question of existence of the 
evolution equation's solution. This question is answered completely in the one-dimensional Schrodinger 
case (first example). In a second example we derive the evolution equation for an n X n matrix 
generalization of the Zakharov-Shabat-AKNS equation. Our method displays the central role of 
analyticity in E in the 1ST method as a whole. 

INTRODUCTION 

Inverse methods were introduced into nonlinear 
evolution equations by Gardner, Green, Kruskal, and 
Miura (GGKM)' in 1967; they showed that the Korteweg
de Vries (KdV) equation and its higher order general
izations could be interrelated by means of the one
dimensional Schrodinger equation and that this family of 
nonlinear equations could be solved exactly by letting 
the inverse scattering data of the Schrodinger equation 
evolve in a manageable way which is determined by the 
nonlinear equation. Much of the motivation for the study 
of the KdV equation came from experimental and numer
ical studies which showed the presence of stable 
"particlelike" solutions, named solitons. GGKM were 
able to show that soliton solutions were associated 
exactly with the presence of proper eigenvalues of the 
Schrodinger Hamiltonian, and thus their stability was 
essentially due to the invariance of this Hamiltonian 's 
spectrum. 

In 1968 Lax2 introduced an elegant unitary operator 
formalism which recovered the GGKM results for the 
one -dimensional Schrodinger Hamiltonian: Lax showed 
clearly, in an abstract setting, that what was involved 
was the "isospectral" evolution of a Hamiltonian H '=H(I) 
= U(t)H(O)U*(t), induced by the unitary operator U'= U(t) 
[U( 0) = I] and that the evolution equation for H was then 
given by the commutator ('(juatiOll 

H f = [Bq, HI, where B q= UtU*= -B~. 

(Notation:f,,=(lf/ils for s=x or t.) 

Here B a, a linear antisymmetric operator, is U's 
generator. Now if H's operator structure is restricted 
so that only its potential 7' can evolve, as is the case 
when an inverse method is applied, then the commutator 
equation becomes an evolution equation for 1'. The great 
interest is that the evolution equation is in general non
linear, is exactly solvable, and has soliton type solu
tions whenever H has proper (discrete and separated) 

a)This work was completed under Contract No. 264 of the 
R.C.P. 

b)Physique Mathematique et Theorique, Equipe de Recherche 
Associee nu C.N.R.S. 

eigenvalues. Given the above, Lax's method consists of 
somehow finding or constructing antisymmetric linear 
differential operators, B L = _BL*, such that [BL, HI has 
the correct form to be identified with l't. He explicitly 
constructed such operators in the Schrodinger case to 
recover the GGKM results. Lax also looked at several 
other Hamiltonians. 

Zakharov and Shabat' applied these methods to a 2 x2 
matrix equation, whose Hamiltonian wasn't symmetric, 
but which had proper eigenvalues and a solvable inverse 
scattering problem: They obtained solvable nonlinear 
evolution equations which had soliton solutions, some 
of which they explicitly displayed. The added interest 
here is that their nonlinear equation which is a kind of 
nonlinear time -dependent Schrodinger equation, has 
applications in plasma physics and, more importantly, 
the 1ST method worked again. 

In 1974 Ablowitz, Kaup, Newell, and Segur' (AKNS) 
presented a comprehensive analysis of the above meth
ods, including a new and more systematic method of 
deriving even more general evolution equations which 
could be written in a beautifully concise form. They 
showed that the process was a nonlinear generalization 
of the Fourier transform and so they called it the in
verse scattering transform (1ST). Their method 
bypasses Bo and derives the evolution equations by using 
convenient integral representations for the inverse 
scattering data. Applied to their 2 x2 generalization of 
the Zakharov -Shabat equation they prove that if their 
two component potential U satisfies the evolution equa
equation 

Ut=O(L*)U, 

Then the inverse scattering data evolve according to 
their "dispersion" relation O(E). Here O(E) is poly
nomial (or entire or a ratio of entire functions) in E, 
the energy variable, and L is a linear matrix differen
tial operator whose eigenfunctions are essentially the 
squared eigenfunctions of the Hamiltonian. They gave 
similar results for the Schrodinger equation. 

Our method, in its present formulation, is a natural 
extension of Lax's method and is motivated by a general 
theorem5 which guarantees the existence of a unitary 
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U (and thus of Ba= -B:), given that the evolution of 
H = H* has been induced "isospectrally," e. g., by caus
ing H's inverse scattering data to evolve without altering 
H's spectral structure which includes the proper eigen
values, continuous spectrum, and their degeneracies. 
Given H ==H(t) (and consequently having H t 0= oH /'(11) we 
systematically solve the two following commutator equa
tions, [B, HII.jJ=Htl.jJ= [B-,HII.jJ (where HI.jJ=EI.jJ and B-q) 
= B<J!), first for the linear E -dependent operator B, 
which in turn gives us the linear E -independent operator 
B-, all modulo the addition of operators which commute 
with H, 

[If H*=H, then H'[=H, and Ba=~(B--B-*) must satisfy 
the same commutator equation as B- since B- + B-* com
mutes with H automatically. I The operator equation for 
B, applied to 1.jJ, takes on a more convenient form which 
we call the "reduced commulator eq1lation," and we call 
B the reduced form of B-. When the operator structure 
is introduced into the reduced commutator equation we 
obtain an ordinary inhomogeneous differential equation 
in which H t is the inhomogeneous term, I is a parame
ter, and the unknown is an "auxilliary function" b, from 
which B can be recovered. This ordinary differential 
equation for b becomes the central tool of our method; 
we refer to it as the "auxiliary equal ion. " In the exam
ples considered the auxiliary equation can be solved by 
a simple algebraic rearrangement aSsum ing that b is 
polynomial (or entire or a ratio of entire functions) in 
E. The general evolution equation, in terms of what is 
essentially limx_~B =]3(E), is a simultaneous by-prod
uct. At this point our results are just those of AKNS in 
the Schrodinger case, and their 2 x2 matrix case is a 
special case of our second example. 

Stopping at this stage the point of our method is not so 
much that it can generate new evolution equations (which 
it does) but that it is computationally simpler than and 
at least as systematic as that of AKNS, and it yields 
equations which are just as general, We have exploited 
this simplicity in our second example, using our method 
to obtain the evolution equation for an II X11 matrix 
generalization of the (linear) Zakharov -Shabat-
A. K. N. S. equation, for which the inverse problem is 
not yet solved. 

The above analyticity assumption is in a sense the 
second point of our method. If we do not derive this 
assumption, then our evolution equations, like those of 
Lax or of AKNS, lack an existence proof for their solu
tions. We can say, as they can, that if a solution exists, 
then the 1ST method constructs it, but existence (or 
equivalently in our case, analyticity in E) must be 
proven separately. Because of this it may be possible to 
obtain evolution equations to which the 1ST seems to 
construct solutions, without solutions existing; in such 
cases "1ST solvable" should not be taken to imply exis
tence and the evolution equations obtained should be 
taken to be candidate evolution equations till existence 
is proved. 

In the following we have five sections. In Sec. 1 we 
give more details of the inverse method, the 1ST, and 
our method as an extension of Lax's method. In Sec. 2 
we discuss existence difficulties, Sections 1 and 2 are 
in an abstract setting. Sections 3 and 4 deal with our 
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first concrete example, the one-dimensional Schroding
er case. Section 3 derives the evolution equation and 
Sec. 4 proves existence by deriving the analytiCity 
assumption. Section 5 presents our second example, 
discusses its form briefly, and then derives its evolu
tion equations, finally showing that the AKNS result is 
our special case n = 2. We do not prove existence or 
solve the inverse problem for the second example. 

1. RESUME OF THE 1ST, LAX'S METHOD, AND 
ITS EXTENSION 
A. The inverse problem 

The 1ST method is based on the solution of the inverse 
problem for the scattering system of a linear differen
tial equation, 

(1. 1) 

where H is the Hamiltonian operator, E E: a: is the ener
gy variable and I.jJ is the (generalized) eigenfunction. The 
solution of the inverse problem for say the one-dimen
sional Schrodinger Hamiltonian, H= _i1 2/i1x" + 11, per
mits us to construct the potential function 11 (here II is 
a real valued E -independent function of x, i. e., a multi
plication operator in the x representation), given the 
"inverse scattering data, " which we also call the data 
for short. The data is, essentially, part of the set of 
asymptotic (i.e., x- 00) behaviors of the appropriately 
normalized wavefunctions, Ij;;::~ Ij;~; it is that subset 
which can be freely specified and from which the rest 
of the scattering data can be derived. Finding a conve
nient subset is not a trivial part of the inverse problem. 

A given inverse method constructs the unique 
Hamiltonian, with a given operator structure, from the 
data. We remark that two Hamiltonians defined on the 
same space but with different structures (say one with 
a local potential and the other with a particular kind of 
nonlocal potential) can both reproduce exactly the same 
data. The inverse scattering data thus gives us a unique 
Hamiltonian within the class assumed by the given in
verse method -we will use this remark when discussing 
existence for solutions of evolution equations generated 
by Lax's method. The> /Io/('Il/ial is that parI of H's 

s/rIlC/llVe> lullich can l'arv. 

B. The inverse scattering transform (1ST) 

The inverse method can be used to generate an evolu
tion of the potential n by causing the data to evolve with 
I; 11 must change if the data changes because the direct 
scattering problem determines the data uniquely from 11. 

If we can identify the evolution equation satisfied by 11 

when the data evolves in a given way, then 11 's evolution 
equation can be solved by' 

1'(/ = 0) <.:.! data(l = O)<.E,! data(d.E.! 1'(1). 

Here: 

(a) indicates solving the direct scattering problem at 
/=0; 

(b) indicates integration of the data's evolution 
equation; 

(c) indicates solving the inverse problem for 1I(t) given 
data(t). 
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This is what AKNS4 later entitled 1ST. 

The evolution equation for the data in step (b) must, 
of course, be solvable if the 1ST is to work, and in the 
cases considered this is trivially true. The nontrivial 
part is the identification of the evolution equation for 11 

associated with a given (trivially integrable) evolution 
of the data. The data's evolution will be characterized 
entirely by what AKNS called the "dispersion relation" 
51; schematically 

a 
n(t ,E) = 2T(ln data(t, E)). 

In the examples to follow, 51's analyticity in E is the 
only restriction imposed on the data's evolution. 

C. lax's method and the present generalization 

Lax's method" for finding the evolution equation for 1) 

is based on the existence5 of unitary operators U"" U(t), 
UU* = I, which generate the isospectral evolution of the 
Hamiltonian H ""H(t) [and of the generalized eigenfunc
tions 1/''''',W)] via 

H= UH(O)U* [and 1/'= U1/'(O)] 

or equivalently via (1. 2) 

H t = [B.,H] (and 1/'1 = B.1/') , 

where Ba"" UtU- 1 = - B: is U's generator. The evolution 
of the data is then given by the asymptotic form of B 
B. - B a via the equation 

(1. 3) 

Remark: This, and everything else that we do, ob
viously extends to any number of t-like parameters 
(cf. results in Ref. 6). 

Lax now seeks (somehow) to construct linear anti
symmetric operators BL such that 

[BL, H]""H~lHt (1.4) 

has the correct form to be identified with H t (a multi
plication operator for the Schrodinger case). 

We, on the other hand, seek to solve the "commutator 
equation" 

(1. 5) 

for B, modulo operators which commute with H. Once 
solved, (1. 5) yields the evolution equation for the poten
tial. In comparison, the AKNS method seeks to find (it 
nearly solves for) the evolution equation directly from 
the dispersion relation, bypassing B. 

Our B need not be antisymmetric. The symmetry of 
H, constructed by the 1ST, implies the symmetry of H t 
and [B, H] and thus B, "" B + B* automatically commutes 
with H; so the antisymmetric part of B, Ba "" ~(B - B*), 
also satisfies (1. 5). 

The explicit form of the antisymmetric part of B is 
only needed asymptotically, to obtain the data's evolution 
via Eq. (10 3). In fact the antisymmetry of the generator, 
i. e., the unitarity of U, should not be overstressed. In 
the cases considered it suffices to conserve the II} 
norms of the proper eigenfunctions (i. e., bound states) 
of H and this can be arranged by adding to B an operator 
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which commutes with H. This remark has relevance 
when H is not symmetric, as, for example, in the 
Zakharov -Shabae equation and its AKNS generalization. 

D. The reduced E-dependent forms and analyticity in E 

We are able to solve (1. 5) for B in the examples con
sidered thanks to analyticity in E and to completeness 
of the 1/' 's. Completeness permits us to "reduce" E
independent linear differential operators A-to more 
convenient E -dependent forms A. If A = Z; nA(n; x, .. )En 
is a polynomial in E, then, when applied to 1/', it is 
equivalent to A -= Z; nA(n; x" . )Hn; A is the reduced form 
of A -. In the reverse sense, for example in the case of 
the v-dimensional Schrodinger equation 

a~n+2 is equivalent to a~n(u -E -to.'), where to. , ""to. -a~, 
and so forth till we obtain the "reduced" form a(E, .•. ) 
+ {3(E, ••• )(11) where the linear operators a, {3 no longer 
contain 01. When 11= 1, Cl' and {3 are no longer differen
tial operators. 

The reduced form of (1. 5), still an operator equation, 
leads us naturally to a differential equation, the 
auxiliary equation, when the operator form of H t is 
incorporated. This auxiliary equation is our central 
tool. 

Since analyticity in the energy variable E underlies 
the whole inverse method as well as completeness, our 
method displays the central role played by analyticity 
(in E) in the 1ST method as a whole. 

E. Obtaining the evolution equation 

In the examples we consider here, we show that if we 
assume that the reduced form of B, as a function of E, 
is "appropriately analytic" (i. e., polynomial or ratio 
of polynomials, entire or ratio of entires, with the 
restriction that B must be regular at the proper eigen
values of H), then the auxiliary equation can be solved 
for the reduced form of B by an algebraic rearrange
ment. This rearrangement simultaneously yields the 
evolution equation. This method thus generalizes and 
systematizes that of Lax, and elegantly yields the more 
general results of AKNS. Giu(,11 tllis analyticity assump
tion, our method yields all the evolution equations ob
tained by AKNS, but our method is computationally 
simpler, somewhat more systematic 7 and it can be 
easily generalized" to obtain results when the inverse 
problem is not yet solved. <) Proving this analyticity 
assumption is rather long and technical and is equiva
lent to proving existence of the solution of the evolution 
equation; but these other methods also require an exis
tence proof. This we now discuss. 

2. THE NEED TO PROVE EXISTENCE 

Once (1.4) has been satisfied by BL = - BL *, this does 
not trivially imply that H;=Ht where, we repeat, H t is 
the partial I-derivative of the H = H(t) constructed by 
letting the data evolve according to the given dispersion 
relation n{t, E) which is, in turn, consistent with the 
asymptotic form of B L . We know that H t = [Ba,H] for 
some linear operator' Ba = - B:, but we do not know 
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that BL = Bn even though both Bn and BL have asymptotic 
forms which generate identical evolutions of the in
verse scattering data. It is possible that HL=HL(t) 
= UL (!)H(O)UL*(I) *H where BL = U!;UL* *Bo= UtU* and 
H=H(!)= UH(O)U. If HL -tH, then HL and H would be two 
Hamiltonians defined on the same space, having the 
same spectral properties and inverse scattering data, 
but only H would be in the class assumed by the given 
inverse method. So in this case Hf= [BL,HL J could not 
have the same form as H t> even though H~ -= r BL ,H J does 
have the same form as H f' What needs to be done is to 
SllOW that BL is indeed equal to Bn and we do this by 
solving Eq. (1. 2) for B n , given H(I). 

If (1. 2) is not solved il may be jJossible to find linear 
(lJllisVlIIlIleirir oj)(Talovs BL n'hiell salisfy Lax's crileria 
l('illlOlll salisr\,iJl",' [BL,H!-·H;=H t • However, given B L , 
if lhi,'i "\1\!, .,::' an evolution equation for n, does have 
a solution, then lhe I' must be the one constructed by the 
1ST; but existence must now be proven separately. 

The AKNS method also lacks an existence proof but 
for a different reason. Schematically they show that if 
the data evolve according to S1(E), then, say for the 
Schrodinger case, 

(':'i {I't - S1(L*)I','r" c 0 (we will define L* later). 

However AKNS lacked a completeness relation for the 
squared eigenfwlctions J,J, similarly for their 
Zakharov-Shabat results. AKNS proved that if the 
evolution equation has a solution, then the 1ST con
structs it. More recently KauplO has proved complete
ness for the squared Zakharov -Shabat eigenfunctions 
and ,J aulent 11 has done so for the squared Shrodinger 
eigenfunctions. (We are not aware if it is generally 
realized that these completeness relations are needed 
to obtain existence by the AKNS method. ) 

3. THE ONE-DIMENSIONAL SCHRODINGER CASE 
A. Outline 

Here we will carry through a detailed analysis for the 
one -dimensional Schrodinger equationo We will first 
show how the form assumed for B by Lax is generalized 
by our "reduced" (E -dependent) form for B and then de
rive the reduced form of (1. 5). The connection between 
the reduced form of B and the evolution of the inverse 
scattering data will then be given, thus introducing the 
AKNS dispersion relation explicitly. The evolution equa
Lion for l' will then be derived by a relatively simple 
algebraic rearrangement of the reduced form of (1. 5), 
assuming analyticity properties in E which will be 
stated in full but derived separately in Sec. 4. These 
derivations are rather technical. The one -dimensional 
Schrodinger case should be taken as an example of the 
method already described. This section will also serve 
as a model for a second example, the II X!l matrix 
generalization of the 2 X2 AKNS-Zakharov-Shabat type 
equations, which will be given in Sec. 5. We note here 
that the Schrodinger and certain AKNS -type equations 
are equivalent; see Eqs. (5.5)-(5.7) of the Appendix. 

B. Lax's method 

22 

The usual one -dimensional Schrodinger equation is 

H~.=E:i' with H= _D2+1' 
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[D =: (l /;:J x, E -= 112 rc a;, Ii (t , x) -= 11 (x) rc lR, :jJ(!, x, k) 
=~(x,k)rca;l. (3.1) 

Following Lax we now look for appropriate linear anti
symmetric differential operators B G' of order 2q + 1 and 
form 

B = D 2 q+l + t (b. D 2 j-l + D2j-l b.) 
Q j:: 1 ) J , 

(3.2) 

where b/'d rc R. We want the commutator 

n;= [Bq, HI 

to be a real-valued function of x (i. e., a multiplication 
operator). This multiplication operator condition does 
not define Bq uniquely as was thought; it defines Bq 
modulo the addition of an arbitrary linear combination 
of B j 's with i <q since, clearly, 

q-l 
B~"'BG+"L;0.1jBj' 0.'jrclR (3.3) 

/=1 

satisfies all the conditions on B q' (A quick examination 
of Lax's argument shows that he has overlooked some 
arbitrary integration constants and interestingly these 
constants, here characterized by the wi'S, introduce 
sufficient extra freedom to recover the AKNS results in 
the Schrodinger case for polynomial "dispersion" rela
tions.) Instead of extending Lax's results via (3.3) let 
us examine the multiplication operator condition and 
Eq. (1. 5) when applied to ~'. 

C. The reduced form of B 

Clearly, when applied to J, all operators of the form 
(3.2) reduce, thanks to (3.1), to the form 

B= n(x,E) + h(x,E)D, (3.4) 

where {/ and b are polynomials in E (and they also de
pend on I although we will not bother carrying I in all 
the notation). We now introduce the notation B- for the 
unreduced, E independent, operator which can be re
covered from its reduced form, B, by expanding Bin 
powers of E, placing the powers of E on the right in 
each term and then formally replacing E with H. This 
recipe defines the relationship between the E -indepen
dent form of any finite order differential operator to its 
reduced form, vis a vis the one -dimensional Schrodinger 
equation. We will formally extend this definition to en
tire functions of E and also to the ratios of entire func
tions of E, however we give no rigorous meaning to the 
infinite operator sums which occur in the nonpolynomial 
cases. 

D. The reduced commutator equation and the auxiliary 
equation 

When (1. 5) is applied to i/J, given (3.4), we obtain 

HtJ= [B~,Hk= [B,HI! 

= (an + 2(1' - E)Ii, + l'yh + (2n, + b,)D)ijJ. (3.5) 

so 

"t=a n +2(1) -E)hx+u,h+ (2a x+b,)D. (3.6) 

This is the reduced commutor equation, an operator 
equation. The condition 

(3.7) 
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is clearly necessary and sufficient to eliminate D and, 
substituted into (3.6), leaves us with an ordinary in
homogeneous differential equation, the "auxiliary" 
equation, for the "auxiliary junction" b, 

(3.8) 

where 

A:= A(1J):= - ~D3 + liD + ~1), [= - A(v)* since 1)* = v]. 

(3.9) 

Note: The auxiliary equation has thus been obtained 
from an extremely simple calculation. The evolution 
equation can now also be obtained by an extremely sim
ple algebraic rearrangement of (3.8) [Eqs. (3.14)
(3.22)], given analyticity in E. We want to stress the 
simplicity and naturalness of this calculation. Even A, 
whose eigenfunctions happen to be l/!</I (Lemma 1, Sec, 4) 
has appeared, as it were, of its own accord [cf. AKNS's 
Eq. (A3. 17)]. 

E. Evolution of the data and the dispersion relation 

The concomitant evolution of the (generalized) eigen
functions, given by l/!t= ~(B- - B-*)l/!, now gives us the 
evolution of the inverse scattering data in terms of 
b~(E), 

b~(t,E) :=b~(E) :=limbV,x,E) (3.10) 
X·~ 

(the existence of this limit will be proven in Sec. 4). 

Now: 

~t= [ilmaO(-D2) +Db(_D2)]~ 

(3.11) 

To obtain the evolution of the inverse scattering data ex
plicitly we consider appropriately normalized scatter
ing wavefunctions (essentially Jost solutions) (3. 12a) 
and bound state wave functions (3.12b). 

</I. ,::00 c.(t, k)(exp( - ikx) + R.(t, k) exp( + ikx)) := ~., 
(3. 12a) 

for Imk? 0 and k 2 = E E a;\{En} where {En} C lR is the 
set of proper eigenvalues of H [as an operator in JL2 
(lR; dx)]; while for E E {En} 

(3. 12b) 

where ihn<O, h~=En<O; cn(t)ElRand t:dxi/!nl/!n=l; 
R. is the reflection coefficient to the right; T is the 
transmission coefficient; {c n} are the bound state nor
malization constants. The inverse scattering data is 
{En' cn(t), R.(t, h) (for kERl). Now substituting Eqs, 
(3.12) into (3011) gives us 

(lnR)t = 2ikb(l, E), (lnc~RJt=2ilmaO(E), 
00 

(lncn)t= iknb(t, En) + i ImaO(E n). (3. 13a) 

To be consistent with cn(t) E lR we must have ImaO(En) 
= O. An appropriate choice of normalization, one which 
simplifies things, is 

c.(l, k)= c.(0, k)/flf;U, k) (3. 13b) 

and this leaves us with 

(lnR.)t=2ikb(t, E), (lnc)t=ik,bU, En)' (3.13c) 
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Thus we have the logarithmic t derivatives of the in
verse scattering data in terms of a single polynomial 
(or entire or meromorphic) function of E, b(t, E). This 
is the only restriction whicl! will be imposed on the 
evolution of the data. Here b(t, E)=n(t, E), the AKNS 
dispersion relation, 

For completeness, and later use, we also explicitly 
introduce the second scattering wavefunction (the other 
Jost solution) for Imk? 0, k 2 = E: 

i/!_x::ooc-<t, k)T_U, h)exp(+ikx), cU, k)t-O. 

x::oo dt, k)(exp(ikx) + R(t, 'l) exp( - ikx). (3.12c) 

The Wronskian of i/!. and i/!- is independent of x (from 
which T _ = T follows) and is different from zero unless 
E E {En}-this can serve as the general definition of the 
proper eigenvalues of H. 

F. The evolution equation for the potential 

First we will obtain the results for dispersion rela
tions which are entire in E, b (E) := b(t, E) = 'i n b(n; t)En 

0 

Assuming that (3.8) has a solution 

bE JL OO(lR; dx) n C3 (lR) which satisfies 

lim(b, b" b xx)= (b, 0, 0), 
X" 00 . 

b - b(E) = {' b x (i. e., that b is absolutely 
continuous) 

(3.14) 

(3.15) 

and that b/x, E) is also entire in E now enables us to 
solve (3.8) by algebraic rearrangement. We simulta
neously obtain the evolution equation for 11. The deriva
tion of these assumptions is standard enough but rather 
long and technical, so we give it in Sec. 4. 

Now substituting (3.15) into (3.8), defining 

L* '= AD- 1 [where D-1r(x) '= I ~/(x):= I ~ dy/(y) J, 

and noting that 

(A1)=h, 

gives us 

v t = 2(L* -E)b x + b(E)l) , 

= b(L *)1'x+ 2(L* -E)b, - (b(L*) - b(Elz'X> 

so 

11 t - E(L *)11 x= (L* - E){2b, - (~b)1I J. 
Here 

(~b)1Ix:=(~b)(L*, E}1l x 

:= (L * - E)-I (b(L *) - b(E)1! x 
, n-l 

=6 ~L*"-j-IEjb(n;t). 
n~l j=O 

(3.16) 

(3.17) 

(3.18) 

(3. 19a) 

(3.20) 

(3.21) 

Now to obtain both the solution of (3.18) for bx and the 
evolution equation for l' we show that both sides of 
(3. 19a) must be zero. Since b )x; E) and b(E) are entire 
in E, so is (~b)(L*, E)v, as given by (3.21) [modulo 
questions of convergence of the infinite operator sums 
when b(x, E) is not polynomial in EJ. From (3.19a) and 
(3.20) we see that the left-hand side of 
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(3. 19b) 

is entire in E; but the other side tends to zero as 
IE 1- 00. So both sides of (3. 19b), and hence of (3. 19a), 
must be zero. That the inverse of the operator (L * - E) 
is well defined if E ct {proper eigenvalues of H}, follows 
from (A -ED)I/!I/!=O ¢='>(H -E)I/!=O (proved in Sec. 4). 

We have thus obtained the evolution equation 

(3.22) 

and the solution b of (3. 8), 

bU, x, E) = b(t, E) + H ~ (e.b)(L *, E)v y' (3.23) 

where (e.b) is given by E,9.s. (3.20). Everything is in 
terms of bU, E), where b(t, E) is entire in E and is re
lated to the evolution of the inverse scattering data via 
(3.13c). 

{Remark: One can show by induction that 

L*"v and JX L*nv =(D-1A)"v 
x 00 y 

are both polynomials in v and a finite number of the x 
derivatives of Vo It thus follows from (3.23), from v and 
its derivatives vanishing as x- - 00, that 

b(t, E) - limb(l, x, E)= Joo dxb 
x--~ _~ x 

=t r: dx(e.b)(L*, E)vx=O. 

This shows us that the same evolution equation would be 
obtained uSing-b(E) instead o(b(E). Applied to I/!+ as 
x--oo [fromEq. (3.12a), 1/!+-c+Texp(-ikx)JwithEqs. 
(3.13b) and (3. 13c) taken into account, it also shows 
that T t = O. Since T is not an independent part of the 
scattering data, the I-independence of T does not con
cern us directly, but in other approaches 12 this fact 
plays a more central role.} 

G. Dispersion relations which are ratios of entire functions 

The results for b(t, E) being entire in E are easily 
extended to 

b(t, E) = b JE)/bJE) (3.24) 

being the ratio of entire functions of E, b.(E)=b.(i, E), 
providing that the zeros of the denominator, {E~}, are 
disjoint from the Schrodinger bound state energies 
{En}' [We repeat that our results lack rigorous defini
tions of infinite operator sums unless both b .(E) are 
polynomials.) Multiplying (3.18) on the left by bJL*), 
then after a little rearrangement we obtain, more or 
less as before, 

ldL*)v t - b.(L*)v x 

= (L* -E){2 bJL *)b, - (e.b)v/bJEl), (3.25a) 

where 

(e.b)v x = (e.b)(L*, E)v x = (b JE)(e.bJ - bJE)(e.bJ)1I x 

and (3.25b) 

(e.b.)vx=(e.b.)(L*, E)vx=(L* -E)-l(b.(L*) -b.(E))v x' 

If b.(E2 are polynomial (or entire) in E, so are (e.b.)v x 

and (e.b)v x as defined in Eqs. (3.25). It then follows that 
both sides of 
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{2bJL*)b x -(e.b)vx/b -(En 

= (L* - E)-l(bJL*)v t - b.(L*)v J (3.25c) 

[and hence both sides of (3. 24a)) must be zero because 
the rhs of (3. 24a) tends to zero as IE 1- 00 and can only 
have polar Singularities (as a function of E) at the points 
E E: {EJ where the lhs of (3. 24b) is regular-because of 
the restriction{En}n{E~lbJE~)=O}=¢. We thus have the 
evolution equation 

b (I L*)v =b (I'L*)v -, t +, x (3.26) 

and this is how (3.22) is to be interpreted in this more 
general case. 

Thus we have obtained all the AKNS results for the 
one-dimensional Schrodinger equation. In summary: 
The reduced form of the commutator equation easily 
lielded the auxiliary equation for b, (A - ED)b = tv t' and 
b(E) '" lim"oob was seen to be the AKNS dispersion rela
tion; in turn a simple algebraic rearrangement gave us 
the evolution equation 

1'1=b(£, L*)lI x, L*='CjI.D- 1"",A [' 
• ro 

as well as the solution for b. All this assumed that b 
was analytic in E. 

If we did not now derive analyticity in E we would only 
have a candidate for l' 's evolution equation, 1) "'" 11(1) being 
the potential constructed by the 1ST from the data at t . 
If this candidate evolution equation has a solution, the 
1ST must construct it, and reversal of the above pro
cess constructs b, showing it to be analytic as assumed. 
Thus existence and analyticity are equivalent and, 
already at this point, we have recovered the AKNS re
suUs. However we now see what else has to be done: 
Either obtain a completeness relation for the squared 
eigenfunctions 10

,11 or, as we now proceed to do, derive 
analyticity. 

4. PROOF OF EXISTENCE, UN!,oUENESS, AND 
ANALYTICITY OF THE SCHRODINGER AUXILIARY 
FUNCTION 

Statement 0/ the problem: We want here to prove the 
existence, uniqueness, and analytic properties of the 
"auxiliary function" b which satisfies (3.8), (3.14), and 
(3.15). Stating this more preCisely, we want to show 
that if the (nonarbitrary) rationalized limit function 
b +(E) CO' b JE)b(E) is entire in E and if the entire function 
b_(E) has all its zeros on {E~} which is disjoint from 
iE"1 (proper eigenvalues of H), then the rationalized 
auxiliary equation 

(4.1a) 

where 

A"", A(v) "'" - ~D3 + tvD + ~D1I (4.1b) 

has a unique solution b + which is entire in E for fixed 
x. Clearly Eq. (4.1) is completely equivalent to (3.8) 
and (3.14), given b ""'bjbJE). 

In some respects it is more convenient to work with 
homogeneous boundary conditions, i. e., with the equiv
alent equation for (b -b): limy.roDi(b -b)=O for 
j= 0, 1,2 and 

(A - ED)(b - b) = tv 1 - b(E)v y' (4.2) 

I. Miodek 24 



                                                                                                                                    

[We have used the obvious result (Al)==tvx'] 

Proof: We first consider the relationship of the null 
space to the Schrodinger equation. In the real Schrodin
ger case, H=H*, v=v*, and so A*=A(v)*= -A(v*) 
= - A is an antisymmetric operator. [Comments on what 
changes if v*- v* will be given enclosed between square 
brackets.] Thus iA(v) is essentially self-adjoint, as is 
i(A -ED) for E E lR, and both can be diagonalized. If 
En E R and (A - EnD) (as an operator in lL2(lR; dx)) has 
a proper null space, then (4.2) has a solution at E = En 
if and only if the rhs of (4.2) is orthogonal to that null 
space. [If v *- v *, then A*-- A * and a necessary condition 
for the solutions existence is orthogonality to the null 
space of (A * + E: D). 1 

In Lemma 1 we will prove the following three 
properties: 

(i) For E E <t\ {En}, 

(A-ED)h=O (4.3a) 

(4.3b) 

where (H -E)<J!.= 0, Ci j E <t, <J!. and <J!. being linearly in
dependent. Explicit definitions of <J!+ and <J!. were given 
earlier, <J!+ in Eq. (3.12a) (the boundary condition as 
x- - 00) and <J!. in Eq. (3.12c) (when x- + 00). 

Note: the linear independence of {<J!~, <J!~, <J!+<J!J follows 
easily from the linear independence of <J!+ and <J!.; e. g. , 
use Eq. (4. 3b) to consider (hl<J!:)x, then put 17 = 0. 

(ii) For E E {En}, 

(A -EnD)17n= 0, 

hn E II}(R; dx) n COR) <!==:> 17" CC <J!n<J!n, 

(4.4a) 

(4.4b) 

where (H -En)<J!,,= 0, <J!n E lL2(lR; dx) n C(lR). Thus 
<J!n<J!" E lLI(lR; dx) n C2(lR) C II}(lR; dx). [If 1) *- v*, then 
(A * +E~D)h: = ° ¢=> hn a: <J!"<J!n' J 

(iii) Orthogonality: 

r:"'dx<J!n<J!"vs=Ofors=xort. (4.5) 

[If V*-1I *, then (4. 5) still holds for v,; but this is not 
enough -it needs to hold for both (v * ± v) s' J 

These three properties show that the null space of 
(A - ED) is spanned by the squares of the Schrodinger 
eigenfunctions and that (4.2) has a solution in IL2(lR; dx) 
when EE{En}. [Our proof does not extend to v*-v* be
cause v s is orthogonal to <J!n<J!n but not to (<J!n<J!") * . J 

Now, in order to construct the solution of (4.1) with 
the appropriate analytic properties in E, we consider 
the related initial value problem for "regular" solutions 
jEC 3 (R), 

(A -ED)j=u(E) = tbJE)vt> (4.6) 

lim(x - xo)( I, jx, jx) = (flO, 120
, j30

) = fO(E), (4.7) 

and we look for conditions on the initial value fO(E) so 
that j = b + of (4. 1). 

If v, v x> and v I are "smooth enough" locally and if 
they also decrease "fast enough" as I x I - 00, standard 
theory tells us that j is well defined and entire in E if 

25 J. Math. Phys., Vol. 19, No.1, January 1978 

fO(E) and u(E) are entire in E. We can also show that 
the asymptotic behavior as I x I - 00 can be controlled by 
imposing analytic conditions on the initial value fO(E). 
More details of this construction are given in proving 
Lemma 2. 

Three linear equations must be satisfied by the three 
components of faCE) so thatj(x, k 2

) (with k 2 =E, Imk >0) 
remains bounded as x - ± 00 and so that limx_",j(x, k 2

) 

exists uniformly in k as Imk - 0+. Then lirnx.",/(x, E) 
= beE) gives us the "dispersion relation." These three 
linear constraints on fO(E) are analytic in E, and they 
can be conveniently put into the 3 x 3 matrix form 

M(E)fO(E) = flu; E), (4.8) 

which is obtained in Lemma 2. For our immediate pur
Rose we state that M(E), its determinant detY(E), and 
f(u;E) are analytic in k=E I !2, Imk >0; that f(u;E) is 
linear in 1l and that beE) is a linear functional of fO(E), 
so for example if 11 I = 0, then beE) = 0. 

This matrix equation, (4.8), can be solved for the 
initial value faCE) for all E E <t'\ [E~ I detM(E~) = O}. This 
initial value when used in (4. 6) yields an / which satis
fies all the conditions on b +, except possibly when 
EE{E~}. To finish, we now need to show that fO(E), and 
the / it generates, are regular when E - En' Since M(E) 
and its determinant are regular in E, fO(E) can only have 
polar singularities on the point set {E~}. We show in 
Lamma 3 that {E~}C{En}' Now we can make use of the 
orthogonality property (4.5) with which we showed that 
when E=E n , Eq. (4.2) has a solution (b -b)(x, En> in 
lL2(lR; dX). We deduce that when E= E~, Eq. (4.8) must 
also have at least one solution. This solution is the 
initial value vector of b(x, En) at x = xo, noted as bOlE ). 
So r(v l ; En) is in the range of M(En)' This, together with 
analyticity in E, implies the existence of 

limE.E~M(E)-1 f(l! t; E) = bOlE") (4.9) 

(see Lemma 4 for details). Thus fO(E) is regular on {E~} 
as well. 

We have obtained what we wanted. The solution of 
Eq. (4.8) gives us the appropriate initial value for (4.6) 
which then generates both the appropriate solution of 
(4. 6) and its asymptotic limit. By construction this 
solution also satisfies (4.1) and all the analyticity re
quirements in E. Schematically 

fO(E) = M(Et l f(v t; E), and then via (4.6) 
'" (4.10) 

fO(E) - j(x, E) = b(x, E), beE) = limx.""b(x, E) 

gives us the pathway of this construction. Q.E,D 

[If v * v*, then {E~} C {En} C <t, but we do not have the 
appropriate orthogonality property. 1 

Summary oj the prooj: The study of 1's = au las where 
s = x or t permits us to prove that the squares of the 
generalized Schrodinger eigenfunctions span the null 
space of (A - ED) and that 11 s is orthogonal to the squares 
of the Schrodinger bound states. This orthogonality 
implies existence of an IL '" (lR; dx) solution b of (A - ED)b 

= tv t at E = En' This in turn permits us to show that, 
when we study the associated initial value problem for 
a "regular" solution /, we can solve for the initial value 
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vector fO(E) '" (r, lx, Ix) '='0 which is analytic in E 
E: <I: \ {E n} U {E~} = <1:. By" regular" we mean (i) regular 
in E for fixed x E: R, (ii) bounded asymptotically as 
Ixl- ± 00 for fixed E E: <1:, and (iii) having an x-indepen
dent limit as x - + 00 uniformly in k = E1/2, Imk? O. 

Lemma 1: The squares </!2 of the generalized 
Schrodinger eigenfunctions, (H - E)</!= 0 span the space 
of homogeneous solutions h of Eq. (4.3a), i. e" h 
satisfies 

(A-ED)h=O with limDih=O for i=O,I,2. 

Furthermore, the squares ciJ; of proper Schrodinger 
eigenfunctions are orthogonal to l's = cil'/ils, with s = x 
orl, inthesenseofEq. (4.5), 

r ~ 2 
dX</!n1i s=O • 

.. -00 
(4.12) 

Proof: 

"s= (" -E)s= (cjJ-I</!x,)s= </!-2(~)</!sx - </!s </!,), (4.13) 

(4.13) ~ r: dx ciJ21J ,= (</!cjJsx - </!s ~'xll :~_~. (4.14) 

For E=E n, i/Jncc0+"1!_ [defined by Eqs. (3.12a) and 
(3. 12c)] and so 

1'n lxl~~ exp( - I x I I Iml<ni) 

(1.?n=E~/2; for /'=n*, En~O) and (</In)x-O as Ixl- oo • 

Thus (4.14) implies (4.12) when E ElEnt. 

[For E E <I:\{EJ, (4.14) with </!= </J+ generates the 
integral representations for R. (when s = x) and (RJ I 
(when s = I). These are basic to the AKNS method. ] 

To prove that cjJ2 satisfies (A - ED)</J2 = 0 in a way that 
clearly relates this property to Eq. (4,1) we first note 
that the ansatz [cf. Eqs. (3.4) and (3.7)] 

1J t = (aO - ~h JiIJ + b</J" a~= 0 (4. 15a) 

when substituted into Eq. (4.13) with s = I yields Eq. 
(4.1). Similarly the ansatz 

(4. 15b) 

when substituted into Eq. (4,13) with s = x yields 

~I' ,= (A - ED)g. (4. 16a) 

But recalling that ~I' x= Al and noting the equivalence in 
(4. 15b), we see that 

(4. 16a) ~ (A - ED)cjJ2 = O. (4.16b) 

If {</J+, </JJ were any pair of linearly independent 
Schrodinger eigenfunctions of energy E, {</J:, <jJ:, </!+ cjJJ 
would also be linearly independent. Thus, noting that 
2</!+cjJ_= (if)+ + J)Y - iIJ: - </!:, we see that for E E: a:\:En}, an 
arbitrary homogeneous solution of (4.11) can be ex
panded as a linear combination of the squares of the 
Schrodinger (generalized) eigenfunctions defined by 
(3.12a) and (3.12c) together with (</!+ + 1'Y. However 
when E=E n, then </!n oc </!+C1:</!_, but even so any other 
linearly independent solution of the Schrodinger equa
tion, J)~, must diverge as x - 00 in such a manner that 
</JnJ)~;" 0 as x- 00. Thus ~ .. ~ spans the solution space of 
(4.11), boundary condition included, when E=En' 

This completes the proof of Lemma 1. • 
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[Note: If 111"*, Eq. (4.14) still implies Eq. (4.12) 
because the linear dependence </!n cc 1jJ+ ex: </J- when E= En 
implies that ciJn has simple exponential behavior at both 
x- ± 00 and this is enough to ensure that the rhs of (4.14) 
is zero even when En> O. I 

Lemma 2: The solution of Eq. (4.6) will be bounded 
as x - ± 00 and will have a constant limit as x - + 00 

uniformly in k=E I /2, Imk?O, if and only if the initial 
value vector at x = Xo E R, fOrE) = (f, lx, Ixx)~ x=xo' satisfies 
three linear constrains which are analytic in E; these 
constraints can be put in the matrix form of Eq. (4.8). 

Proof: We start by sketching a standard method for 
solving Eq. (4.6). Equation (4.6) can be put into the 
integral form 

[1 -A(E)(vD + ~1' xl U= C(E)' fOrE) -A(E)u(E) (4. 17a) 

where A(E) is a right inverse of OD2 + E)D 
= t exp(± 2ib-)D exp(", 2i!?x)D exp(± 2ih)D. Defining 

A(E) = 4D- 1 exp(", 2ikx)D- ' exp(± 4i!?x)D- ' exp(",2ihx). 

(4. 17b) 

Then C(E) • f"(E) is the usual scalar product for three 
component vectors and the components of C '= (C" C2 , C3 ) 

are given by 

A(E)(tD2 + E)D(x) 

=/(x) - C1(E){(xo) - C2 (E)fX(xo) - C,(E)(jxol. 

USing (4.17b) this gives us 

1 
C ,(E)=I, C2 (E)=2i?sin21?(x-xo), 

(4.17c) 

We now demand: (i) that I' and 1\ be "smooth enough 
locally" so that the inverse of [1 - A(E)(IID + ~1',) I be 
well defined in some finite neighborhood of any point 
Xo E: R; (ii) that nand /)" "decrease rapidly enough" so 
that [1 -A(E)(I'D+ ll'J]-1 be well defined whenever 

1 x 1 -. 1 x(] 1 > y for some finite r and the homogeneous 
solutions of (4.17a) have standard asymptotic (lx1- oc) 
behavior [see Eq. (4.19)]; (iii) that III be "smooth enough 
and decrease rapidly enough" so that [1 -A(E) 
x (uD + ~/! x))"1 A(E)u(E) [recall that lI(E) = ~b ..(E)1' I I be 
well defined and so that it has standard asymptotic 
behavior with the coefficients that are entire in E. The 
factor b ..(E) multiplying 1't indicates that if II(E) - }n t> 

then the term in 1'1 will generate poles at 
E dE~lb..(E~) = Of. 

Given that /! satisfies these conditions we solve 
(4. 17a) by inverting [1 -A(E)(1'D + ~1',) I and obtain a sum 
of a homogeneous solution /h(fO) (linear in fa) and a 
particular solutionf/ - 1'1) (linear in 1'1)' What concerns 
us are the asymptotic behaviors respectively as x - ± oc 

from which we can obtain boundedness and limit 
conditions. 

Defining 
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and (4.18) 
fhW; E) == [1 -A(E)(vD + ~v x)]-l C(E) • fO(E), 

f=fh(fO;E) -fp(vt;E) 

x.,,±~ exp( - 2ikx)(f;±~ -f;'~) + exp(2ikx)(f:: - f;t) 

+ (j:o~ - f;'~). 
(4.19) 

[Note: When Imk > 0, only the dominant term counts 
after the terms with null coefficients have been 
eliminated. 1 

From (4.19) we see that, for Imk > 0, f is bounded as 
I x I - 00 if and only if the two following equations hold: 

(4.20a±) 

The first term is linear in fa, the second is linear in 
v t> and both are analytic in E. 

Furthermore from (4.19) we see, that we have 
eliminated the term in exp( - 2ikx) as x - 00, that f will 
take a constant limit as x - 00 uniformly as Imk - 0+ if 
and only if a third linear equation holds, 

(4.20b) 

We rewrite equations (4.20a±) and (4.20b) in the 3x3 
matrix form 

M(E)fO(E) = f(v t; E), (4.20) 

where M(E) and £(v t; E) are analytic in E and the rhs is 
linear in 11 t. 

From equations (4.19) and (4.20) we now have f 
bounded as I x I - 00 and the existence of 

(4.21) 

uniformly in k==E 1/2
, Imk"'O. [Whenever (4 0 20) is 

satisfies we can identify f with b •. 1 • 

Lemma 3: {E~I detM(E~)=O}={EnIW(</J.,</JJ(En)=O}. 

Proof: At E=E~ the homogeneous form of (4.20), 
which is obtained when v t = 0, has a nontrivial solution 
f~(EL This implies that at E = E~, f~(E) is the initial 
value of a homogeneous solution fh of (4.6) satisfying all 
the conditions of Lemma 2. This fh is therefore in the 
null space of (A -ED) and so, by Lemma 1, fh can be 
expanded as a linear combination of {</J~, </J~, </J.</JJ. But if 
E~ <1 {E n} it is straightforward to verify that no linear 
combination of {</J~, </J~, <f!.</JJ satisfies all the conditions 
(boundedness at both x - ± 00 and the existence of a con
stant limit as x - + 00 uniformly in k == Ell 2, Imk '" 0) of 
Lemma 2. Thus {E~} C {En}' [This much holds whether 
or not v = v *. J 

If E = En' then </J~( 0:: <f!~ 0:: </J~) is always a homogeneous 
solution of (1\ - ED) which satisfies the conditions of 
Lemma 2. So, ifE=En, then 

(<f!~, (</J~)x, (</J~)xx)~x=xo=f~(En)*O (4.22) 

must be in the null space of M(E) and {En}C{E~}. • 

[If v * 11 *, then it is possible for En> 0 and then </J~ does 
not have an x-independent limit as x- + 00 0 1 

Lemma 4: The limit E-E~ of M(E)- l f(v t ;E) ==fO(E) 
exists, 
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Proof: We know that {E~}c{En} so it suffices to prove 
that the limit exists when E - En' Now if M c(E) denotes 
the cofactor matrix transpose of M(E) we have, from 
(4.20), 

fO(E) = (detM(E))-l M c(E)£(1) t; E). (4.23) 

M c(E) and detM(E) are analytic in E because M(E) is 
analytic in E. Let us simplify matters a little by assum
ing that detM(E) has only simple zeros. [Multiple zeros 
can then be treated as the limit where simple zeros 
coincide or by using the following observation whose 
proof is quite standard: If a matrix M(E) is analytic in 
E and if M(En) has a null space of dimension j, then 
detM(E) must have a zero of order at least j at E= En' J 

Considering (4.23) under these conditions, and re
membering that f(vt;E) too is analytic in E, we see that 
whether or not the limit exists depends on whether or 
not Mc(E)£(1J t ;E) has a zero at E=En to compensate the 
zero of detM(E): It thus suffices for 

(4.24) 

But since we know from Lemma 1 that (4.1) has a solu
tion at E=En, b.(x, En)' its initial value at x=xo> de
noted by b~(En)' must satisfy (4.20) at E=En, 

M(En)bO(En) = f(l't; En)' (4.25) 

Left multiplying by Mc(En) now gives us the sought after 
result, 

(4.26) 

The existence of a solution of (4.1) at E=En has 
permitted us to show that £(11 t; E) was in the range of 
M(E") [Eq. (4.26) J w!1ich in turn implied that the analytic 
function of E, M c(E)f(1) t; E) had a zero at E = En to com
pens ate that of detM(E) (assuming simple zeros) and so 
the limit of (4.23) exists as E - En E {En}:J [E~}. Exten-
sion to multiple zeros proceeds as indicated above. • 

5. NONLINEAR EVOLUTION EQUATIONS FOR 
LINEAR FIRST ORDER n X n MATRIX EQUATIONS 
OF THE ZAKHAROV-SHABAT TYPE 
A. The linear matrix equation 

We will follow the model set up in Sec. 3 for the one
dimenSional Schrodinger equation to show that the same 
method also yields evolution equations for the off
diagonal (i. e., diagonal part is zero) n Xn matrix 
"potential" Q == QOff + Q d",< = QOff of the following first 
order differential matrix equation for f: 

(iD-iQ-ka)f=O, i.e., fx=Zf==(Q-il?a)f. (5.1a) 

The Hamiltonian form is 

Hf== a- 1UD - iQ)f = kf. (5.1b) 

Here D == a lax; "E a: is the energy variable in this case; 
0' is a constant (i. e., independent of t, x, ,?) diagonal 
matrix (so 0'= ad.",,); tra==trace 0'= 0; the matrix ele
ments of a satisfy O'ij= oijaji and a ii *0, so a- 1 is well 
defined; for n'" 3 we (eventually) impose the additional 
condition that the eigenvalues of a be distinct; finally we 
assume that Q - 0 rapidly as x - ± 00 so that 
asymptotically 

(5.1c) 
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In these equations f could be taken to be either a 
column or a square matrix. We will reserve f for 
column solutions [jil, and use F for matrix solutions 
which are fundamental; L e., T '" detF oF ° and F's columns 
form a (fundamental) system of n linearly independent 
column solutions. 

We note that the given conditions imply that trZ = 0, 
and since (5. 1a) =;> T y= (trZh, we see that trZ = ° 
¢c;>Tx=O. 

B. The 2 X 2 cases and self-adjointness 

Notice that in general 

H* = H <=> u* = (J and Q* = _ u-1Qa. 

In the 2 x2 case this essentially simplifies to 

H*=H<=:>Q=Q* 

because, without loss of generality, f? can be 
"normalized" so that 

* -1 _ _ [1 0] a = a = (J ~ a3 ~ ° _ 1 . 

(5.1d) 

(5.2) 

(5.3) 

(5.4a) 

If we then introduce the other Pauli matrices aj , j = 1 
or 2, 

(5.4b) 

Eqs. (4.1) reduce exactly to the generalized Zakharov
Shabat equation studied by AKNS (they use q, r and in 
place of H they use L). The Zakharov -Shabae case 
itself is then obtained by adding the restriction r* = - q, 
for which H* oF H, since H* = H ¢=> r* = + q; however the 
proper eigenvalues exist and the inverse problem has 
been solved. As noted by AKNS H has no proper eigen
values when H* = H and we add that it is then under 
stood that q and r are "nice" functions of x. What if the 
AKNS -Zakharov -Shabat sense of "nice" is weakened? 
We present a partial answer to this question in the 
Appendix where we show that certain 2 x2 cases (r= q 
=qu Le., q2=0) are equivalent to the Schrodinger 
equation. [This discussion has been diverted to an 
Appendix because it is not directly relevant to obtaining 
the evolution equations; but it is certainly relevant to 
relating Secs. 3 and 5. Equations (5.5)-(5.8) are in the 
Appendix. 1 

C. The evolution equation and off-diagonalness of Q 

The restrictions: that Q = QOff (i. e., that the diagonal 
part of Q,Qdia!<, be zero), that a be diagonal, of zero 
trace, and that a have distinct nonzero eigenvalues, are 
not all necessary. However they do simplify our re
sults. 13 The potential, Q, is a member of the N '" n2 

- n 
dimensional linear space of off-diagonal matrices. 
Whereas AKNS obtained an evolution in a two-dimen
Sional linear space (for them Il = 2 = N = 22 - 2 = 2) we 
will obtain an evolution equation in an N-dimensional 
linear space; N-dimensional vectors will be given hats 
and the N XN matrices will be underlined to distinguish 
them from the n-dimensional ones. Notice that the 
possible values of N are 2, 6, 12, etc. so three-dimen
sional evolution equations are not naturally obtained 
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from (5.1). The in-between cases ought to be obtainable 
by relaxing the off-diagonal restriction on Q. 

D. Derivation of the reduced commutator equation 

Consider the commutator equation 

H t F = [B, H]F, H '" a- 1(iD - iQ) 

for the reduced operator B=FtF-t, 

L e., 

(5.9) 

F t = BF with F's right -normalization appropriately 
fixed o (5.10) 

Remar1?: Although (FW),=FxW=ZFWwhenever W,=O, 
Eq. (5.10), then becomes (FW)t=BFW+FWAo where 
Ao= W- 1W t ; so (5.10) only holds when F is appropriately 
normalized. 

Now 

[B,H]=[B, a-1(iD-iQ)] 

= ([B,a- 1]aH+ia-1[B, D-Q]) 

= i a- 1( - i a[ B, a- 11 aH + [B, D - Q]) 

=ia-1U[B, ajH+[B, D-Q]). 

A pplied to F, this can be reduced by replacing the H on 
the right -hand side with 1? Since the operator form of 
H remains unchanged H t = - ia- 1 Q t and (5.9) now 
becomes 

Qt= [D -Q + ika, B]= [D -Z, Bl 

=B, -[Q, Bj+ik[a, B]. 

(5.11a) 

(5.11b) 

Equation (5. 11a) can be obtained with less manipula
tion by using the form (5.1a) of (5.1), Q - ika= Z 
=F,F-t, to consider Z t as follows 14

: 

Qt= Z t= (F ,F-1)t = F xtF-1 -F xF-1 F tF-1 

= (BF)xP-l - ZB 

=Bx+ [Z,Bj 

=[D-Z,B]. 

{Notes: (i) We thus also obtain the precursor of an 
orthogonality property, USing s= x or t, F- 1 Q sF 
= (P-l F sly; cf. Eq. (4.13) in the Schrodinger case. 

(ii) The homogeneous solutions of (5.11), those when 
Q t = 0, are obtained by using the operator equality 
D - Z = F DF-l which gives us 

[D-Z, BJ=F[D, r 1BFlr1=F(r1BF),F-I. 

Thus FAoF- 1 with Aox= 0, is the general homogeneous 
solution.} 

E. The auxiliary equation 

Before solving (5.11) for B we have to introduce the 
properties Q = QOff and a= adia!<. An immediate and ob
vious consequence of Q=QOff is that (trB)x=O. Clearly 
the addition of x-independent multiples of the n Xn 

identity to B leave H t = [B, H] invariant: We can thus 
choose trB= 0 without loss of [[enerality. 

To introduce the stated properties systematically into 
(5.11) we will separate the diagonal part, (5.11diag), 
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and off-diagonal part (5. 11 off) , of Eq. (5. llb). In doing 
so it is useful to remark that: the product of two off
diagonal matrices has a diagonal part (in general); the 
product of a diagonal and off-diagonal matrix is off
diagonal while, obviously, the product of two diagonal 
matrices is diagonal. For example, it follows that 
[BOff, ujdiag""o=IBdia., Qjdi a •. Thus (5.11b) is equivalent 
to 

Q t = B;ff - [Q, Bott jOff - [Q, Bd;ag] + ik[ u, BOH ], 

(5. 11 off) 

(5. Ildiag) 

Notice that, as a consequence of (J being diagonal, 
(5.11diag) is independent of k; as a consequence of Q 
being off-diagonal (5. lldiag) is homogeneous and can be 
immediately integrated, 

(5. 12diag) 

where D- 1 = f:' [i. e. D- 1 g(x) == - f; dy g(y)j, y 
'dimx.~Bdlag. (5.12diag) explicitly gives us Bdiag in 
terms of its limit as x- 00, y (a diagonal n Xn matrix, 
try= 0= y), and in terms of BOff. Substituting into 
(5. 11 off) and defining b =oBo H (an off-diagonal n Xn 
matrix, thus with N =on" - n independent components) 
gives us 

Qt= b x - [Q, b JOff -[Q, D-1[Q, b ]diill!]_ 

-ik[b, uJ+ [y, QJ. (5. 120ff) 

Equations (5.12) imply (5.11) and also have Q= Q O!! - ° 
as x- 00 built in. Equation (5. 120ft) is a form of the re
duced auxiliary equation. 

F. Vector form of the auxiliary equations 

It is convenient to rewrite (5. 120ff) as a matrix equa
tion in IN where an off -diagonal matrix A of! is repre
sented as a column with N entries, A, and where a 
linear operator on A of!, say ~: A Df! - Q(AO:f) = [A Off, u], 
is represented by an NXN matrix u. So QA =0 a(AO!f). 
Matrices operating in lN will be underlined a~d vectors 
in ZN will have hats to distinguish them from those in l". 
Now in vector notation in IN, (5. 12off) becomes 

i. e. , 

Qt= (1;: -l<I)i~b + ~(k)i~Q, 

where 

and 

2: A 011 - [Q, D-1[Q, AOffJdiagj + [Q, AOII ), 

l'.: Aoll- [y, AOff], 

~: A ofl _ [Ao ff , al, 

~-J is the inverse of ~, 

~(k) = - iyJk)~-l, 

(5. 12vec) 

(5.13) 

(5. 14a) 

(5. 14b) 

(5.14c) 

Note: Q is invertable if the eigenvalues of (J are dis
tinct since under this condition a only commutes with 
diagonal matrices, 
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(5.14d) 

where e(Z, m)kj = D/kDmi is the natural basis for n Xn 
matrices. [The complexities due to giving up the re
striction Q = QOfl are similar to those due to permitting 
say au = a22 , because in the latter case the off-diagonal 
matrix QJ2e(l, 2) + Q2Je(2, 1) commutes with a; so ~ has 
a null space in both these cases.] 

Equation (5.13) is the form of the reduced auxiliary 
equation which we will now solve for b, following the 
model given when solving (3.18) in the Schrodinger 
case. 

G. The evolution equation obtained from the auxiliary 
equation 

We rearrange (5.13) as follows (at least formally): 

Q t - ~(~)Q = (L - kDiab + ([(~J - [(k»i~ 
= (f. - kD{iQb - (~~)i~Q}. (5. 15a) 

Here 

(~0=(A[)(1;:, k)=(f _kJ)-l(~(f.) -~(k)) 

= E(b. -k!)-l([lm(l:,) - ~Im(k»e(l, m) 
I,m 

=0 E (~~lm)e(Z, m) (5. 16a) 
I,m 

and 

given that the matrix entries of ~(k) and [lru(k), are 
polynomial (or entire) in k, with expansions 

b tm(t, k) = L; b ImU; t)ki (showing the t dependence). 
- i""O-

(5.16c) 

(We apologize for the flood of indices in Eqs. (5.16). J 
The same method as employed in the Schrodinger case 
also works here to generalize the result to ratios of 
polynomial (or entire) functions of k-we will not repeat 
it here. 

Assuming that ~(k) is regular in k at all pOints where 
1;: has one of its (assumed) finite number of proper 
eigenvalues, and that b =b(l, x, k) is regular in k every
where where b(k) is regular, we conclude that both 
sides of (5. 15a) must be zero for the same reasons as 
in the Schrodinger case. Namely, (5. 15a) is equivalent 
to 

(5.15b) 

Both sides of (5. 15b) must be zero because one Side or 
the other is regular in k at all points k E a:, while the 
right -hand side tends to zero as I k I - 00. The results 
are the solution giving b in terms of y [i. e., terms of 
y=oy(t,k)=olimx~~Bdlill!l and the eVOlutiOn equation 

Qt=r.'u, f.)Q. (5.17) 

Yfe note that, since trB d1!'''= 0, our dispersion relation, 
y, contains n - 1 scalar functions of k and I. 

H. Relation to the scattering data 

We have obtained the evolution equation (5,16) for Q 
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on the basis of analyticity assumptions in the k plane, 
and we have done so without solving the inverse problem 
for (5.1). Since the inverse problem has not been solved 
we cannot relate y(t, k) to the inverse scattering data, 
because the latter is unknown. (Most recent studies9 

which obtain evolution equations for linear operators 
share this difficulty. ) 

However it is straightforward to relate y = limx~~ Bdial< 

to the asymptotic behavior of F as x- 00. Equation 
(5. lc) becomes 

(5. 18a) 

Now use Eq. (5.10), taking heed of the remark which 
follows it concerning the right-hand normalization of F, 

B=FtF' -FAoF'=>13=F }'-1 -F AoF-t, (5.l8b) 

where Ao,= 0, and Ao= 0 if and only if E is appropriately 
right-normalized. The condition trE = 0 is equivalent to 

(5.l8c) 

a condition on the right-normalization of F. We can also 
adjust the right-normalization so that 13 = 13 dial< = y, i. e. , 
so that limx~~ BOlf = O. This last condition is equivalent 
to 

(5. l8d) 

again a condition on the right-normalization of F. Given 
these conditions 

(5.18e) 

Recalling (5.1d), its analog with respect to Ft=BF 
(= T t= TtrB) is 

Tt=O¢::;>trB=O. (5.18f) 

This gives us another interpretation, in terms of T 

=detF, of trB=O. 

Further than this we cannot go without solving, or at 
least starting to solve, the inverse problem for (5.1). 
This is not within the scope of this article. However, 
it may turn out that finding the evolution equation may 
help in solving the inverse problem-at least in identify
ing the inverse scattering data. This need not be sur
prising' if true, because the approach is based on 
analyticity in the energy variable as are the solutions of 
inverse problem and the related completeness relations. 

I. The AKNS data as the 2 X 2 case 

When n = 2 and 0 = 03 the follOWing choice of the right
hand normalization of F, 

~ pia 0 J ( +)'/2 
FO=LR'la Ta ' a= R , (5. 19a) 

immediately yields 13 = limx~ ~F tF-1= F st P;' = EdiaF. 
= y(t, k), 

i. e. 

0
1 

] exp( + ikxa) 
at a 

= -~o3(lnW(t, k)L= -03n(t, k). (5. 19b) 

Here R' is the coefficient of reflection to the right, Tis 
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the transmission coefficient. {The existence of a solu
tion with "normalization" Fo can be proven by separately 
impOSing appropriate asymptotic conditions on the first 
and second columns of F = [F ,~ F 21, e. g., for Imk ? 0, 

exp(+ ikXrOJx~-:'" (aT)-1 F 2(X~--~ fex
p

( - ikX)T~'RJ), 
L1 ~xp(+ /1?x)T 

which are linearly independent if and only if 7-
1 *0; if 

limk~k T- 1(k)=0 then limk~k T-1(k)R'Ul)=C:*0 exists. 
(Cf. The Jost solutions for "the Schrodinger case).} 

J. The AKNS evolution equation as the 2 X 2 case 

We end this section by showing that the 2 x2 case of 
(5.17) is the AKNS evolution equation. We first return 
to the off -diagonal matrix form of our reduced auxiliary 
equation, (5. 12off). In the 2 xZ case this simplicies 
because when n=2: a= 03; 'fo(t, '?)= -n\l;l?)a1 ; 

[b,oJ= -203b=+Zba3 (recall that b=Boff); 

[y, Q]= [- no" Q1= [Q, 031n = - 2nu,; 

[Q, b]= [Q, b ]dlaF.= (Q,2B2, -B21 Q21)a3 • 

Thus (5. 12off) becomes (recall that Q12 = q, Q21 = r) 

Qt = b x - Z03QD-l(qb,2 - rb 21 ) + 2ilw3b - 2n 03Q· 

(5. ZOoff) 

The vector form can in this case (since N=11 2 _n=22_2 
=Z=I1) is easily obtained by applying (5.Z00ff) to [il=e. 
Defining Q = Qe = [';.1, h = be (5.200ff) takes the "vector" 
form of (5. 12vec) if we also define 2, ~, and 'f'(k) by 

lqD-1q qD-lrJ 
Q=2a3 03' (5.21a) 
~ rD-'q rD-lr 

~'" -Za, yJt, k)= -Za3 n(f,k). 

Then Eq. (5.14c) gives us 

I;: = - H£D - 2)ia3 • (5.2ib) 

Finally the evolution equation, (5.17) becomes 

Qt='Y..(i,I;:)Q= -2a3 n(l,I;:)Q, (5. ZZ) 

where 

n(l, I?) = ~ [lnW(I, 1<) 1t (5.Z3) 

is the AKNS dispersion relation. 

6. CONCLUSION 

The method outlined abstractly in Sec. 1, which 
worked for the one -dimensional Schrodinger case in 
Sec. 3, also works for the n x n matrix equation and 
yields the evolution equation (5.17) which, when 11=2, 
reproduces the AKNS evolution equation (5.22). The 
analyticity assumption and existence have only been 
proven for the Schrodinger case, not the matrix case. 

We feel that the most important general problems with 
the 1ST method at the moment are to extend it system-
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atically to the cases with several space dimensions and 
to find a systematic way of going backwards, that is of 
finding the linear equation associated with a given non
linear evolution when it can be solved this way. We hope 
that the method presented here will help to do this. 
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APPENDIX: CERTAIN 2 X 2 CASES AND THE 
SCHRODINGER EQUATION 

In the 2 x2 case when r=q=q1 (so q2= 0), if one con
siders the equation satisfied by (cf. Krein, 15 1953) 

1 
fK=TKf=.[2 (U 1 +u3 )f, (5.5) 

it is easy to show that the components of r, f~ = (J1 ±f2)/ 
,f2, respectively satisfy one -dimensional Schrodinger 
equations 

(_ k 2 + H±SCh)f~ = (_D2 + V~Ch _ k 2)f/ = 0, 

where 

V~Ch= q2 ±qx= (iJ!~1)xxliJ!~1. 

The components are related by 

f_K = k- 1(iD - iq)f~. 

(5.6a±) 

(5.6b) 

(5.6c) 

The Riccati equations (5. 6b) are both solved for q by 

(5.7) 

where ~)o is a zero energy (i. e., k = 0) solution of 
(5.6a+). It follows that if there exists a bounded zero
energy solution iJ!o of (5. 6a+) which has no zeros (as a 
function of x), and this can only happen if H~Ch has no 
proper eigenvalues (see Martin and Sabatier16

), then H 
has no proper eigenvalues either and furthermore 
(5. 6a+) is equivalent to the AKNS case with q* = q = r. 
It also follows that self -adjoint H~Ch has proper eigen
values if and only if H (with q* = q = r) also has proper 
eigenvalues, but now we must admit potential functions 
q = (lniJ!o) x= iJ!o/iJ!o where iJ!o can have zeros as a function 
of x. If Q = [~g 1 is so generalized then this class of AKNS 
equations is equivalent to the Schrodinger equation. 

Without going into details we also state that in the 
more general case, (4.4b), the AKNS equation can be 
shown to be equivalent17 to a Schrodinger equation with 
an energy dependent potential of the kind 

(5.8) 

The inverse problem for this has been extenSively 
studied18 and the associated evolution equation has been 
derived by an analog of the AKNS procedure. 12 
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An exact expression for the linear response function of the dense electron gas valid at any temperature is 
worked out in the ring (RPA) approximation. The T = 0 and T = 00 limits reproduce the already known 
results. It is used to explain the longitudinal oscillations and the screening around a test charge. The 
latter is either Thomas-Fermi-like or Friedel-like according to the values of the parameters. 

I. INTRODUCTION 
As a prerequisite to the study of the thermal conduc

tivity in the dense partially degenerate electron gas 
encountered in the final stage of laser fusion experi
ments, 1 we have to work out the properties of the dy
namic dielectric function e:(q, w) given by 

e:(q, w) = 1- V(q)P(q, w) (1. 1) 

with V(q) = 47Te2 q-2, in terms of the dynamic linear re
sponse function of the electron gas2 

P(q, w)" pO (q, w) 

=-(2S+1)fdlk 3' nO(k+q)-~O(k) 0 (1.2) 
(27T) fiw + i71- (E k+q - Et ) 

taken in the dense random phase approximation (RP A). 
71 is a small positive convergence parameter. Hence
forth, we neglect any spin dependence (except for an 
overall factor of two) in the electron- electron inter
action. e:(q, w) is the cornerstone of any Boltzmann-like 
approach through the electron-ion interaction to the 
time-independent transport coefficients. The main pur
pose of the present work is to investigate for any de
gree of degeneracy the quantities E(q, w) and pO(q, w) 
with the usual fermionic distribution ({3-1=1?BT, 11 is the 
grand canonical chemical potential) 

1 (1. 3) 
exp[{3 (E~ - 11)] + l' 

At this preliminary stage, the Coulomb interaction does 
not play any role, as far as the linear response is con
cerned. Equation (1. 2) has already been considered for 
any degree of degeneracy3 in a condensed matter frame
work, where it defines the dynamic susceptibility in 
connection with inelastic neutron scattering from liquid3 

He. Here, our basic motivation is to bridge the gap be
tween the dilute high-temperature nondegenerate elec
tron plasma worked out by Vlasov and the well known 
T = 0 dense liquid electron approximation. 2 Both pic
tures delineate the extreme limits of the random phase 
approximation when applied to the one-component plasma 
with a fixed neutralizing continuum background. From 
the start, we postulate that this very simple model pro
vides the dominant contribution to the linear response 
in the real dense electron gas up to any nonzero tem
perature. Furthermore, it will remain to investigate 
in a future work the temperature dependence of the ex
change corrections. In Eq. (1. 2), fiq is the momentum 
and fiw is the energy transferred in a given scattering 
process (neutron, light, etc,"') probing the electron 
plasma fluctuations. In the sequel, it will prove useful 

to introduce the dimensionless variables Q = q/kF and 
lJ=fiW/E~, in terms of the corresponding T=OoK Fermi 
quantities. This way of picturing the linear response 
function may be given further support through the well
known relationship 

_(_1_)= 1 + V(q) f ~ dw' S(q, w') 
E q, w _~ 

x( 1 1) 
w-w'+i71-w+w'+i71 ' 

(1. 4) 

between the dielectric function and the Van Hove struc
ture factor4 S(q, wi. As is well known, Eq. (1. 4) pro
vides, through its Fourier transform, a direct insight 
into the equilibrium properties of the partially degen
erate electron gas. Our ultimate goal is to explain the 
real and the imaginary parts of the response function, 
through a kind of Pade-like interpolation procedure be
tween the well-known classical results (Fried-Conte5

) 

and the T = 0 RPA (Lindhard6
) limit. 

The present paper is organized as follows: 

In Sec. II we rederive the real and the imaginary 
parts of the RPA response function with techniques 
quite similar, although differing in some important re
spect, to those already used recently by Khanna and 
Glyde. 3 The present treatment leads easily to a con
vergent real part series. These results are numerically 
displayed in Sec 0 III and their static limit detailed in 
Sec. IV. The high temperature limit is considered in 
Sec. V, and the longitudinal plasma modes are explained 
in Sec. VI. The last sections are devoted to the screen
ing property around a test change. 

II. DYNAMIC LINEAR RESPONSE 

Our present task is now to explain Eq. (I. 2) for any 
finite temperature. A simple change of variable makes 
it appear as 

pO(q, w) = - (2~)3 f d3
knO(k) 

Introducing in the rhs the dimensionless momentum 
k'=k/kFtogetherwithY=Il/E~, Z=l?BT/d, the Fermi 
distribution function (1. 3) becomes nO(!?,) ={exp[(k,2 
_ y)Z-l] + 1}-1, and we obtain 

(II. 2) 
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where 

and 

(11.3) 

with 

- In(1 + exp[ (y - p:)/Z])}. (11.4) 

rs is the usual dimensionless interelectronic distance 
in number of ao, a=(97T/4t1/ S

• As already noticed, S 

ReFo(q, w) is a much more involved quantity. To evalu
ate it, let us start from Eq. (II, 3) and compute 

~[Ret(p)]~ 1~dknO(k)-p2ppf ~~. (n.5) ap _~ _~p -k 

The last quadrature may be interpreted as a contour 
integral, because its integrand behaves as k-z when 
I k I - ~. Only the nO(k) poles are to be taken into ac
count. They are an infinite number. S The nth one is 
given by 

k~=y+i(2n+l)Z, n~_oo, ... ,00. (n.6) 

The location of the poles in the complex k plane, is de
duced from 

kn==an+ibn 

a~-b~=y, 

2anbn = (2n + 1)7TZ, 

~=a~+b~, 

(II.7a) 

(II.7b) 

(1I.7c) 

(n.7d) 

through the intersection of the two hyperbolas x 2 
- i 

= y and 2xy = (2n + 1)7TZ. In the upper half-plane, we 
retain only kn ~ an + ibm with an and bn > 0, where 

an == A {y + [y2 + (2n + 1)27T2 z2Jl /2}1 /2, 

bn==n-{ - y + [y2 + (2n + 1)27T2Z2]1/~1/2. (n.8) 

The single contour integral may be closed up by a semi
circle in the upper k half plane, yielding 

f ~ dkno(k) - - 27TZ . f. (bn bn(p2 + r;) ) 
~p -k --:-r-p "--! YZ+(p2_Y2)2+4p 2b2 . 

- CIC n -0 r1 n n 
(n. 9) 

Equation (II. 5) then becomes 

a 1~ ~ a--[Re/(P)] = 2 dkno(k)+27TZ~ 
p ° n=O 

X (bn + bn(p2 + r;) ) r;; (p2 _ ~)2 + 4p2 b~ . (n. 10) 

It must be pointed out that the two discrete sums on the 
last line cannot converge separately, since an' bm and 
rn grow up as n1 /2. Finally, we thus obtain 

o( ) arsk1 ( ) F q, w = - --::T::Tg q, W , 
7T e 

where 
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and 

7TZ (1 + exp[(y - P~)/Z]) 
Img(q, w) =(f In 1 + exp[(y - P:)!Z] (n. 11) 

!o ~ ~{b 1[ (p+a) Reg(q,w)= dkno(k)+7TZ~ y2'-2Q Arctan ~ 
o n=O n n 

(P. - an) A (P + an) + Arctan --b
n
- - rctan ~ 

- Arctan (P- ~n an) J}. (II. 12) 

a convergent quantity. 

III. NUMERICAL ANALYSIS 

The numerical analysis of FO(q, w) may be easily per
formed through the Kramers-Kronig expression 

Reg(q, w) ==7T_lppf~ dwI~(q, w'), 
_~ w - w (III. 1) 

a rather intricate expression to deal with. This asser
tion is made clear by the introduction of 

1 x 
p p - == Ii m -:-:r:--::'l , 

x • -0 x + E 
(III. 2) 

in Eq. (III. 1), followed by the limit E - O. Such a pro
cedure already used by Khanna and Glyde yields results 
of a rather low accuracy. S A very simple way to cir
cumvent this difficulty is to inject in Eq. (IlL 1) the 
rhs of 

since 

pp l ~.dx 
t _ x=O. 

-~ 

With a simple transformation, Eq. (III. 1) reads 

T 
Reg(q, w) = 4Q [;;(p.) - ;;(PJ], 

where 

;;(P) 

(III. 3) 

(III. 4) 

_ j~ dp'(luIl + exp[(y - p?2)/T}} - luI 1 + exp[(y - p2)/TJ}). 
- _ ~ [p : - pJ_1 

(III. 5) 

In order to compute ;;(q, w) for different Z values, we 
need the reduced chemical potential y = T / E~. F or fur
ther applications to the electronic transport properties 
in a partially degenerate electron gas, it appears of 
interest to parametrize the quantities of relevance with 
the degeneracy factor a = {3 JJ., obtained by inverting 

~ 1/2 
~Z-S/2 _ (_d_x~x_-,..._ 
3 - J ° exp(x - a) + l' (Ill. 6) 

yand a are depicted numerically in Fig. 1. 

The variations of g(v, Q) as a function of v/2Q are 
reported in Fig. 2 for various values of the degeneracy 
parameter. 
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FIG. 1. Reduced chemical potential y and degeneracy factor a; 

as a function of T. 

They are steeper around v/2Q = 1, when the degen
eracy increases, Also, the imaginary part reaches its 
maximum near the same value and vanishes quicker 
when the degeneracy is the largest. ,g-(v, Q) is only 
weakly Q dependent for Q os 1. 

IV. STATIC RESPONSE FUNCTION FO (q, 0) 

In the w=o limit, we Simply getp+=p_=Q/2=p. 
Img(q, w) is an odd function of w, and Img(q, 0) = 0. 
Reg(q, w) is even in w, so 

g(q, 0) = Reg(q, 0) =,g-(O, 0) + rrZ fo ~ 

[- 2~ (Arctan P :nan 
+ Arctan P ~n an) ] 

(IV. 1) 

where ,g-(O, 0) = f o~ dk nO(k) and 

Z3/2 y 
,g-(q,0)-p.J1rl1 / 2 Z ' P-"" (IV. 2) 

with 

2 f~ dxx2 

I1 / 2(Y)=r(%)' 0 l+exp(x2 -y)' 

The presence of the Arctan makes g(q, 0) analytic in the 
complex q plane minus a number of branch cuts. Let us 
introduce g(p) =g(q, 0). The ratio of the discrete sum 
in Eq. (IV. 1) is (2n + I)Z, vanishing in the Z - 0 limit. 
Therefore, the zero temperature limit has to be inte
grated through a continuous sum. For this purpose, we 
introduce 
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FIG. 2. Variations of g(Q, v) as a function of v/2Q for Q = O. 2 
and several degeneracy degrees. 

b 1 ( _1 P + a _1 P - a) 
,g-(U)=YZ-2P tan -b-+ tan -b- , (IV. 3) 

F(O) = aD + aobo (tan-1P + ao + tan-1P - aD) 
P bo bo 

r_p2 b~+(p+ao)2 
+--In ) ( )2. 

4p b'O + P - ao 
(IV.4) 

So, the discrete sum in the rhs of Eq. (IV. 1) reads 

rrT t.rr[ (21l + 1hZ] = rr: g(rrZ) + FiO) + 0(Z2). (IV. 5) 
n=O 

The tan-1 terms cancel out, and 

r(p) = '(0) _ yao + y - p2 In b% + (p + ao)2 + 0(Z2) (IV 6) 
f!, g Wo sp bi + (p - ao)2 . 

in the T - ° limit. In order to preserve the equality 

in the zero-temperature range, we put 
3 

,g-(O) =.;r + 0(Z2), 

whence 

T(P)::: ao + r - p2 In b9 + (p + ao)2 + 0(Z2). 
g 2 Sp b'O + (p - ao)2 

(IV. 7) 

(IV. S) 

(IV. 9) 

Recalling that in the Z - 0 limit ao -1, y -1, and bo - 0, 
we recover the well-known Lindhard result6 

1 1- p2 P + 1 
,g-(p)=-+--ln-- . 

24p p-l 
(IV. 10) 
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FIG. 3. Q variations of the static response g(Q ,0) for several 
degeneracy degrees. 

Equation (IV. 1) is pictured in Fig. 3. Its Q variations 
get strongly damped in the Z - 00 limit. g(O) is given in 
Table I as a function of Z, and compared with its asymp
totic estimates at low and high temperature respectively. 

V. HIGH TEMPERATURE LIMIT 

Although Eqs. (n. 11) and (II. 12) are exact RPA quan
tities, the latter is more suited to extract in a conve
nient way the low temperature limit than the higher one. 
In order to recover from below the well-known classical 
Z - 00 limit,5 it is useful to represent FO(q, w) as a 
series expansion in exp(J3 Jl) for large and negative Jl 
values, through 

n~q /2:::; exp[/3 Jl - /31f(p - q/2j2 12m] 

x (1 + ~ {- exp[/3 Jl- J31f(p + q/2)2 /2m w) . (V. 1) 

The general term of order n in Eq. (I. 2) is easily inte
grated using cylindrical polar coordinates p = Pll + tIP.!. 
with q as the polar axis. 2 So, we get 

~ 

FO(q, w) = - 26 (_)n exp[(n + 1)/3Jl)] 
n=O 

r d2p 
x j(2rr? exp[ - (n + l)/3Pllf /2m] 

x f: ?;' exp[- (n + 1)/3(p1l + q/2)21f /2m] 

X( 1 1) 
nw + iTJ - iPpllq/m - nw + iTJ + n2pllq/m • 

(V.2) 

Separating out the real and the imaginary parts, we 
have 

F(q, w) = F~(q, w) + iF~(q, w), 

where 
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TABLE I. g(O) with its low and high temperature asymptotic 
estimates. 

1 
T=;::::u 

g(0)=a5/r~, g(O) = 2/3T, 

CY (3EF g(O) exact T-O T-oo 

20 0.0499 0.997941 
10 0.0992 0.991515 0.984654 

5 0.1934 0.963852 0.948239 
4 0.2372 0.943481 
3 0.3040 0.905109 
2 0.4140 0.8350 0.836609 
1 0.6109 0.7114 0.746575 
0.5 0.7682 0.6274 0.68802 
0.1 0.9383 0.552434 
0.01 0.9836 0.535003 
0 0.9888 0.533054 0.623123 0.674250 

-0.1 1.0427 0.513556 0.609759 0.639363 
-0.5 1.3000 0.435738 0.556315 0.512824 
-1.0 1. 7399 0.3437 
-1.5 2.3607 0.2632 
-2.0 3.2349 0.197117 0.386572 0.206087 
-2.5 4.4624 0.145301 
- 5. 0 23.2233 0.028544 0.248429 0.028707 

F O( ) _ 2;" A m ~ (n + 1)!3mw
2 

(n + l)/3lfi) 
2 q, w - L1 n -;:::r exp - 2 2 - 8 

n=O n-q q m 

X . h ({3(n + 1)nw) 
sm \ 2 ' 

(_)n exp[!3 Jl(n + 1)] mrr-1 

(11 + 1){3iP 
(V.3) 

an odd function of w, vanishing at w = O. 

It should be noticed that in the T - 00 limit, Eqs. 
(II. 11) and the first term in Eq. (V. 3) are both propor
tional to IJ /Q. However the first one does not vanish 
with {3 - 0, thus making it clear that even in this limit 
the correct behavior of the real part can only be ob
tained from the complete sum (V. 3). Actually, these 
T - 00 expansions are asymptotic to the exact quantities. 
In contrast, the real part F~ cannot be expressed in 
terms of elementary functions, but a change of vari
ables2 yields 

F~(q,w)=- m £An{4>[(111{3(11+1))1/2(~+nq)1 
;m:qiil n=O 2 q m 'J 

_ 4> [(11l{3(~ + 1)) 1/2 (_ ~ + ~~) J}, (V.4) 

an even function of w, in agreement with the require
ments of the fluctuation-dissipation theorem. 4>(x) de
notes the real part of the classical plasma dispersion 
function5 

4>(X)=_l_ pp! ~d"exp(_y2) 4>(x)=-<1>(-x). (V.5) 
fi _~ x-y , 

VI. PLASMA OSCILLATIONS 

As a first application of the ring response function 
FO(q, w) we may determine the electron plasma modes 
in thermodynamic equilibrium for any degeneracy. They 
are obtained by setting the real and the imaginary parts 
of Eq. (1. 1) equal to zero with F(q, w) =FO(q, w). The 
natural oscillation frequencies are determined by the 
poles of the retarded density correlation function, 7 

which occur at the solutions 11. - iy. of the equation 
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This description is entirely general. Furthermore the 
damping is small Cr'. «~1.), so the real and imaginary 
parts separate easily with the results 

41Te2 
1 =7F~(q, n.), (VI. 2) 

.1 

_FO( n) (OF~(q, w) I ) 
y. - 2 q,. ow n ' (VI. 3) 

• 
obtained from w = n. + iy. and assuming that both y. and 
oFg!ow are small quantities whose product is negligible. 
As in the T - 0 limit, this approximate separation of 
real and imaginary parts will be shown to be valid at 
long wavelengths, so we consider small expansions of 
F~(q, w) and F~(q, w). A simple change of variables in 
the first term of Eq. (I. 2) reduces it t08 

o( ) 2q2 f dlk ° ) 1 
F q,w =m (21T)3 n (k [w-(nq.k/m)+i11J2-(Jul/2m)2' 

(VI. 4) 

As in the T = 0 limit, the well-known limiting relation 
(Plemelj) 

1 1 
X
-------:- - PP-x - i1TO(X), 

+ 111 ~. 0+ 

shows that Fg(q, w) = 0 if 

I I nkFq nq2 
w>--+-

m 2m' 

(VI. 5) 

In this region of the qw plane, F~(q, w) may then be 
evaluated as an ascending series in q. To order l, we 
have 

° 2q2 fdlk ° [ 11k. q (11k' q) 2 ] F1(q,W)=~ P2) n (k) 1+2--+3 -- +-mw 1T mw mw 

(VI. 6) 

Using the relationships 

(dlk O( N _ 
2 )(21T)3 n k) =-V=p (VL7) 

and 

(VI. 8) 

where 

(VI. 9) 

Therefore, the dispersion relation [Eq. (V. 1) 1 now 
reads 

1 = 41Te
2
p (1 + 121T1f!i /s q(z) +_) 

mn2q m2n2q A p 

_ 41Te2p (1 3q2kB T) 
-~ +~. 

T- .. mn q n q 

(VI. 10) 

The last expression on the rhs is obtained from Eq. 
(VI. 10) with z = nA3/2. Solving iteratively, one obtains 
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(VI. 11) 

where n;l = 41Te2p/m is the square of the plasma fre
quency. One sees immediately that whatever the degen
eracy degree may be, the resonant frequency at zero 
wavelength is the classical frequency, and it is there
fore independent of n, as obtained from the classical 
derivation of plasma oscillations. 8 In the T = 0 limit, 
the rhs of Eq. (VI. 8) simplifies to tk~, so that 9 Eq, 
(VI. 10) becomes 

(VI. 12) 

with 

(VI. 13) 

qTF = (67Tpe 2 /d)1/2 is the Thomas-Fermi (Debye
Huckel when T - 00) wavenumber. It is worthwhile to 
notice that upon the replacement E~ - kB T, Eq. (VI. 13) 
gives back at once the classical Bohm-Gross-like dis
persion relation (V;h = 2kB T /m.) 

(VI. 14) 

while the exact classical result obtained from (VI. 12) 
is the expected Bohm-Gross expression 

(VI. 15) 

The slight discrepancy between both results is a quan
titative estimate of the brute force replacemene (b) of 
the Boltzmann velocity distribution by a T = 0 Fermi
like in the classical dielectric function yielding Eq. 
(VI. 15). The numerical results given in Fig. 3 for 
Fg(q, w) show that for any T '* 0, Eq. (VI. 3) will produce 
a nonzero damping (Landau). Therefore, the collective 
modes are now damped, even in the lowest order ap
proximation. Working out the q - 0 limit of Fg(q, w) 
from the first term on the rhs of Eq. (Vo 3), one gets 
from Eq. (VI. 3) the classical result2 

(VI. 16) 

In general y. is positive. Results related to Eq. (VI. 16) 
are obtained for intermediate T values from the com
plete expansion (VI. 6), so the approximation of small 
damping appears fully justified at long wavelengths, be
cause I Yq/nq I vanishes exponentially. The temperature 
affects both the damping and the q2 correction to the dis
persion relation, but does not alter the fundamental 
plasma frequency. 

VII. SCREENING AROUND A TEST CHARGE 

In the foregoing sections we have obtained an exact ex
pression for the linear response at any degeneracy in 
the ring approximation. As a second application, let us 
consider the electron gas screening, i. eo, the specific 
response to an external perturbation ¢eX(r, t). Following 
the standard folklore in this field, we take it as pro
duced by an extra point charge so ¢ex(q, w) = (47Tze/ 
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q2)27T6(w), and we need only the zero frequency compo
nent of FO(q, w). The main purpose of the present sec
tion is to show that the asymptotic limit of the fluctua
tion density function 6n(r) exhibits at all temperatures 
both a Thomas-Fermi-like screening and damped 
Friedel-like oscillations. The induced density fluctua
tion by <Pex(q, w) in the uniform electron gas is2 

6n(q, w) =- ~(q, w) e<pex(q, wi, (VII. 1) 

with 

.If F(q, w + i1)) 
(q, w) = [1 _ V(q)F(q, w + i1))] • (VII. 2) 

In the ring approximation F(q, wo) - FO(q, wo), so (z 
= charge number) 

( J dlq . V(q )Fo(q, 0) 
6p x) = - e6n(x) = ze (21T)3 exp(zq . x) 1- V(q)FU(q, 0) . 

(VII. 3) 

(VII. 4) 

(VII. 5) 

n;O 

Equation (VII. 3) may then be rewritten as 

6p(x) = _ ze(2k )3f~ exp(2ip. r)( ars/7T)g(P) 
F (21T)3 l + (ar./7T)g(p) , 

(VII. 6) 

withp=q/2kF and lY=kFx. The angular average is 
straightforward, so 

6p(x) = 6p(!]) = - ze k3 .! f ~ dp P exp(2ipr)(ars/7T)g(p) 
W F r _00 pZ + (ar/7T)g(p) . 

(VII. 7) 

In view of the complex analytic structure of g(P) in the 
complex p plane, we find it better to expandHb ),10 the 
integrand in powers of rs. The only remaining singular
ities in the denominator are the p = ± iPD poles. More 
precisely, we set g(p) ===go(1- <p(p)) with I <p(p) I < 1, for 
all p, and also 

p1=ar·go=(4AJ.Fk~tl Thus, we have 1T . 

(p2 + a;s g(P)) _1 = p2 ~p1 (1 +~q!~i + O(~)) (VII. 8) 

and also 

6p(x) 
- zek~/i7Tz 

with 

I _ljOO dp P exp(2ipr) ar s (1 (P)) 
0- Z .00 pZ + pt -7T- go - <p . 
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(VII. 9) 

(VII, 10) 

The contribution of the p = iPD pole makes the Thomas
Fermi (Debye-Huckel) term appear, 

TF i1TPb . 1o =-exp(-2PDr)[1-<p(tPD)]. (VII. 11) 
r 

The logarithmic branch cuts of the tan-1 terms yield 
the Friedel-like term in the form 

16rlectel = _ Pb '£ f dp P ~xp(~ipr) . 1TZ 
r n;O en P + PD go 

. ~ (tan-1P + an + tan-1P - an) , 
2p bn bn 

(VII. 12) 

where cn is the appropriate contour around the loga
rithmic branch cut. Taking into account that the left 
contour contribution in Fig. 4 is complex conjugate to 
the right one, we can rewrite 

16r1edel = Z1T PD .0 exp[ _ 2r(bn + ian)] 
. 2z 2 ( 00 

2rgo n;O 

X In 00 dy exp(- 2ry) ) 
(b +' + )2_ pZ+ C• c. , o n zan Y D 

(VII. 13) 

where we used ~[tan-l(p - an)/bn] = 1T and P = an + ibn + iy 
along cn righL Let us introduce (3n = bn + ian, so that the 
sum in the last line becomes 

with 

1. '" dt e-t 
E1(z) = ~ -t-' This gives 

, , , , , , 

\ 
\ 
\ 

\ 
I 

/ 
/ 

1m p 

Thomas Fermi 
"pole" 

/ 
I I 

I I 

I : 
I I 

I an 

y \ 
\ 
\ 
\ 

--- integration path 

for lip (X) (Friedel) 

ntf1 pole 

of n' (K) 

Re p 

FIG, 4. g(p) Singularities in the p-plane. The P =iPD pole gives 
rise to the Thomas-Fermi (Debye) screening, while two of the 
symmetric contours produce the long ranged Friedel 
oscillations. 
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i5r1edel - irrPD rrZ [t exp(- 2J3nr ) __ 1 ____ 1_ + c. cJ 
,- 00 4rj;0 2r n=O J3 n - PD f3 n + PD ] 

(VII. 14) 

As a provisional conclusion, we have 

opTF(r) pb exp(- 2PDr) 
- zek~/lT r 

x 1+- 6-_-ln-n--D+c c 
( 

lTZ ( 00, 1 1 i3 + P ) ) 
2go n=O (3n 2pv J3 n - PD .. , 

(VII. 15) 

op(r)Frledel pb rrZ [00 
-zek~/rr =4yg02PDY ~oexp(-2J3nY) 

x( __ l ____ 1_) + c c ] , 
{3n - PD {3n + PD .. 

(VII. 16) 

which shows that in the asymptotic range, and for any 
temperature, the dominant term will be Friedel-like 
when bo < PD or Thomas-Fermi- (Debye-Huckel-) like 
for bo > PD' bo = PD thus define a border between a gas
like and a Fermi liquid like behavior with long range 
order. This is explained in the Te-ne plane through the 
reduced temperature Z = R8 T /E~ with E~ = (ll/2m e )kL 
the Y s of equivalence between the two terms when Y 

= kFx _00, the corresponding lle = 1. 613x 1024y; and the 
equivalent temperature Z eo = 6.5 X 105 Ty;2. In this con
nection, it should be noted that the exponential screen
ing of the Friedel oscillations at T * 0, has been also 
discussed by Fetter.

lI 

VIII. SCREENING AT T~O 

The Friedel sum becomes in the T - 0 limit 

rrT B exp(- 2J3nY) -----00 (1 1) 
n=O {3n - PD {3n + PD 

- -exp(- 2f3 oY) -----lTZ (1 1) 
'_002 i3 0-PD 13 o+PD 

_ iPD exp(- (3or)(-l- __ 1_) . 
2r {30-PD {30+PD 

(VIII. 1) 

In the present case we have lTZ /2 < PD i2Y, so the first 
term is negligible and 

op(r)Friedol 

- zek}/lT 
- iP1 1 [( )( 1 --' ~. exp -2{3oY --
8go 2r 13 o-PD 

+~)-c.c"J. ;>o+Pn 
(VIII. 2) 

Upon introducing bo - rrZ /2, ao -1, and 13 0 - 1, it becomes 
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Op(r)Frledel 

zek~/rr 
pb 1 2aoY 
4g

o
' 1 + p~' exp(- 2bor) cos-;r. (VIII. 2') 

The Thomas-Fermi-like term behaves as 

(VIII. 3) 

In the T - 0 limit 

g(iPD) _ao + 1 +P1tan-l~. 
2 4PD Yo - PD 

(VIII. 4) 

The latter becomes 

(VIII. 4') 

with ao -1 and bo« PD «ao. The relative importance of 
both contributions is measured by 

op(r)FrledOl _exp[- 2Y(bo-PD)] 
OpD (r) - 4(1 + Ph)y2 (VIII. 5) 

an increasing function of y s(pb). Further remarks are 
in order. At nonzero T, the Friedel sum behaves asymp
totically as y_2 exp(- 2J3 oY), while it becomes equivalent 
to r-3 exp( - 2{3or) in the T - 0 limit. Moreover, our T - 0 
limit differs very slightly from the Langer- Vosko 
result10 

op(r) 

- zek~/rr 
pb cos2aoY 

5(1 + PD/2)2 exp(- 2boY) . ? 

(VIII. 6) 
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Dynamics and phase transitions for a continuous system 
of quantum particles in a box a) 

Guy A. Battle 
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A particular type of continuous quantum system with infinitely many' particles is analyzed. and the 
existence of dynamics is proven in the G NS representations of certain states. The dynamics is not a group 
of automorphisms on the original algebra, so equilibrium states are defined in terms of the KMS condition 
in the representations of the states. The basic theorems about KMS states do not apply here. Nevertheless, 
for a special class of interactions it is proven that the central decomposition of an equilibrium state is 
concentrated on a Borel set of equilibrium factor states and that such factor states are precisely the 
extremal equilibrium states. Furthermore. the equilibrium factor states are in one· to-one correspondence 
with sets of functions satisfying a certain system of trace equations. This explicit correspondence is then 
used to show that there are no phase transitions for high temperature, and an example of a phase transition 
is constructed for low temperature. The phase transition also provides an example of continuous symmetry 
breaking. 

1. INTRODUCTION 
We wish to study the equilibrium states of an infinite 

collection of distinguishable, quantum- mechanical par
ticles in a one-dimensional box with periodic boundary 
conditions, where the interaction is infinitely weak in 
a sense that will be made precise. The first step is to 
prove the existence of dynamics for the system, and 
we do so by abandoning the usual notion that the de
sired time-evolution must be defined on the algebra of 
observables. Instead, we single out a certain kind of 
state, whose properties guarantee the existence of dy
namics in the GNS representation of that state. The need 
for this approach is very strongly indicated in the study 
of a certain quantum lattice interaction in Ref. 1; the 
authors demonstrate that there is a degree of arbitrari
ness in the time-evolution for each state that disappears 
for equilibrium states. The second step is to prove that 
the central decomposition of an equilibrium state yields 
equilibrium factor states, and this is done for a special 
class of interactions. Such a result is not immediately 
clear because the standard theory of KMS states does 
not apply to this situation, as we shall presently see. 
The third step is to characterize the equilibrium factor 
states as finite sets of functions satisfying the system 
(1. 2) of equations, and, again, this is done for a spe
cial class of interactions. Using this explicit charac
terization we prove that phase transitions are absent 
for high temperatures and we construct an example of 
a phase transition for low temperatures, 

We begin by indexing the particles with Z' and letting 
l- 7f, 7f j be the interval of space to which the system is 
confined. Let Xj be the .ith copy of [- 7f, 7fj, Xj the usual 
multiplication operator on L2(Xj), and II j = L2(X;l, The 
interaction is defined in the following operational way. 

IntroducE' the particles into the system one after 
another. When the first N particles are present, the 
interaction is a pair interaction, and the potential en
ergy operator for the pair (j, k) of particles is 
Mjk(N)j(X j - xk), where Mjk(N) is the coupling coefficient 

a)Since submission for publication, this paper has been incorp
orated into the author's dissertation, which has been sub
mitted to the Mathematics Department at Duke University in 
partial fulfillment of the requirements for the Ph. D. degree. 

and j is the functional form of the potential. In this 
case the energy of the system is given by 

N N 

HN =.0 (- A,,) + ~ 6 Mjk(N)j(xj - Xk) 
k=l j.k=1 

N 

-i/(O).0 Mkk(N). 
k=l 

(1. 1) 

Our insistence on periodic boundary conditions is con
tained in the requirement that the kinetic energy opera
tor - A" for the kth particle be the periodic self-adjoint 
extension of - ~ on C;(Xk ). Our assumptions on the 
Mjk(N) will include the assumption that limN_®Mjk(N) 
= 0, so the limiting situation as N - 00 may be thought 
of as an infinite system governed by an "infinitely weak" 
interaction. 

We el1lphasize that the main obstacle in our program 
is the handling of Hamiltonians which are not" classi
cal, " i. e., the kinetic energy does not commute with 
the interaction. The idea for overcoming this difficulty 
is that an infinitely weak interaction provides just enough 
"Abelianness" to make the computation of explicit con
ditions possible. 

We take A j =B Iff j), the algebra of all bounded opera
tors on II h to be the algebra of observables for the 
.ith particle, For a finite n c Z', let II n =0 jEJ1II j and 
An=Blffn), which is isomorphic t00jE.nBlffj)=0jE.nAj. 
Since the particles are distinguishable, A n is the alge
bra of observables for the set n of particles. The 
family Vi n} is a directed system of C*-algebras in the 
usual sense. We take the C * - closure of unA n to be the 
C*-algebra of the infinite system. We will refer toA 
as a quasilocal algebra and an element of A that happens 
to lie in someAo as a local observable, Notice that 
"local" refers to the number of particles and has no 
spatial meaning. 

In the case where only the first N particles are in 
the system the dynamics is the one-parameter group 
of automorphisms of A implemented by the one-param
eter unitary group on II {I •••• • N} generated by HN • It is 
not at all clear that the one-parameter group of auto
morphisms converges in any sense as N - 00, and phy
sical intuition suggests that it does not. As we have 
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already stated, this difficulty is circumvented by taking 
only some states to be physically meaningful. 

In Sec. 2 we single out those states which are locally 
normal onll. In contrast to the situation studied in Ref. 
2, where local normality is derived from the KMS con
dition, the situation here compels us to assume local 
normality at the very outset. We also define a notion 
of asymptotic state and show that the set of all such 
states is a convex, Borel set. We conclude the section 
with a result concerning integral decompositions of 
asymptotic states. 

In Sec. 3 we demonstrate the existence of dynamics 
for an asymptotic state. More specifically, if p is an 
asymptotic state and (j/ P' 1Tp , <pp) is the GNS representa
tion of p, we have a time-evolution {O'; : 1Tp !/1) 
- 1Tp VI) "1_ 00 < t < oo} which is a reasonable dynamicS 
from a physical point of view. Notice that 0'; may not 
lift to an automorphism of 1TpVl)". A similar time
evolution was proposed in Ref. 1, where a version of 
the Weiss theory was studied for the quantum lattice. 

In Sec. 4 we give a definition of 13- equilibrium state 
which is essentially the same condition that was con
sidered in Ref. 1. It is an obvious extension of the 
i3-KMS condition to the kind of dynamics we have. We 
show that the set of i3-equilibrium states is a convex, 
Borel set for each inverse temperature 13. We prove 
in Sec. 5 a preliminary result concerning the support 
of the central measure of a i3-equilibrium state. We 
develop a Fourier analysis of the interaction in Sec. 6, 
and in Sec, 7 we apply this analysis in our examination 
of i3-equilibrium factor states. 

In Sec. 8 we restrict ourselves to a special class of 
interactions (interactions of the Pth kind) and prove 
that: 

(a) The central measure of a i3-equilibrium state is 
concentrated on a Borel set of 13- equilibrium factor 
states. 

(b) The i3-equilibrium factor states are exactly the 
extremal i3-equilibrium states. This is proven directly 
since the standard theory of KMS states does not apply 
here, 

(c) There is a one-to-one correspondence between 
i3-equilibrium factor states and P-tuples (g1, ... , gp) of 
continuous functions satisfying the system of equations 

()-tA tr{exp[-i3(-~+gk(Y))lj(y-x)} (1.2) 
gj x -k=l jk tdexp[-i3(- ~+gk(y))l} 

where the Ajk are given numbers related to the inter
action, - ~ + gk (y) = - rP / d},2 + gk ()') operates on 
L2(_ 1T, 1T), and for each fixed x, j(y - x) denotes the 
operator 

</J(y) - j(y - x)</J(y) 

on L2(_ 1T, 1T). 

This explicit characterization of extremal i3-equili
brium states allows us to show in Sec. 9 that for an 
interaction of the Pth kind there is a temperature above 
which there is only one equilibrium state. In Sec. 10 
we give an example of a phase transition at low temper
ature and show that it is also an example where the 
central decomposition breaks symmetry. 
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Our results generalize to higher-dimensional sys
tems. We confine our attention to a one-dimensional 
system because the generalization does not alter the 
results in any significant way, 

2. ASYMPTOTIC STATES 

Throughout we assume thatj is an even, real-valued, 
continuous function on R which is periodic with period 
21T. Let{anlnE Z} be the sequence of Fourier coeffi
cients of j, and note that the an are real and a_n = an. 
We assume that L :=_ 00 1 an 1 < 00. Let J1 jk denote the func
tion N - J1jk(N) on Z·. The double sequence {J1jk} is as
sumed to have the following properties: 

lim J1 jk (N) = 0, 
N_oo 

N 

supB I J1 jk (N) 1< 00. 

N.j k=l 

We also introduce the following notation: 

N 

W j •N =6 J1jk(N)j(x j - xk), 
k=l 

N 

vj.N(x) =0 J1 jk (N)j(x - xk) 
k=l 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

for - 00 < x < 00. Clearly, Vj •N (x) is a multiplication 
operator on H n ....• N) for fixed x, and it is periodic in 
x with period 21T. W j •N is a multiplication operator on 
H {l •...• N)U {i). Also, the V,.N(X) and W j •N are uniformly 
bounded in j, N, and x. If n is a finite subset of Z+, 
we denote by O'n.N the one-parameter group of auto
morphisms ofll implemented by the one-parameter 
unitary group OnH{l •. ".N)un generated by the self
adjoint operator L jEn(- ~j + W j • N ). These time-evolu
tions are not the same as those considered in the 
Introduction. 

The states of the physical system are states on the 
C*-algebrall. We wish to define a notion of equili
brium state for the situation we have described, and 
we begin by confining ourselves to a certain class of 
states 0 Let N be the set of states which are locally 
normal on the quasilocal structure of II, i. e., normal 
onlln for each finite nc Z', Because local normality 
will be one of the conditions needed for defining our 
dynamics, we cannot take advantage of the results of 
Takesaki and Winnink in Ref. 2 in order to proz'e local 
normality of our equilibrium states. Lety be the set 
of all p in N such that the strong limits 

s-lim 1Tp(Vj •N(x)) =: Vj,p(x) 
N_oo 

and 

s-lim 1Tp(Wj •N ) =: W,.P 
N_oo 

exist for - 00 < x < 00, where (j/ p, 1Tp, <pp) will always de
note the canonical cyclic representation of II with re
spect to p. We refer to the states in.9 as asymptotic 
states. 

We restrict ourselves to N because, when one is 
considering a finite system of quantum- mechanical 
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particles, a physically meaningful state is always as
sumed to be a density matrix, i. e., normal. We fur
ther stipulate that our equilibrium states must lie in 
j, since it is reasonable to expect the corresponding 
representations of VJ ,N (x) and Wj ,N to converge in some 
sense as N - 00, i. e., the limiting behavior of the quan
tities should not be "blurred" in the representation cor
responding to an equilibrium state. Requiring conver
gence in the operator norm is too strong because, for 
a locally normal state p, 7Tp is a C*-isomorphism be
tweenA and 7Tp<!1), so if j '* ¢ it would follow that 
Vj ,N(X) and Wj,N converge in norm as N - 00. This need 
not be the case. 

j is obviously convex. However, it is not clear that 
!) is nonempty. We will prove this for a special class 
of interactions in Sec. 8. For the present, we will prove 
a topological property of.!/- as a subset of the set .s of 
all states onA, where.s will always be equipped with 
the weak * topology. Every assertion we will make 
with regard to IV both here and in the future are either 
proven in Ref. 3 (pp. 158-60) or can be proven by 
adaptations of the arguments given in Ref. 3. 

2. 1. Theorem:!) is a Borel subset of 5. 

Proof:1V is a G6 set in 5, so we need only show that 
}) is a Borel set in IV. Consider the condition that Wj ,p 

and Vj,p(x) exist for j in Z + and - 00 < x <: 00 for an arbi
trary locally normal state p. 

LedAm} be a sequence inA such that{AmE:An 1m E: Z+} 
is strongly dense inAn=B(ffn) for all finite ne Z+. 
There exists such a sequence because there are only 
a countable number of finite n e Z + and B (/-I n) is strong
ly separable for each such n. Thus the choice of {Am} 
is independent of po We have immediately that 
{7Tp(Am) 1m E Z + and Am E:A n} is strongly dense in 7Tp<!1 n) 
by the strong continuity of 7Tp onAn. As 7Tp is norm
continuous onA, unAn is norm-dense inA, and <Pp is 
cyclic inHp under the action of 7Tp(A), we have in par
ticular that {7Tp(Am)<pp} is dense inHp. Since the opera
tors 7Tp(Vj ,N(X» and 7Tp(Wj ,N) are bounded uniformly in 
N, the existence of Wj,p and Vj,p(x) follows from the 
existence of 

(1. j. x. m) 

and 

lim 7Tp(Wj ,N)7Tp(Am)<pp (Lj.m.) 
N·~ 

for mE: Z +. Now let {bk} be a dense sequence on the 
real line. Since the vector-valued functions x 
-7Tp(Vj,N(X»7Tp(Am)<pp are equicontinuous for fixed m, 
the existence of (1. j. x. m) for - 00 <: x < 00 follows from 
the existence of 

lim 7Tp(Vj ,N(bk »7Tp(Am)<pp 
N.~ 

(I'. j. k. m) 

for k E: Z+. Thus p lies in!) if and only if a countable 
number of limits involving p exist, namely (1. j 0 m) and 
(I'. j . k. m). It is obvious that the functions p 
- II7Tp(Wj ,N - Wj,M) 7Tp (Am) <Pp 112 and p - II7Tp(Vj ,N(bk) 
- Vj ,M(bk»7Tp(Am)<Ppllz are continuous, so}) must there-
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fore be a countable intersection of countable unions of 
G6 sets in IV, and the proof is complete. 

The next step is to examine the states we obtain in 
an integral decomposition of a state in.!/-. To this end, 
let Jl be a probability measure on 5 whose resultant p 
is in}). It follows from an argument given by Ruelle in 
Ref. 3 that an integral decomposition of a state is con
centrated on IV if and only if the state lies in IV. Thus 
Jl is concentrated on IV, i. e., Jl((V) = 1. 

Let S be an increasing sequence of positive integers. 
We denote by J s the set of all states p in IV such that 
the strong limits 

s-lim 7T p(VJ. s (x)) '= VJ• S p(x) 
N ' N ' t .~ 

and 

.exist for - 00 < x < 00. By reasoning identical to that in 
the proof of Theorem 2. 1, J s is a Borel set in .5. It is 
obvious that}) e J s for every increasing sequence S of 
pOSitive integers, and that the J s are convex sets. For 
a given S, we refer to the elements of J s as S-asympto
tic states. 

2.2. Theorem: There exists an increasing sequence 
S of positive integers such that Jl is concentrated on 
J s . 

Proof: Let {Am} and {bk} be as in the proof of Theo
rem 2.1 and Am =Am/IIAmll. 

Since p is an asymptotic state, (1, j, m) and (I', j, k, m) 
exist for j, k, m E: Z+. As the Vj,N(bk ) and Wj,N are uni
formly bounded with respect to j and k, 

converges to zero as M, N - 00. Since p = IN a dJl(a) in 
the weak * sense, it follows that l17Tp(A)1?pI12= IN II7Ta(A) 
X <pa1i2 dJl(a) for allAE:A. Hence 

.0 2 j+!+m 1117Ta(VJ,M(bk) - Vj ,N(bk))7Ta(Am)1?aI1 2 dJl(a) 
i,k,m N 

converges to zero as M, N - 00. Now consider the topo
logical space (Z+xz+x'1£+xlV) U ('1£+xz+xlV) with the 
measure II defined on it such that 

V(U} X{k} X{m} x] ) = ;q+~ 
and 

Jl(U} X{m} X]) = ~J<Z) 

for all Borel] elV. Thus we have a sequence of vector 
functions which is Cauchy in the norm implicitly de
fined for the vector functions. The functions 117T,.g(Wj M 

) - 2 ' 2 - Wj,N 7Ta(Am)1?a ll and II7Ta(Vj,M(bk) - Vj,N(bk»7Ta(Am)<Pall 
are continuous functions on our measure space, and 
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this fact is all that is needed to carry out the same 
argument as the one used for proving that if a sequence 
of Li functions on some measure space is Cauchy in 
the Li norm, then there is a subsequence that converges 
almost everywhere. 

Thus we have an increasing sequence S of positive 
integers such that l~mN. w 7Ta(Vj .sN (bk )) 7Ta (Am) <I> a and 
limN. w 7Ta(Wj •SN ) 7Ta(Am)<I>a exist almost everywhere on 
the measure space, so they exist M-almost everywhere 
for all j, !?, m. As we have already seen, this is enough 
to show that a is an S-asymptotic state for M-almost all 
a in N. This completes the proof. 

Let J = U sJ s; J may not be convex, and, since there 
are an uncountable number of increasing sequences of 
positive integers, ,J may not be Borel. 

2.3. Definition: Let p EC J and let S be an increasing 
sequence of positive integers. Then S is a wor!?able 
sequence for p if and only if p c J s. 

3. DYNAMICS OF THE SYSTEM 

As we have already explained in the Introduction, 
our approach to proving the existence of dynamics for 
asymptotic states is to prove that there exists a limiting 
time-evolution in the GNS representation of each such 
state. 

Let j) E I and j E: Z +. Since 7Tp is strongly continuous 
onllj=B(/-Ij) and f-exp(ift:. j ) is a one-parameter, 
strongly continuous, unitary group on H j, it follows 
that f - 7fp (exp(if A)) is a one- parameter, strongly con
tinuous, unitary group on H p" Let A j •p be the infini
tesimal generator of this group. Thus t:. j •P is a self
adjoint operator on Hp , and 

(3.1) 

for all real t. 

3.1. Lemma: exp[it(- t:. j •P + 7Tp(Wj •N))] = 7Tp(exp[it(- t:.j 
+ Wi •N )]) for all real t. 

Proof: Since 7Tp(exp(itWj •N)) = exp(it7T)P(Wi • N) for all 
real I, and 7Tp is strongly continuous onA (1 •••• • N JU (j) 
=B (/-I {i •••• ,N JU {j)), the conclusion follows from Eq. 
(3. 1) together with an application of the Trotter product 
formula. 

3" 2. Lemma: - t:. j •P + Wi,p is a self-adjoint operator 
on Hp and 

exp[it(- t:. j •P + Wj •p)] = s-lim exp[it(- Aj •p + 7Tp(Wj •N))] 
N.w 

(3.2) 
for all real t. 

Proof: Since Wj •P is a bounded, self-adjoint operator, 
the first part of the statement follows from the Kato
Rellich theorem. 

Let 'JIcHp. By Duhamel's formula we have 

exp[if(- t:. j •P + 7Tp(Wj •N))]'JI - exp[it(- t:. j •P + Wj.p)]'JI 

=i"fa t exp(i(t - s)(- A j •p + 7Tp(Wj •N ))] 

X (7T p (Wj •N) - Wj ) exp[is(- A j •p + Wj .p)]'JI ds. 
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Therefore, the norm of the left-hand side of the equa
tion is dominated by 

As Wj.p=s-limN.w7Tp(Wj.N), the integrand converges 
pointwise to zero. Since W j •N is uniformly bounded in 
N, we have that the integral tends to zero. This com
pletes the proof. 

3.3. Lemma: exp[it(- t:. j •P + Wj)] commutes with 
exp[it(- Ar.p + Wr •p)]. 

Proof: We may assume thatj*r. Wj •P commutes with 
7Tp (II) because M jr(N) - 0 as N - o(). In particular, Wj ., 

commutes with exp(itAr •p); Wj •P obviously commutes 
with Wr •p ' It follows from the Trotter product formula 
that Wj •P commutes with exp(it(- Ar.p + Wr )]. 

Since Wr •p commutes with 7fp(ll j), we have that 
exp(if Aj .p) commutes with Wr .P; exp(it Aj .p) certainly 
commutes with exp(it t:.r,p), so a second application of 
the Trotter product formula shows that exp(itA j •p) com
mutes with exp(it(- t:.r •p + Wr •p)]. Applying the Trotter 
product formula to the two results, the conclusion 
follows. 

Let a; be defined on the algebra U Q 7Tp(ll (J) by 

for all A ECII (J, where 

It is easy to demonstrate that a; is a well-defined * 
homomorphism. Indeed, suppose n en' and A ECA (J. 

Then by Lemma 3" 3, 

a; clearly has range in 7T p(A)". Since a; is an isometry, 
it can be extended uniquely to 7Tp(IIL Thus ap is a one
parameter family of C*-embeddings of 7Tp(A) in 7Tp(A)". 
Obviously ap is not a group. Not only is it defined in 
the canonical representation of p, but it is also irre
versible in the sense that it "smears" local and quasi
local observables into 7fp (II)". Of course, one would 
have a group structure if the a; could be lifted to auto
morphisms of 7T p(A)", but whether this can be done or 
not is an open question. We will presently see, how
ever, that a great deal can be said about this peculiar 
dynamics as it stands. A similar dynamics is pro
posed by Emch and Knops in Ref. 1, where an infinitely 
weak, infinitely long-range interaction for the quantum 
lattice is studied. That ap is indeed the limiting dyna
mics in the GNS representation of P is stated as 
follows: 

3.4. Proposition: Let n be a finite subset of '0:+ and 
A ECA (J. Then 

a;(7Tp(A)) =s-lim 7Tp(a~.N(A)). (3.5) 
N·w 
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The proof is an easy combination of a revision of the 
above lemmas. One has to revise Lemma 3.2 to read: 

exp(iiHn) 

=s-limexp(it~ (- t:. j ,p+lTp(Wj ,N») 
N-~ jEn 

but this is easy enough to prove because ft is fixed. 
Moreover, one has to revise Lemma 3.1 to read 

exp (it ~n (- t:.j,p + lTp(Wj ,N») 
lE 

= lTp (exp (it j~n (- t:.j + Wj ,N») ) , 

but this can also be handled. Notice that (3.5) involves 
the an ,N rather than the time evolutions mentioned in 
the Introduction. 

Now consider the more general case where p E J, 
and let S be a workable sequence for p. Then all of the 
above discussion can be duplicated for this situation. 
We obtain a C*-embedding a~,s of lTp(A) in lTp(A)" de
fined by a~,s(lTp(A» = exp(ilHs,n,p)lTp(A) exp(- ifHs,n,p) 
for A EA n, where 

Hs,n,p= ~ (- t:.j,p+ Wj,s,p), 
iEn 

and a; ,s has the property that 

a~, s(lTp(A» = s-lim lTp( ah, SN (A» 
N-~ 

(3.6) 

(3.7) 

for all A EA n. Such time evolutions are introduced for 
technical reasons that will soon become apparent. 

4. DEFINITION OF EQUILIBRIUM 

We are now ready to propose a definition of equili
brium with respect to the interaction. 

4.1. Definition: Let i3:c 0 and pEl. Then P is a 13-
equilibrium siate if and only if 

,C ¢(t) (a; (lTp (A» lTp (B) <Pp , <pp) dt 

= i: ¢(t + ii3)(1Tp (B) a; (1Tp (A»<Pp, <pp) dt (4.1) 

for all A, B EA and ¢ E C;OR), where ¢ is the Fourier 
transform of ¢. We denote the set of such states by 
Ce. 

This definition of equilibrium was proposed by Emch 
and Knops in Ref. 1. It is an obvious· extension of the 
KMS condition forced upon us by the fact that the a; are 
not automorphisms of A, but map lTpV/) into lTp(A)". 

As in the case of ordinary KMS states, every equili
brium state is time invariant (with respect to the dy
namics defined in terms of it). Ce is obviously a convex 
set. It is no longer clear, however, that the extremal 
states in C6 are exactly the factor states in Ce. Never
theless, when we consider certain classes of interac
tions, we will see that this is indeed the case. Further
more, the factor states in Ce will prove to be very in
teresting, so it will be important to examine the cen
tral decomposition of an arbitrary i3-equilibrium state 
in any case. The existence of i3-equilibrium states will 
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not be established until we examine our special classes 
of interactions in Sec. 8. 

Let {Am} be as in the proof of Theorem 2.1. We have 
already seen that{lTp(Am)iAmEAn} is strongly dense in 
lTp(An) for all finite ftc Z·. Since a; is strongly conti
nuous on lTp(An) for all finite ftc Z+, it is not hard to 
verify that (4.1) holds for all A, BEAn and all ¢ E C;OR) 
if it holds for A =Am, B =An for all Am, An EA nand 
¢ E C ;(R). (Dominated convergence is applicable, 
since we may arrange {Am EA n} to be strongly dense in 
An =B (j( n) in the sequential sense, i. e., such that a 
given element in A n has a sequence of elements in 
{Am EA n} converging to it. ) Since a; is norm-continuous 
on lTpV/), P E Ce if (4.1) holds for A =Am, B =An for all 
nI, nE Z· and ¢ E C;(R). 

Also, there is a sequence (¢k) in C;(R) such that if 
(3.1) holds for all ¢ = ¢k then it holds for all ¢ E C;(R) 
(where A and B are fixed). In summary, PECe if and 
only if (4.1) holds for ¢ = ¢k, A =Am, and B =An for 
all triples (k, 111, n) of positive integers. Thus the set 
[e is defined by a countable number of equations. 

4.2. Theorem: [6 is a Borel set in S. 

Proof: It is sufficient to show that [e is a Borel set 
inJ!. By the above remarks we are finished if we show 
that the left- and right-hand sides of (4.1) are Borel 
functions of P for fixed A, B EA nand ¢ E C ;(R). For the 
sake of definiteness, consider the left-hand side. 
1Tp(ah,N(A» - a;(lTp(A» strongly as 1'1 _00 for all P E!J., so 
p(ah N(A)B) - (a;(lTp(A»lTp(B)<pp, <pp) as 1'1 - 00. By domi
nated convergence, r: $(t)p(ab,N (A)B) dt converges to 
the left-hand side of (4.1). For each 1'1, it is obvious 
that the function P - L:$(t)p(ah,N(A)B) dt is continuous 
onlV (since IV is metrizable, sequential continuity is 
enough, so dominated convergence is applicable). Thus 
we have a sequence of continuous functions on Iv which 
converges pointwise on the Borel sety to the left-hand 
side of (4.1). Hence the left-hand side of (4.1) is a 
Borel function on y. 

4.3. Definition: Let p E J and S be a workable se
quence for p. p is an S - {3- equilibrium sf ate if and only 
if 

i: ¢(t)(a; ,s(lTp(A»lTp(B)<pp, <pp) dt 

= i:$(t +i(3)(1Tp(B)a;.s(1Tp(A»<pp, <pp) dt (4.2) 

for all A, BEA and ¢ E Co"(R). 

We denote the set of S - {3-equilibrium states by [;. 
By an argument similar to the one above, [t is a 
Borel set in 5. 

5. CENTRAL DECOMPOSITION OF AN 
EQUILIBRIUM STATE 

Our next step is to examine the central measure of 
a {3-equilibrium state. By Ref. 4, the central algebra 
of a locally normal state onA is also the algebra at 
infinity of that state. By Ref. 5, the decomposition at 
infinity of a locally normal state is concentrated on a 
Borel set of locally normal states with trivial algebra 
at infinity. Hence, the central measure is concentrated 
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on a Borel set of locally normal factor states. We wish 
to answer the following question; Is the central mea
sure of a tl-equilibrium state concentrated on a Borel 
set of tl-equilibrium factor states? 

5. 1. Lern.ma; Let P E [a and let J.l be the central mea
sure of p. Let J be a Borel set of states such that 
JlO) > O. Then the state 

A(A) = Jlb) ~ a(A) dJl(a) 

is also a tl-equilibrium state. 

Proof; By the nature of the central decompOSition, 6 

there is an orthogonal projection EE 7Tp<!l)' n 7Tp<!l)" such 
that 

for all A EA, So 

Since p is locally normal, 11(1\') = 1. Thus A EN. 

Notice that (Efip, A -7Tp(A) I EH , E<I>p/11 E<I>p II) is the 
. p A canonical cyclic representation of with respect to A 

because E is a central projection, so the fact that A 
lies in I follows immediately from the fact that p does. 
It is easy to verify that a~(7Tp(A) IEHp) = a;(7Tp(A)) IEHp for 
all A EA, so in order to show that A is a tl-equilibrium 
state, it is sufficient to show that 

i: cP(t)(a! (7Tp (A))E7Tp (B) <I>p, <I>p) dt 

= i:<p(t +itl)(E7Tp(B)a!(7Tp(A))<I>p, <I>p) dt (5.1) 

for A, B EA and ¢ E C ;(R). Fix A, E, and ¢ and let 
{Ao} be a net of elements such that IIAo II <S 1 and 7Tp(Ao) 
- E weakly (using Kaplansky's theorem). We certainly 
have 

i:¢,(t)(a!(7Tp(A))7Tp(AoB)<I>p, <I>p) dt 

= s.:¢,(t +itl)(7Tp(AoB)a!(7Tp(A))<I>p, <I>p) dt 

for all 6 since p E Ca. We wish to show that each side 
of the equation converges to the corresponding side of 
(5.1). For the left-hand side, the net of integrands 
converges pointwise. The strong continuity of a!(7Tp(A)) 
together with the uniform boundedness of {Ao} implies 
equicontinuity of the net of integrands. Hence, the net 
of integrands converges uniformly on compact intervals, 
so that the net of integrals converges to the left-hand 
side of (4.1) (since the integrands also vanish uniformly 
at infinity). The argument for the right-hand side is 
similar, except that we use the strong continuity of 
a!(7Tp(A*)). This completes the proof of the lemma. 

Weare now ready to give a partial answer to our 
question. 
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5.2. Proposition. Let AE [a and let J.l be the central 
measure of A. Then J.l(I\[a) = O. 

Proof. Suppose 11(I\[a) - 0, Let {¢k} and {Am} be as 
in the preceding section and let I kmn be the set of all 
states in I such that (4.1) does not hold for A =Am, 
B =Am and ¢ = ¢k' Since each side of (4.1) is a Borel 
function of p, Ikmn is a Borel set. Furthermore, [\[a 
=Uk,m,'/kmm so there exist ko, 111 0, no such that J.l(Ikomono) 
, O. 

Let KN be the set of all states p in Ikomono such that 
the number 

e(p) = L:¢ko(t)(a;(7Tp(Amo))7Tp(Ano)<I>p, <I>p) dt 

- L:d>ko(t + itl)(7Tp(Ano)a!(7Tp(Amo))<I>p, <I>p) dt 

satisfies le(p) I ~·l/N and 27T(r-1)/17 < arge(p) '" 27T(r! 
17). Then KN is a Borel set and Ikomono= U;~lU;=1KN' 
Hence J.l(KroN 0) > 0 for some ro, No. Therefore, k roNoe dJ.l 
'" 0, so by the Fubini theorem we have 

Let 

A'(A) = (; ) 1 peA) dll(P) 
11 roNo KroNa 

for all A inA. Using Proposition 3.4, it is easy to 
verify that 

(a~.(7TV (AmO))7TX' (An a) <I>x· , <I> .. ) 

Il(K
l 

) r (a!(7Tp(Amo )) 7Tp (Ano) <I>p, <I>p) dll(P). 
roNo J KroNo 

By Lemma 5.1, A' EI, so a~. makes sense. Hence A' 

is not a tl-equilibrium state. This contradicts Lemma 
5.1, and the proof is complete. 

This result does not rule out the possibility of "spil
ling" into IV \1; it claims that the part of 11 concentrated 
on I is concentrated on [a. However, we know from 
Sec. 2 that 11 is concentrated on J s for some increasing 
sequence S of positive integers. 

5.3. Theorem: Let AC [a and 11 be the central mea
sure of A. Then there exists an increasing sequence S 
of positive integers such that J.l is concentrated on 
[s.a. 

The proof of this theorem differs in no essential way 
from the proof of the proposition, so we omit it. As 
we mentioned at the beginning of this section, J.l is also 
concentrated on a Borel set of factor states, so fJ. is 
concentrated on a Borel set of factor states in [ s ,B. 

Obviously, our next step is to study such states. Before 
doing so, however, we must analyze the interaction 
more carefully. 

6. FOURIER ANALYSIS OF THE INTERACTION 

On the space of all bounded, complex sequences let 
A be an arbitrary Banach limit (see Ref. 7). Ultimately 
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there will be no dependence on our choice of A. Notice 
that A is a bounded, self-adjoint, linear functional on 
a commutative C*-algebra. In order to avoid confusion 
with regard to indices, we will denote a sequence {bN} by 
N-bN • 

6.1. Definition: Let p be a state onA. Then B"n,p 
is the operator on II p defined by 

(B"n,p'Vb 'V2 ) 

= ~N - E ll,k(N){Tfp[exp(inxk) ]'Vb 'V2») (6.1) 

for all 'Vb 'Vz EHp. 

It follows from (2.3) that the sequence in the argu
ment of A is indeed bounded, so (6.1) makes sense. 
Note that the B"n,p are uniformly bounded, and recall 
that {an I n E Z} is the sequence of Fourier coefficients of 

f· 
6.2. Proposition: B"n,p E Tfpl!l)' n Tfp(A)" and 

L:_~anB, ,n,pTfp[exp(- im)] converges absolutely in 
norm. 

Proof: The second part of the statement follows from 
the fact that Z;:::- ~ I an I < 00 • 

Let A EAT and 'V1 , 'Vz EHp. Letting Tfp(A)'Vb 'V2 be the 
vectors in (6.1), we obtain 

(B"n,pTfp(A)'V1 , 'Vz) 

= A(N - b ll,k(N)(Tfp[exp(inxk)A]'Vb 'V2)\. 
k=l 'j 

Letting 'V1 , Tfp(A)*'V2 be the vectors, we get 

(Tfp(A)Bi ,n,p'Vb 'V 2) 

N 

= A0 -E Iljk (N) (Tfp(A exp[inxk])'Vb 'V2»). 

Since A EA" it follows from (1. 2) that 

([Bi ,n,/>, Tfp(A) ]'Vl' 'Vz) 

= A(N - Iljr(N)(Tfp([exp(inxr ), AJ)'V1, 'Vz» 
= lim Il'T(N)(Tfp([exp(inxr),A])'V1 , \1j2) 
N-~ 

=0. 

Thus Bi,n,p E Tfp(A)'. 

Let C E Tfp(A)' and 'V1, 'V2 EHp. Using the vectors 
C'Vb 'V2 and also the vectors 'Vb C*'V2 , we obtain 

([B"n,p, C]'Vl' 'Vz) 

= A (N - t llik(N)([Tfp(exp[inxkJ), C]'Vb 'V2») 
\ k=l 

=0. 

Thus B i ,n,pE1fp(A)". 

This result will playa key role in the characteriza
tion of i3-equilibrium factor states for the special class 
of interactions to be considered. The commutation re
sult proven above depends upon the fact that the interac
tion is infinitely weak, and it is in this sense that such 
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an interaction provides a certain amount of "Abelian
ness" as remarked upon in the Introduction, 

6.3. Proposition: IfPEj, then Wj,p=Z;:::_manBj,n,p 
X1fp (exp(- inxj» and Vj,p(x) =Z;:'_manBi,n,P exp(- inx). 

Proof: Observe that Z;Z=l Iljk(N)f(xk - Xj) = Z; :'_ .. an 
Xexp(- inxj) Z;Z=l llik(N) exp(inxk) and that the convergence 
of the series is uniform in N. Since A is a bounded lin
ear functional on the space of all bounded sequences, 
we have 

(Wi,P'Vb'VZ) 

= ;i.::! [1fpC~~ an exp(- inxj) E Iljk(N) eXP(inXk»)'Vt. 'V2] 

= A( N -[ 1f1,(~~ an exp(- inx;>E Iljk(N) eXP(inXk»)'V1, 'V~) 

=.0 an(1fp[exp(- inx,)])B"n,p'Vb 'V 2)· 
n=-QO 

The proof of the other equation is similar. 

6.4. Definition: Let p E 5 and let S be an increasing 
sequence of positive integers. BS,j,n,p is the operator 
onHp such that 

(BS",n,p'V1 , 'V2 ) 

sN 

= A (N - E Iljk(SN )(1fp[exp(inxk) ]'Vb 'V2») (6.2) 

for all 'Vb 'V2 EHp. 

It is clear that B s ,j ,n,p has the properties stated in 
Proposition 6.2 for B j ,n,p' Furthermore, if p E J s, then 
Vs ,j ,p(x) = Z;:::_ .. anBs ,j,n,p exp(- inx) and W s ,i,P 
= Z;:::-~ anB S,i ,n,p 1fp [exp(- inxi )]. 

7. EQUILIBRIUM FACTOR STATES 

Letp be a factor state in Ca. Since 1fp(A)'n 1fp(A)" 

= a:: 1H , the operators Bj,n,p of the preceding section 
are scfalar multiples of the identity operator. By the 
expressions we have in Proposition 6.3 for Vi,p and 
W"p, it follows that Vj,l> is the identity operator times 
a real-valued, continuous function, and, identifying 
Vj ,p with that function, it also follows that Wj ,P 
= 1fp(V, ,p(xj ». In physical terms, Vj ,f> is the potential 
field in which the jth particle is moving when the sys
tem is in state p. 

7.1. Lemma: 1fp(exp[it(- Ilj + Vj,p(xj »]) =exp[it(- Ili,p 

+ Wj ,p)] for all real t. 

The proof of this lemma differs in no essential way 
from the proof of Lemma 3.1, so we omit it. 

Thus 

exp(itHo ,p) = Tfp ( exp (it j~O (- Il j + Vj ,p(Xj») ) 
for all finite nc Z·. Since p satisfies (4.1), it follows 
that p satisfies the i3-KMS condition with respect to the 
group of automorphisms of A n implemented by the uni
tary group exp[itZ; JEO (- Il j + V"p(X j»] on H o. But P is 
also normal on A 0 =13 (/-10) . 

Now, every normal state on 13 (/-10) is clearly a factor 
state on B (/-10) by the strong continuity of the corre-
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sponding faithful representation. Also, the set of normal 
i3-KMS states on 8 (H 0.) is obviously convex. By Ref. 8, 
the i3-KMS factor states are exactly the extremal 13-
KMS states. Hence there is at most one normal i3-KMS 
state on 8 (H 0.). 

On the other hand, exp[- SL;jEo.(- ~j + Vj,p(x j ))] is a 
trace-class operator for all s > 0 because - ~j has the 
discrete spectrum {m 2

1 m E Z'} and Vj,p is a bounded 
function (see Ref. 9). Thus there is exactly one normal 
i3-KMS state on 81}{ 0), namely the one whose density 
matrix is 

1 
tr exp[ - 13 LEo.(- ~j + Vj ,p(x))] 

xexp [- 13 P (- ~j + Vj,p(X j ))] . 
J EO. 

Thus we have proven the following. 

7.2. Theorem: 

for all A EA 0.. 

Since n was arbitrary, we now have a preliminary 
form for p on the whole algebra. Of course, the ex
pressions are not explicit. 

7.3. Corollary: p is a product state. 

Proof: If A roA 0. and B EA 0.', where n n n' = q;, then 

1 
p(AB) = 

tr exp[ - i3L; jEr/Uo.' (~j + Vj ,pC\))] 

Xtr [AB exp [- i3.D (- ~j + Vj,p(Xj ))] ] 
JEo.Uo.' 

=tr [A exp [- 13 j~ 0.(- ~j + Vj ,p(X))]] 

x t{B exp [- i3!io.~- ~j + Vj ,p (X))] ]/ 

tr exp r_ 13 ~ (- ~j + Vj,p(X))] 
L J E 0. 

Xtr exp [- 13 D (- ~j + Vj ,p(Xj ))] 

Jro 0.' 

= p(A)p(B), 

since exp[- 13 Lroo.(- ~j + Vj,p(x j ))] and exp[- i3L;jEO'(- ~j 
+ Vj,p(X j ))] lie inAo. andAo.', respectively. This com
pletes the proof. 

Now recall that Vj ,p (x) = s-lim", _=1Tp(L;Z.l Jl jk(N)f(xk - x)). 
Since Vj,p(x) is a scalar, we have in particular 

Vj,p(X) = (Vj ,p(x)<pp, <pp) 

= lim (1Tp(L Jljk(N)f(xk - X)) <Pp, <pp) 
'" - = k=l 

IV 

=lim0 Jljk(N)p(f(xk-x)). 
'" -=k=l 

Hence, we have the following compatibility conditions: 
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IV 

V;.p(X) = lim~ Jljk(N) 
N ... ook=1 

x tr[exp[ - 13(- ~k + Vk•P (xk)) ]f(xk - x) 1 
trexp[ - 13(- ~k + Vk ,p(xk)) 1 

_ r f (N) trlexpl- 13(- ~ + Vk ,pCv)) ]f(1' - x)] 
- }/~~ Jljk tr exp[ - 13(- ~ + Vk,p(Y))] 

(7.1) 

These equations hold pointwise in x. - ~+ Vk,pCI') 
=- d2/d,,2 + Vk,p(Y) operates on L2(_1T, 1T), and for each 
fixed x, f()' - x) denotes the operator 

¢CI') - f(r - x)¢(\,), 

where the translation )' - x is modulo 21T. 

These equations for the functions Vj ,p are necessary 
conditions for the state p to be a 13- equilibrium factor 
state. This fact alone, of course, is not enough to make 
the equations themselves interesting from the stand
point of computing 13- equilibrium states. There will be 
more to say about this problem when we consider inter
actions of a special kind. 

Suppose that S is an increasing sequence of positive 
integers and that p is an 5 - i3-equilibrium factor state. 
Then by reasoning identical to that given above, we 
obtain that P is a product state, 

p(A) = tr[exp[- 13(- ~j + Vs.j.p(Xj))]A] 
trexp[-f3(- t:..j + VS,j,p(x j )) 

(7.2) 

forAcA j , and 
SN 

V S,j,p(x) = lim.0 Jljk(SN) 
N ... OOk=l 

xtr[exp[- 13(- t:.. + Vs.k,p(y))]fC,' - x)1 (7.3) 
tr exp[ - 13( - ~ + V S ,k ,P (1')) ] 

8. INTERACTIONS OF THE Pth KIND 

We are now ready to consider special classes of 
interactions for which more complete results can be 
obtained. 

8.1. Definition: {Jljk} is said to be of the Pth kind if 
and only if {Jl jk } has period P with respect to j (and 
therefore with respect to k) and 

lim Jljk(N)!{nc Z+!nP+l?<:N}! (8.1) 
.'1-= 

exists for 1 <: k "" P, where I I denotes the cardinality 
of the set. 

Suppose {Jl jk } is of the Pth kind, and let p be a factor 
state in (S,B for an increasing sequence S in Z+. By 
the preceding section we have 

s'" 
VS,j,p(x) = limB Jljk(S",) 

N - COk=1 

X tr[exp(- 13(- ~ + V s ,k,p(Y)) Jf(y - x)] 
trexp[-!3(- ~+ VS,k,P(Y))] 

Since {Jljk} is periodic in j, the sequence of functions 
{V s ,j ,p} is periodic in j. It follows that the sequence 

tr[exp[- 13(- ~ + VS •j ,p(y)) lfe}' - x)] 
tr exp[ - 13(- t:.. + Vs ,j ,pCd) 1 
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is periodic in j. Since {J.Ljk} is of the Pth kind, 

1" P (N) tr[exp[ - 13(- ~ + V S.k .p(Y» ]f(y - x)] 
/~:! ~ J.L jk tr exp[ _ i3( - ~ + V S ,k ,P (y » ] 

exists and is equal to 

b A'
k 

tr[exp[ - 13(- ~ + V S .k,p(Y» If(Y - x)] 
k.1 1 trexp[-i3(- ~+ VS,k,P(Y»] 

where 

Ajk = lim J.L jk(N) I{n E: Z + 1 nP + 1? ~ N} I. 
N-~ 

In summary, we have 
p 

VS,j,p(x)=0 Ajk 
k·1 

x tr[exp[ - 13(- ~ + V S ,k,p(Y» lfev - x) 1 
trexp[-i3(- ~+ VS,k,P(Y») 

Before proceeding further, we need a lemma, which 
also happens to demonstrate the abundance of asymp
totic states for an interaction of the Pth kind. The proof 
is an adaptation of a proof in Ref. 1 that the time-evolu
tion is unambiguous for equilibrium states of a quantum 
lattice. 

8.2. Lemma: Suppose {J.Ljk} is of the Pth kind, and 
let p be a locally normal product state such that the 
sequence {P(exp(im)} is periodic in j with period P 
for all n. Then p is an asymptotic state. 

Proof: Let Aj ,n,p = L:k.1 Aj~(exp(inxk» and A E:A n for 
some finite n c 7r. We wish to show first that 

liB J.Lr j(N)7Tp ( exp(inX)7Tp(A)¢p - Ar ,n,p 7Tp(A)¢pll 

converges to zero as N - 00. The expression is certainly 
dominated by 

lit J.Lrj(N)7Tp(exp(inX j »7Tp(A)¢J 
1=1 

N 

+ II j~ J.Lrj (N)7Tp(exp(inxj»7Tp(A)¢p - Ar,n,p 7Tp(A)¢pll' 

jein 

Since n is fixed, the first term tends to zero. Squaring 
the second term, we get the expression 
N N 

o 6 J.Lrj(N)J.Lrj.(N)p(A* exp(- inx j .) exp(inxj)A) 
j=l j·.l 

jein j'ei" 

N 

X0 J.Lrj (N)p(A*exp(inxj)A)+IA.,n,pI2p (A*A). (*) 
J .1 

jei" 
Since p is a product state and A E:A". (*) may be re
written as 

p(A*A) I E. J.Lrj(N)p(exp(inxj » - Ar,n,p 12 

jein 
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N 

+p(A*A) B IJ.r j(N)2(1- Ip(exp(inx) 1
2
). 

j=l 

jei" 
Using the fact that p(exp(inxj » is periodic in j with 
period p and that J.Lrj(N) - 0 as N - 00 for each j in n, we 
see that (*) becomes in the limit 

I

p 2 

p(A*A) ~ A~(exp(inXk» - Ar,n,p 1 

P 

+p(A*A) limE IJ. rk (N)21{nE: z+lnp +k~ N}I 
N - ~ k=l 

The first term is certainly zero, and the second term 
is zero because limN _ ~lJ.rk(N) = 0 and Ark = limN _ ~lJ.k(N) 
x l{nE: Z+lnP+k~N}I. 

Thus we have shown that L:f=llJ.r j(N)7Tp(exp(inx) 
-Ar n plH as N - 00 on a dense subspace of lip. Since 
the ~p'erators L: f.l J.Lr j(N) 7Tp(exp(inxj» are uniformly 
bounded in N, we have pointwise convergence every
where in H p. Now recall that 

N 

Vr N(X) =0 IJ.r/N)f(xj - x) 
, j=l 

~ N 

= 6 an exp(- inx) B IJ.rj(N) exp(inxj ). 
n=- 00 j=l 

Given 'J! E: H P' it follows that 

l17Tp(Vr,N(X»'J! - t anAr,n,p exp(- inx)'J!11 
n=- 00 

tends to zero as N - 00, since L: ,::_~ I an I < 00. Thus 
Vr,p(x) exists. By similar reasoning, Wr,p exists. This 
completes the proof that p is an asymptotic state. 

8.3. Theorem: Suppose that {lJ. jk} is of the Pth kind, 
and let p be a factor state in C s a for some increaSing 
S in Z +. Then p is a factor stat~ in Ca. 

Proof: It is clear that we need only show that p E: I. 
By the preceding lemma, it is sufficient to show that 
p is a locally normal product state such that P(exp(inxj » 
is periodic in j with period P. 

By the preceding section, p is certainly a locally 
normal product state. Furthermore, we have in par
ticular that 

(ex (inx .» _ tr[exp[ - 13(- ~ + V s ,j .p(Y» 1 exp(iny) 1 
p p 1 - trexp[-i3(-~+VS,j,p(V))] 

As we have pointed out at the beginning of this section, 
V S ,j ,P is periodic in j with period P. This completes 
the proof. 

8.4. Corollary: The central measure of a i3-equili
brium state is concentrated on a Borel set of i3-equili
brium factor states when the interaction is of the Pth 
kind. 

We finally have the decomposition theorem we want. 
Our next step is to characterize the factor states in 
Ca for interactions of the Pth kind, and we begin by 
stating what has been accomplished so far. If p is a 
factor state in Ca, then p is a product state such that 
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(8.2) 

for all A inA j, and 

for all) - Z+. 

These conditions are llCCCSMIV\' for p to be a factor 
state in C B. The following result establishes that the 
consistency equations (8.3) are sufficient conditions 
for the state corresponding to the functions via (8.2) to 
be a factor state in C B • 

8.5. Theorem: Suppose {fl jk} is of the Fth kind, and 
let {.<.:jt be a sequence of real-valued, bounded, mea
surable functions such that 

,,()-i,,\. tr[exp[-Il(- t..+gk(1,))Ji(v- x )] 
.'>j \ -~ Jk trexp[-Il(-t..+,1;k(V))] 

(8.4) 

Let j) be the product state such that 

for all A c A j and all). Then j) is a factor state in {B' 
Therefore, Fj,p exists and is equal to gj. 

P roo( Obviously, ji is a locally normal product state. 
Moreover, 

( (
. _)) tr[exp[-Il{- t..+.'<':j(v))lexp(im')] 

ji exp /11\. --
-J - trexp[-Il(-t..+gj{\')ll 

Since . .<.:j is periodic in) with period P, so is p(exp(illx j )). 

By Lemma 8.2, it follows that j) is an asymptotic state. 

The next thing to notice is that p is a Il-KMS state 
onA j with respect to the automorphism group of A j 
=8(h'j) implemented by the unitary group exp[iI{- t..j 
+ .!;;C' j)) I on H j, for all). Hence p is a Il-KMS state 
with respect to the automorphism group of A which is 
locally defined in this way. We wish to show that p 
,- (B' 

Since j) is a locally normal product state, it follows 
from Ref. 4 that ji is a factor state. But recall that for 
an asymptotic state which is also a factor state, Vj ,p 

is an ordinary function and Wj ,p =, 7Tp p' j ,P (x)). In fact, 
by Proposition 6.2, the B j ,n ,P are scalars and 

N 

= lim0 fljk(N)j)[exp(illxkll 
.V_OCk~1 

p 

=0 '\J)[exp(illxkl], 
k ~1 

since j)[exp(iw:k ) I is periodic in k with period P and 
{fljkt is of the Pth kind. We know that 

Fj,p(x) = £ (Jn13j,n.p exp(- iIlX), 
n=- oc 

and we have by assumption that 
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p 

,1;j (x) =,0 Aj,Ji(j(Xk - x)) 
k~1 

p 

=,0 Ajk.0 an exp(- inx)p[exp(inxk )]. 

k =1 rz=- 00 

Thus Fj ,p =gj' It follows that the dynamics O!p of p in
duces the automorphism group of A mentioned above. 
Since p is Il-KMS with respect to this automorphism 
group, the proof is complete. 

Thus, combining this theorem with the remark pre
ceding it, we have 

8.6. Theorem: Suppose the interaction is of the Pth 
kind. Then there is a one-to-one correspondence be
tween factor states in CB and p-tuples 0;11 ... ,,1;p) of 
bounded, real-valued, measurable functions satisfying 
(8.4). 

Thus, the computation of Il-equilibrium factor states 
is reduced to a very concrete problem. Notice that 
there is one and only one solution 0;1, ... ,,1;p) whose 
entries are constant, namely ,1;j= ao2;k.1 Ajk' as the fol
lowing calculation shows: 

'I' _ t Ak tr[expl-Il(- t.. + ,1;k) ]i(.\' - x)] 
''''J- kol J trexp[-Il(-t..+,1;k)] 

_ t A tr[exp(llt..)j(\, - xl] 
- k~1 jk tr exp(llt..) 

Taking the trace with respect to the eigenfunctions 
exp(illl1') of t.., we get 

x 2: J'f(\· - x) exp{imy) exp(- iIllJ') dy 
H _11" 

~ 1 J' = 0 Ajk - /(1' - x) d\' 
k~1 27T _, 

1 J' P =-2 i(") dv L Ajk . 
7T _, k4 

Since ao = (1/27T) L'./(\') d\', the calculation is complete. 
Thus the constant potential field in which the jth par
ticle moves when the system is in this state is com
puted by averaging the under lying interaction function 
/ and multiplying by the "total coupling strength" 
z:f~1 Ajk' This state is a "free" state, and it should not 
be surprising that there is one, since the interaction 
we are conSidering is "infinitely weak." We note that 
the constant solution 0;1, ... ,,1;p) is independent of Il, 
while the corresponding product state 

(A) __ tr[ exp(llt..j)A 1 A - A . 
Ii - tr exp(j3t..)' E" 

is dependent on Il. In particular, C e '" ¢ for all Il ---- 0, 

In Sec. 9 we will given an example where the free 
solution is not the only solution. We note at this point 
that if ('[I, ... , ,1;p) is a solution with nonconstant entries, 
then all of its spatial translates modulo 27T are also 
solutions because - t.. has periodic boundary conditions. 

Our characterization of Il-equilibrium factor states 
for interactions of the Pth kind enables us to prove the 
following theorem: 
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8.7. Theorem: Suppose that the interaction is of the 
Pth kind and p E. (a. Then P is an extreme point of (a 
if and only if p is a factor state. 

Proof: That every extreme point of (a is a factor 
state follows immediately from Corollary 8.4. Now 
suppose that p is a factor state and that p is not an ex
treme point of (a. Then P = 1 (Pl + P2) for some P1, P2 
E. (a such that Pl "* P2' Let J.ll and J.l2 be the central mea
sures of Pl and P2, respectively. By Corollary 8.4 J.ll 
and J.l2 are concentrated on Borel sets of i3-equilibrium 
factor states. Let J.l = 1(J.l1 + J.l2) and note that P is the 
resultant of J.l and J.l is concentrated on a Borel set of 
i3-equilibrium factor states. In particular, 

p(f(x - xk) f(x - xk+P )) 

= J (J(f(x - xk)f(x - xk+P )) dJ.l((J) 

for - 00 <. x < 00 and!? E. Z +. Since P is a factor state in 
(a, P is a product state and 

p(f(x - xk+P )) =p(f(x - xk)). 

As J.l is concentrated on a Borel set of states with the 
same properties, we have 

p(f(x - Xk))2 

=p(f(x - xk))p(f(x - xk+P )) 

= p(f(x - xk)f(x - xk+P )) 

= J (J(f(x - xk)f(x - xk+P )) dJ.l((J) 

= J (J(f(x - xk))(f(x - xk+p))aJ.l((J) 

= J (J(f(x - X k))2 d J.l((J). 

Hence 

Therefore, (J(f(x - xk)) must be a constant J.l-almost 
everywhere for fixed x, and, since 

p(f(x - xk)) = J (J(f(x - xk)) d J.l((J), 

that constant is p(f(x-xk)). 

Let {b m} be a sequence that is dense in the real line 
and let J mk be the set of all states (J in K such that 
(J(f(b m - xk)) =p(f(b m - xk)), where K is a Borel set of 
factor states in (a such that J.l(K) = 1. Then 
J.l(n:::,k=a mk) = 1 and n :::,k~ J mk ={(JE. K I (J(f(x - xk)) 
= p(f(x - xk)) for - 00 < x < 00 and!? E. Z +}. For each factor 
state (J in (a, we denote its corresponding P-tuples of 
functions by (;;f, ... , fII,). S inc e 

P 

f;'j(x) = B Aj/,(J(f(X - xk)), 
k=l 

it follows that g'f(x) =tJ(x) for all (JE. n; k-lJmk' _ 00 <x 
< 00, and j E. 'l{+. As 0;1, ... ,.if,) charact~;izes (J, we 
have n:::,k=lJ mk ={P}, so J.l({P}) =1. Hence J.ll({P})=J.l2({P}) 
= 1, so P1 =P2 =p. This is a contradiction. 

Thus the central decomposition of a i3-equilibrium 
state is also an extremal decomposition. Whether (a 
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is a simplex or not is an open question. Of course, 
(8 is not a Choquet simplex because it is not compact, 
but whether the extremal decomposition of a i3-equili
brium state is unique or not is still a pertinent question. 

We close this section with the statement of a result 
which is stronger than the converse of Corollary 8.4. 

8.8. Proposition: Let J.l be a probability measure 
concentrated on (a. Then the resultant of J.l lies in (a. 

The proof does not depend on the theory developed 
in this section. One need only use the definition of 
asymptotic state together with a dominated convergence 
argument. Proving the compatibility of the dynamics 
is straightforward. 

9. ABSENCE OF PHASE TRANSITIONS AT HIGH 
TEMPERATURES 

Our next step is to examine the bifurcation theory 
with respect to the inverse temperature 13. We have 
the following result: 

9. 1. Theorem: Suppose that the interaction is of the 
Pth kind. Then there is only one .a-equilibrium state 
for 13 sufficiently small. 

Proof: By the decomposition theorem, it is sufficient 
to show that there is only one i3-equilibrium factor state 
for 13 small enough. By our characterization of i3-equili
brium factor states and the remarks of the preceding 
section, it is enough to prove that the free solution is 
the only solution to our system of equations for 13 suffi
ciently small. 

Notice that if (lib' .. ,;;p) solves the equations for f, 
then for a real constant C, (l(1 +C'2::~ Alk'" .,;;p 
+ C '2::=1 Apk ) solves the equations for f + C, so the abun
dance of solutions is unaffected by the assumption that 

J" f(x) ax = 0. 
-" 

In this case (0, ... , 0) is the free solution. Let 
(gb ... , gp) be an arbitrary 13- solution. We need to find 
a 13 0 :> 0, independent of (;;10 ..• , ;;p), such that if 13 ~ 130, 
then gj=O for 1 ~j ~P. Since 

tr[exp[ - 13(- ~) If(y - x) 1 = 0, 

we have 

i ;;j(x) I 

~t IAjklltr[exp[-I3(-~+gk(Y»lf(y-x)]1 
k=1 tr expl- 13(- ~ + gk(Y)] 

x I tr{[exp[ - 13(- ~ + ;;kb'))] - exp[ - 13(- ~) ]]f(~' - xl} I 
tr exp[ - 13(- ~ + ;;k(Y) J 

By Duhamel's formula, we have 

exp[ - 13(- ~ + gk(Y))] - exp[ - 13(- ~)] 

= - foa exp[ - (13 - s)(- ~ + gk(Y)) kkCV) exp[- s(- ~) 1 as, 
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where the integral is a Riemann integral taken in the 
strong sense. By the Fubini theorem, we may inter-

Recall that if A is a positive, trace-class operator on 
a Hilbert space, then Itr(AB)I", IIBII trA. Since 
Ilexp[-s(-.:l)]II",1, Ilgk(y)II=llgkll~, and Ilf(y-XII=lifll~, 

p 

~ Ilfll ~ ~ I Ajk i IIRkl1 ~ 
k=l 

xfS tr exp[- (13 - s)(- .:l + Rk(Y»] ds 

° tr exp[ - J3( - .:l + Rk (T» 1 

=11.t1I~t I Ajkl IIRkll~) ~ (1 J3E ) 
k=l w m=l exp - km 

~ fS 
X,0 exp[ - (13 - s)Ekml ds, 

m=l ° 
where the Ekm are the eigenvalues of - .:l + Rk(V), in
dexed in increasing order, counting multiplicity. Now 
notice that we also have the very crude estimate 

p 

IIRkl1 ~"" Ilfll ~B I Akr I "" bk • 
r=l 

Hence 

- .:l- bk "" - .:l + Rk(1') ~ - .:l + bk 

on their common domain of self-adjointness. If Em is 
the mth eigenvalue of - .:l in increasing order, counting 
multiplicity, it follows that 

from which we obtain 

~. 1 
.<; Ilfll ~0 I A;k Illgkll ~ (J3b ) 2:~ (J3E ) 

k=l exp - k m=l exp - m 

p 

= Ilfil~.0 I Ajk I Ilgkll ~hk(J3), (9.1) 
k=l 

where 

Now, hk (J3) is independent of (gt. ... ,gp) and is mono
tonically increasinR in 13. The denominator obviously 
blows up as 13 ~ 0, and the numerator remains bounded 
because E Zm_1 = E2m = (m - 1)z (i. e., I{m I Em = bk} i '" 2, 
there are only a finite number of m such that Em < bk , 

and 
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change the integral and trace to obtain 

Choosing 13 0 such that hk (J3) ~ [2Pllfll ~(1 + I Ajk I) ]-1 for 
13 ~ 13 o, 1 <: j, k "" P, (9.1) implies 

1 ~ 
II.~jll ~<~ 2P 0 IIRkl1 ~ 

k =1 

for 13 -:: 13 o, 1 < j ,,; P. Summing over j, we obtain 
p p 

.011Rj 11 ~~ ~ :0 Ilgkll 00, 

j =1 k =1 

so Rk = 0 for all Ie. 

10. PHASE TRANSITIONS AND SYMMETRY 
BREAKING AT LOW TEMPERATURES 

In considering interactions of the first kind, the 13-
equilibrium factor states correspond to functions R 
satisfying the equation 

dx) = A tr[exp[ - 13(- .:l + R(y»f(y - x) 1 
, . trexp[-J3(-.:l+g(v»! 

(10.1) 

where A is a constant depending upon the strength of the 
"infinitely weak" interaction, We wish to find an inter
action and a temperature for which a phase transition 
occurs-that is, a function f with the required properties 
and a number 13' 0 for which (10.1) has at least two 
solutions. For each 13' 0, (10.1) has a constant solu
tion g = Aau, so it is only necessary to find an f and i3 
such that (10.1) has a nonconstant solution. 

Let {<Pm( be a complete, orthonormal sequence of 
eigenvectors of - .:l + RCV) such that the corresponding 
sequence {Em! of eigenvalues is increasing. In terms 
of this basis, (10,1) becomes 

1 ;'.. 
g(x) = 2 \' 00 (i3E ) 0 exp(- i3 E m) 

1T D m=l exp - m m=l 

X f' f(/l- x) I <Pm(/l) I Z d/l. (10.2) 
-, 

Since f is a continuous, real-valued, periodic function, 
g is also. If {bn} is the sequence of Fourier coefficients 
of g, we have 

bn = 2 2: ~ Aa_n ( i3E) t exp(- J3 E m) 
1T m=l exp - m m=l 

X /' exp(-in/l) I wm(/l)lzd/l. (10.3) 
-, 

Since {<Pm} and {Em} are indirectly related to {bnL this 
system of equations appears more hopeless than ever. 
However, all we need is to find a summable sequence 
{an} such that (10.3) holds and bk '* ° for some 1< '* 0, so 
we embark on the simple- minded strategem of picking 
a convenient {bn}, from which {<Pm( and {Em! arise, and 
solving for {an}, 
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xB exp(- (3Em). (10.4) 
m=l 

The only remaining obstacle is the possibility that the 
denominator may vanish for some II where b -n * O. We 
must find a (3' 0 such that this does not happen for any 
such 11. In this way we will have found an f and a (3 
which yields as a solution the nonconstant function g 
that was picked to begin with. 

To this end, let b1 = Ii_I = - { and bn = 0 for all other 
n. Then g(xl =-1cosx. We need not compute {~m} and 
{Em} for - t.. -1 cos,', but just show that there exists a 
(3 ~. 0 such that neither L :=1 exp(- (3Em) J':. exp(- ill) 
x Ilj!m(pl 12 dll nor L ;=1 exp(- (3Eml J':. exp(i Il) 1 ~}m(ll) i 2 dp 
vanish. Since one expression is the complex conjugate 
of the other, it is enough to show that the sum does not 
vanish. Hence the problem is reduced to showing that 

(10.5) 

for some (3 > O. (10.5) holds for large j3 if 

By the min-max principle discussed in Ref. 9, -1 
"" El "" 1 and ~"" E2 "" 4; hence El has no multiplicity, 
so in order to prove (10.5) for some (3, it is sufficient 
to show that 

1: cos III WI (Il) 12 d /l * o. 

We must therefore investigate the behavior of the 
ground-state eigenfunction of the Hamiltonian - t.. 
-1 cos~'. Thus we have the equation 

- ~'{'(x) = (1 cosx + E1)Ij!I(X) 

(10.6) 

with periodic boundary conditions. Since El has no 
multiplicity, W1 must be a complex multiple of a real
valued function, so we may assume that iP1 is real
valued. Since the law of nodes applies to periodic bound
ary conditions (see Ref. 10), we also have the informa
tion that 1j!1 (x) * 0 for - 71 < X < 71, so we may assume that 
% (x) > 0 for - 71 < X / 7T. Let c be the zero of .} cosx + E1 

such that O·~ c·,,; 7T. Then the graph of z/il is concave down 
between - c and c, and concave up in the other two re
gions. Since % must also be an even function, it follows 
that zJ;{(- 7T) = - zJ;{(7T); but % also satisfies the periodic 
boundary condition: i}!{(_ 7T) = z/i{(7T). Hence Ij!{(- 71) = 1'{(7T) 
= O. All of these facts taken together imply that J1. is 
monotonically increasing from - 7T to 0 and monotonically 
decreasing from 0 to 7T, and is a positive, even function. 
Hence, the function 111 j 2 has the same properties. 
Therefore, any value assumed by I z/i112 between --j,7T 
and ±7T is greater than any value assumed by i J112 on 
the other two regions. By the nature of the cosine func
tion, (10.6) therefore holds. Thus there exists an f 
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and a (3 '·0 such that K(X) = - i cosx satisfies (10.1), 
and we have the desired example. 

Now consider a function f and a number (3 • 0 such 
that (10.1) is satisfied by g(x) = -1 cosx. By our re
marks in Sec. 8, we know that (10.1) is satisfied by 
every spatial translate of g. Let Px be the state cor
responding to the translation of ,~. by x, and let /) be the 
state defined by 

for all A inA. By PropOSition 8.9, P 'c C~. Also, J) is 
translation invariant by construction, so we certainly 
have an example of symmetry breaking in the sense 
that we have a translation- invariant equilibrium state 
expressed as a mixture of equilibrium states that are 
not translation invariant. 

Although this decomposition of p may not be the cen
tral decomposition, we can still show that the central 
decomposition of p breaks symmetry. To this end, let 
/l be the central measure of /) and let K be a Borel set 
of factor states in CB such that Il(K) = 1. Suppose /l does 
not break symmetry. Then 1.1({ a c Kia is translation 
invariant}) = 1. But as we already know, there is only 
one factor state in C ~ that is translation invariant, i. e. , 
there is only one constant solution to (10. 1). Hence /l 

is concentrated on a set consisting of one state so p is 
that state. But if /) is a factor state, then p is an ex
treme point of c~, so we have the desired contradiction. 
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Inverse Gaussian transforms: General properties and 
application to Slater-type orbitals with non integer and 
integer n in the coordinate and momentum representations 
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The use of Gaussian-type orbitals (GTO) facilitates the evaluation of the multicenter integrals encountered 
in quantum chemistry by reducing all integrals of more than two centers to two-center integrals. On the 
other hand Slater-type orbitals (STO). while leading to more time-consuming integral evaluations, provide a 
better approximation to variationally determined atomic orbitals. Thus, for a basis set of given size, STO's 
generally give better accuracy than GTO's. Kikuchi proposed the representation of STO's as integral 
Gaussian transforms, or in effect by continuous expansions in GTO's, and Shavitt, Karplus, and Kern have 
applied this technique to the evaluation of multicenter integrals over STO's. If these procedures are to be 
extended, it is desirable to develop a more systematic approach to the representation of a given basis 
function, tjI( r), as a Gaussian transform, tjI( r) = qLf( t); r] = J;;"J( t)exp( - r 't)d t; what this reduces to is 
the problem of calculating the inverse Gaussian transform, J(t) = q -1[tjI(r);t]. In the present investigation 
it is pointed out that J(t)= L l[tjI(S I");t], where L I represents the inverse Laplace transformation. On 
this basis conditions on tjI( r) necessary for the existence of a unique continuous Gaussian inverse, J( t), are 
formulated, and general rules for the manipUlation of inverse Gaussian transforms are developed. Finally, 
the formulas for the inverse Gaussian transforms of STO's obtained previously by Kikuchi and Wright are 
generalized to noninteger principal quantum number, and angle-dependent STO's, in both the coordinate 
and momentum representations. 

INTRODUCTION 

The use of Gaussian-type orbitals (GTO) greatly sim
plifies the evaluation of multicenter molecular quantum 
integrals, as a result of the theorem that a product of 
any number of Gaussian functions of the same argument, 
but having arbitrary centers, is reducible to a single 
Gaussian function referred to an intermediate center. 
Thus, all three- and four-center two-electron repulsion 
integrals, and three-center nuclear-electron attraction 
integrals, reduce to two-center integrals; the latter are 
further reducible to one-dimensional integrals which are 
evaluable in terms of the incomplete gamma function. I, 2 

On the other hand, a sill,£;le GTO provides a poor repre
sentation of an atomic orbital, because of the incorrect 
behavior of the GTO at both small and large distances 
from its center. This is, of course, a reflection of the 
proportionality of the exponent in a GTO to the square, 
rather than the first power, of the distance from its cen
ter. One solution to the latter difficulty is to approxi
mate a single atomic orbital by a linear combination of 
a relatively small number of Gaussian orbitals having 
different exponents, and in some cases different centers 
(as in the Gaussian-lobe method), The coefficients and 
exponents in such /inite Gaussian expansions can be de
termined by least-squares 3 or variational" methods. An 
alternative approach is the representation of each atom
ic orbital as an integral Gaussian trans/onu, or effec
tively by a conlinuous expansion in Gaussian functions. 
Such representations are exact, when they exist, and 
were first suggested by Kikuchi,5 and extensively applied 
to the evaluation of many -center integrals over Slater
type orbitals (STO) by Shavitt, Karplus, and Kern. 5 ,7," 

In the present article we develop a systematic approach 
to the derivation and properties of such transforms, 
based on the theory of Laplace transforms. The method 
is then applied to STO's in both the coordinate and mo-

mentum representations, and for general and integer 
values of 11, leading to some results which appear to be 
new. 

1. LAPLACE AND GAUSSIAN TRANSFORMS 

We restrict the present discussion to spherically sym
metric functions in the coordinate or momentum space, 
e.g., s-type atomic orbitals, the radial parts of angle
dependent atomic orbitals, or spherically symmetric 
potential functions. Thus, we write for the functions of 
interest z/!(r) in coordinate space, and cp(p) in momen
tum space, where r= Irl andp= Ipl. To avoid repeti
tion the general part of the discussion will be directed 
toward functions z/!(r) in coordinate space; to obtain the 
corresponding momentum space results simply replace 
r by p, and z/!(r) by cp(p). 

Since a Gaussian transform is a modified Laplace 
transform, and a rigorous theory exists for the latter,a-Io 
we first review briefly the existence and uniqueness of 
Laplace transforms in order to establish the same prop
erties for Gaussian transforms. Let ICt) be a real-val
ued function of a real variable, z:, such that: (1)1 (t) is 
integrable over every finite interval [a, b], 0 < a < b; 
(2) the limit of one such integral as a - 0 + exists; and 
(3) l(t) is of exponential order, or O(ee<l) (Le., real 0', 

M, and to exist such that 1/(t)I<Me"t for t>to)' Then 

(1) 

exists, and defines a unique analytic function, g(s), of 
the complex variable s in the half-plane Re(s»ao where 
a o is the greatest lower bound of the set of numbers {a} 
(Ref. 9, Sec. 59; Ref. 10, Sec. 2.1). The function g(s) 
can usually be defined over the entire complex s plane 
by analytic continuation, except possibly at isolated sin
gularities (poles or branch points). The necessity for 
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permitting sand g(s) to be complex-valued will become 
clear when the in1Jerse of the preceding transformation 
is discussed in the next section. Equation (1) may be 
regarded as a linear integral Laplace transformation 
of the object function, J(t), to obtain the image function, 
or direct transform, g(s), as indicated by the notation 
L for the Laplace operator in (1). 

We now define the Gaussian transform of an object 
function!(t) (which satisfies the previously stated con
ditions) as 

Comparison of (1) and (2) shows that 

</J(r) "<i[J(t); r]" L[J(t); r 2
] "g(r2). 

(2) 

(3) 

It follows that </J(r) exists and is a unique analytic func
tion of r for Re(r2) > eYo (Le., for a hyperbolic region in 
the complex r plane). It will be convenient to refer to 
!(t) in the context of the Gaussian transform, (2), as the 
shape function. II For given !(t), one can obtain </J(r) by 
evaluation of the integral in (2), or use of (3) and a table 
of direct Laplace transforms (Ref. 2, po 15). However, 
in the context of the present article it is usually the 
atomic orbital or other function, </J(r), which is given, 
and the shape function, JU), which is sought. There are 
then disadvantages associated with the use of (3), as it 
stands. Since (3) is equivalent to (1), the existence of 
such a transform pair is made to hinge on the proper
ties of the unknown object function. Further, the search 
for a transform pair satisfying (3) in a table of direct 
transforms is a hit or miss proposition, because it is 
the unknown object function, JU), which is ordered sys
tematically in such a table, while the order of the image 
functions is largely unpredictable; this aspect should 
not be minimized since the more extensive tables l2

,13 

contain -103 transform pairs. 

2. INVERSE LAPLACE AND GAUSSIAN TRANSFORMS 

The difficulties discussed in the preceding paragraph 
are obviated if one introduces the inverses of the Laplace 
and Gaussian tranformations, (1) and (2), denoted form
ally by 

J(t)" L -I[ g(s); t] 

and 

J(t)" g-l[<J;(r); t], 

respectively. Using (3), (4) can be rewritten as 

J(t)" L -1[</J(sli2); I], 

and from (5) and (6), 

g-I[</J(r); t]" L-I[I/J(SI/2); t]. 

(4) 

(5) 

(6) 

(7) 

Thus, the calculation of inverse Gaussian transforms is 
reduced to the evaluation of inverse Laplace transforms. 
Bishop and Somorjai" also suggested use of inverse La
place transforms, but the emphasis in their work is on 
the choice of particular shape functions and the evalua
tion of the corresponding direct transforms as potential
ly useful basis functions, rather than development of a 
systematic procedure for obtaining the shape function 
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corresponding to a given basis function as in the present 
study. With the latter objective in mind we next sum
marize the relevant portions of the theory of inverse La
place transformations, again with emphaSis on existence 
and uniqueness. 

By definition, any function, J(t), for which the (unique) 
Laplace transform g(s) of (1) exists is an inverse La
place transform of g(s). However, not every function 
g(s) possesses such an inverse transform, and condi
tions for the existence of an inverse are therefore of in
terest. The only generally useful representation of the 
inverse Laplace transform is the cOil/plex i/ll1eysion in

tep,Yai (CII), 

c-rib 

f(t)" lim (21Ti)"1 f. elSg(s )ds , 
b 

c-1b 
-~ 

(8) 

where s is the complex variable of integration, and b > 0, 
c, and t, are real numbers. The cn is thus an integral 
along a line parallel to the imaginary axis and intersect
ing the real axis at x" (. The CII converges absolutely 
and also uniformly in t provided: (i) g(s) is an analytic 
function of s of order S-k (I< > 1) in some half-plane, Re(s) 
> y, and is real on the part of the real axis lying in this 
half -plane, and (ii) c > y [which insures that the path of 
integration in (8) lies to the right of all singularities of 
g(s)]. When these conditions are met the indicated limit 
of the integral on the rhs of (8) defines a real-valued 
function of t, !(I), which is independent of the value of c, 
and has the Laplace transform g(s). Further, f(l) is con
tinuous for _co < I < co, vanishes for t s 0, and is O(er t) as 
t - co (Ref. 9, Sec. 63, Theorem 5). 

The preceding conditions on g(s) can be relaxed if f(t) 

is required to be only secliollall\' continuous in the pre
ceding interval. In this case JU) is not unique at its 
points of discontinuity, because its values at such iso
lated points make no contribution to the Laplace integral, 
(1) (see Ref. 9, Sec. 64, or Ref. 14, pp. 140, 141, includ
ing Lerch's theorem). The simplest example of such a 
case is g(s)" s-n, 0< 1l:S 1 which is analytic in the half
plane Re(s) >0, but is not of order S-k there, with I< > 1. 
Nevertheless, the CII, (8), converges for this case (pro
vided c> 0) to yield the inverse transform f{L)" 1"-1 /r(n), 
t > 0, and f(t)" 0, 1<0, which is discontinuous at I" ° (in 
fact, singular there except for II" 1). 

We consider next the inversion of the Gaussian trans
formation, (2). It is clear from (6) that if ~(SI!2) satis
fies the conditions stated for ,.!i(s) following (8), the sub
stitution of ~'(sl/2) for g(s) in (8) yields a function, /(1), 
having <jJ(Y) as its Gaussian transform, as well as the 
other properties listed at the end of the next preceding 
paragraph [as discussed in the final paragraph of this 
section the fact that <jJ(SII2) may be a multiple-valued 
function in the complex s plane does not present a prob
lem]. We have thus obtained necessary and sufficient con
ditions for a given basis function, 4J(r), to have a unique 
and continuous Gaussian inverse or shape function, f(t), 
and have also found an integral formula for this shape 
function. 

Realistic atomic orbitals in the coordinate representa
tion (e.g., STO's, or those determined variationally), are 
of exponential order, O(e-tr ), as 11'I_co, with 1;>0, so 
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that </J(5 112 ) is of order exp(_!:5 1/2 ). Setting 5= 151ei8 , 

5
112 = 151/2 1 (cosie + i sinie), one finds that I </J(5

1/2
) I is of 

order exp(-!: 151/21 cosie) as 151 - "'\ The singularities 
of 4{c; I! 2) include at least a br anch point at 5 = 0, so y 2: 0, 
and cos}fJ>2- ,12 in the half-plane Re(,,»y. Thus, 1(5 1/2

) 

is of order exp[ -~ I (S/2)1 "I J as 1 S 1- oc in the half-plane, 
which is more than sufficient to fulfill the order condi
tion on g(s) stated following (8). Therefore, such basis 
functions can be represented as Gaussian transforms of 
('olllillliOUS shape functions. This is not true of the Gaus
sian function itself, </JCr) = exp(_pr2), for which 1'(5 1/2

) 

= e- Bs
• Proceeding in the same manner one finds that 

11(5 1/ ")1 is now of order exp(-fllsl cosfJ)=exp[-flRe(5)] 
which is not sufficient. This is not surprising since the 
inverse Laplace transform of c-as is the Dirac delta 
function, 0(1 - P), which is a gcneralizedjililclion or 
dislrilJll/ioll. It is perhaps unexpected that a similar con
clusion holds for (lJiI' function which is of C;{lIIssiml order, 
or O[exp(-J3r 2 )J, as I r i _00. 

It will seldom be necessary to actually calculate the 
cn on the rhs of (8), because of the existence of exten
sive tables of inverse Laplace transforms;12.13,lc, we 
therefore discuss only briefly the evaluation of the CII. 
Although the cn can be converted to a real integral 
(Ref. 9, Sec. 62), it is most readily evaluated by the 
methods of contour integration in the complex s plane. 
Since e ts is an entire function of 5, the singular points of 
the integrand of the ClI occur at the positions of the sin
gularities (if any) of g(s), all of which lie in the I eJI half
plane, Re(s) s r, by hypothesis. If the only singularities 
of ,'<;'(s) are a finite number of poles (Case I), the contour of 
integration in (8) may be completed with a circular arc, 
r(R), of radius R = (b 2 + C2)1!2, centered at the origin and 
lying in the left half-plane. The integral along 
r(R) will approach zero as /) (and R) _00, provided 
I g(s)1 is of order Is I-k as 1 s I - 00 in the left half -plane, 
for some I? > 0. In this case, from Cauchy's residue the-
0rem' the limit of the ClI in (8), and therefore the in
verse transform, /(1), equals the sum of the residues of 
e tsg(s) at its poles. This result can be extended to the 
case in which the number of poles is infinite, under ap
propriate conditions (see Ref. 9, Sees. 66 and 67, es
pecially Theorem 10, p. 193). 

The procedure must be modified if Ids) has one or more 
iJrmlcil j)(}illis (Case II). The contour must then be de
formed to exclude the branch points, in order that g(s) 
be single-valued on and within the contour, and analytic 
there except at its poles (if these also exist). The in
tegrals along the deformed segments of the contour do 
not vanish, in general, and must be subtracted from the 
preceding sum of residues (if any) to obtain f(l) (Ref. 9, 
Sec, 68; Ref. 10, Sec, 3.11; Ref15a, pp.599-603). It 
will be seen in Sec. 4 that it is Case II which is applic
able to the calculation of the shape functions for STO's 
in both the coordinate and momentum representations. 

3. RULES FOR MANIPULATION OF INVERSE 
GAUSSIAN TRANSFORMS 

In working with any given type of integral transform it 
is useful to have available rules giving the effect on the 
image function of certain general operations on the ob-
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ject function, or the converse. A few such rules for 
Gaussian transforms are formulated in the present sec
tion. We limit the discussion to the effect on the inverse 
Gaussian transform (or shape function), f(t), of opera
tions on the image (or basis) function, iJi(r), which are 
likely to be of interest in the context set forth in the In
troduction. In view of (7), we expect these rules to be 
related to the corresponding rules for inverse Laplace 
transforms (Ref. 9, Appendix 2; Ref. 16, Secs. 4-9). 

It follows from (7) and the linearity of the inverse La
place transformation, L -I, that the inverse Gaussian 
transformation, ~-I, is also linear, Le., if (ll and az are 
arbitrary constants, 

Y--'[aJ,(r)+ a2~'2(r); I] 

(9) 

provided the two inverses on the rhs exist (throughout 
the present section 0- I[</J(r); I] may also be read as "the 
shape function for ~'(r), with argument l"). Clementi, 
Roothaan, and Yoshimine 17 were able to approximate 
numerical Hartree-Fock orbitals for atoms sufficiently 
closely to give seven-figure accuracy in the total energy 
using linear combinations of -10 STO's. In view of (9), 
the same linear combinations of the shape functions for 
STO's given in the next section will yield equivalent ap
proximations to the shape functions for the Hartree
Fock orbitals, and thus render the Gaussian transform 
method6

, 7, 2 applicable to molecular quantum integrals 
containing Hartree-Fock atomic orbitals. 

For a2 = 0, (9) reduces to the rule for multiplication 
li1' a COilS lanle In the next section we obtain the shape 
functions for 1I11i1OYJllalized STO's in the coordinate and 
momentum representations; multiplication of these 
shape functions by the appropriate normalization con
stants yields the shape functions for normalized STO's. 

A cilallge or scale of l' (or jJ) may occur as a result of 
a change of the units in which these quantities are ex
pressed or, in the quantum-chemistry context, from the 
scaling procedure needed to bring the ratio of kinetic 
and potential energies calculated from an approximate 
molecular wavefunction into agreement with the virial 
tlieorelll. IS The appropriate rule is 

(10) 

where a is any constant. The analogs for Gaussian trans
forms of the two translation theorems for Laplace trans
forms (Ref. 16, ppo 23, 24) do not appear to be of interest 
in the present context, and we omit them. 

The inverse Gaussian transform of aproducl of two func
tions, 4'1 (1') and iJi 2 (r), is evaluable as afinite convolution of 
the inverse transforms of </JI(1') and </Jz(r), Le., (Ref. 16, p. 
28), 

y- -I[iJib')1'2 (1'); I] = J ~ 0 -1[1'1 (1'); 1']0 -I[ </Jz{y); t - t' ]dt' . 

(11) 

The convolution operation is cOll1lJ1utatil'e, so that </J I and 
4'2 may be interchanged on the rhs of (11); it is also as
socialil'e, so that if (11) is extended to a product of 11 

functions the n - 1 convolutions needed may be performed 
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in any order. The complex convolution of two image 
(basis) functions which corresponds to the product of two 
object (shape) functions (Ref. 16, p. 29) seens to be of 
little interest in the present context and is omitted. 

The general formula for the inverse Laplace transform 
of a composite function is of basic importance, as it is 
applicable to numerous special cases, including one of 
particular interest in the present discussion. It is rath
er surprising that this formula is omitted from most 
lists (an exception is Ref. 13, p. 174, No. 56), and the 
writer is not aware of any published derivation of the 
formula. Let g(s) and h(s) be two functions such that in
verse Laplace transforms exist for g(s) as well as the 
composite functions g{h(s)] and exp[ -uk(s)], for all real 
positive u. Substitution of the identity, 

(12) 

for g(s) in (8), and inversion of the order of integrations 
(justified by uniform convergence of the ell), then yields 

L -l{g[h(s)]j t}", J~ L -l[g(s);u]L -l[e- Uh
(S); t]du. (13) 

In view of (7) the corresponding formulas for the inverse 
Gaussian transform of a composite function are 

On setting w(r) '" r in (14a) one also obtains 

(15) 

which shows that the inverse Gaussian transform of zp(r) 
can be expressed in terms of L -l[ zp(s)j t], as well as in 
terms of L -l[zp(Sl/2)j tJ as in (7). Although it will general
ly be more convenient to evaluate q-1[zp(r); t] from (7) 
than from (15), the latter formula will be useful for the 
derivation of general rules covering the differentiation 
and integration of Gaussian transforms, as now dis
cussed. 

The object function corresponding to the nth derivative 
of a Laplace transform is (Ref. 9, p. 47, Theorem 6) 

(16) 

similarly for the integral indicated (Ref. 9, p. 53, Theo
rem 7), 

L -lU: zp(s')ds'j t] = r1L -l[zp(S); tl. (17) 

The Simplicity of these results is a reflection of the 
properties of the kernel, e- st

, of the Laplace transform 
(1), and is lost when the latter is replaced by the ker
nel, exp(-r2t), of the Gaussian transform, (2). How
ever, by using (16) and (17) in combination with (15) and 
(7) the following formulas are obtained for Gaussian 
transforms: 
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q -l[ zp<nl(r); t] 

= (_I)n(41Tt 3)"1 12 J; un+1 exp( _U2 /4t)q-1[ zp(r 2); u ]du, 

(18) 

q-l[j~ zp(r')dr'j t] 

'" (41Tt3)"112 J: exp(_u2/4t)q-1[Iji(r 2 )j ujdu. (19) 

In specific cases it will usually be simpler to evaluate 
the inverse Gaussian transforms on the Ihs of (18) and 
(19) by substitution of zp(n)(r) and J; zp(r')dr', respec
tively, for zp(r) in (7). However, this procedure does 
not yield general formulas involving only inverse Gaus
sian transforms, such as are of interest in this section. 

Finally, we take up the case in which the image func
tion' Iji(r, ~), depends upon a parameter ~ (as is the 
case, for example, with the STO, r n- 1e-CY

), and consider 
differentiation and integration with respect to this pa
rameter. The following formulas are usually valid (al
though the validity of interchanging the order of opera
tions must be established for each case): 

-1 [anzp(r, ~). J -(~) -1. • q am ,t - &~n c; [zp(r, n t], (20) 

0- 1 u: zp(r, ~)d~j t] '" J!y -l[zp(r, ~); t]d~ . (21) 

Equation (20) has an application to the generation of an 
ns STO, n> 1, by n - 1 differentiations of the Is STO, e-cr, 
while (21) is relevant to the Hulthen-type basiS func
tion, 19. 11 

(22) 

which may be regarded as a linear combination of Is 
STO's for which ~ varies continuously over the interval 
[a, bj. 

4. SHAPE FUNCTIONS FOR SLATER-TYPE ORBITALS 

In this section we obtain explicit shape functions for 
the general ns STO in the coordinate and momentum 
representations. It will be convenient to write ZPn(r, ~) 
and CfJn(p, t), respectively, for the STO's in these two 
cases, to indicate their dependence on the parameter 
~ (Le., the orbital exponent in the coordinate represen
tation). For each representation we conSider first the 
case of noninteger n, and then the simplifications which 
occur for 11 a nonnegative integer. Following common 
practice we use ul1normalized STO's [in this connection 
see the paragraph following (9)]. Finally, we discuss 
the extension of the present method to angle-dependent 
STO's. 

A. ns STO's in the coordinate representation 

The usual form of the I1S STO is 

(23) 

where n is restricted to positive integer values. Parr 
and Joy20 suggested a generalization of STO's to positive 
fractional values of n, and integrals involving such or
bitals have been studied by Geller/ 1 Silverstone/2 and 
Allouche. 22a From (6), the shape function correspond
ing to (23) for general n is 

William J. Taylor 55 



                                                                                                                                    

In(t, 1:) = L -1[S(n-1 )/2 exp(_l:s1 12); t] 

= (2n7T )"112 r (n+1) I 2 exp( _1:2 /8t)D n(1: /2112t1/ 2) , 

[Re(1: 2
) >0, Re(s»O] (24) 

Ref. 12, p. 246, No.9; Ref. 13, p. 247, No. 24). Here 
Dn(z) is the parabolic cylinder (or Weber-Hermite) lunc
tion, which is expressible as a confluent hypergeometric 
function, and is an entire function of Z.23 

Equation (24), which has apparently not been given 
previously, is valid for all real and complex values of 
n. However, for n a nonnegative integer, 

Dn(z) = 2-n/2 exp( _Z2 /4)Hn(z/2112) , (25) 

where Hn(z) is the nth Hermite polynomial (not to be con
fused with the alternative form Hen preferred in Refs. 
12 and 13; see Ref. 12, p. 369). Thus, in this case (24) 
reduces to 

In(t, ?;) = (2 n7T 1 12)"1 r(n+1) I 2 exp( _1:2 / 4t)H n(1: /2t1 I 2) 

[n=O, 1,2, ... , Re(1: 2»0, Re(s) >0]. (26) 

SUbstitution of (26) for f(t) in (2) reproduces the Gaussian 
transform of the ns STO, for Il a nonnegative integer, as 
first given by Wright [Ref. 24, Eq. (20); there is a mis
print in this transform in Eq. (66) of the second paper of 
Ref. 6]. The Gaussian transform of the 1s STO was 
given still earlier by Kikuchi. 5 For n = 0, (26) yields 
the shape function for the Os STO, e- cr II', introduced for 
convenience in connection with certain recursion formu
las for matrix elements relative to STO's by Roothaan. 25 

Equation (26) is not valid for I: = 0, except for the parti
cular case n = ° for which it reduces to the shape func
tion' (7T1)-1/z, for the Coulomb potential, 1/1'. 

Finally, we remark that the explicit derivation of (24), 
through evaluation of the complex inversion integral (8), 
provides an example of the previously defined Case II, 
since I/!n(sl12, 1:) has a branch point at s = ° (and no other 
singularities). The evaluation of the ClI for n = 1, to ob
tain the shape function, 11(/,?;), for a 1s STO is discussed 
in Ref. 14, pp. 178-80. As shown there, integration of 
11 (1,1:) with respect to 1:, and use of (21), yields 10(1,1;). 
Similarly, differentiation of II (t, ?;) n times with respect 
to 1;, and use of (20), yields (_1)nj~+1(1, 1;), n= 1, 2, .... 

B. ns STO's in the momentum representation 

The three-dimensional complex exponential Fourier 
transform of the general (unnormalized) STO, 

(27) 

where P: m I (x) is an associated Legendre function, and n 
may be a noninteger, has been calculated by Silverstone 
[ see Ref. 22, Eqs. (12) and (13)]. In order to convert 
Silverstone's results to the accepted form of the momen
tum amplitude function/fl one must replace his wave
number, k, by p/II, and multiply the complex conjugate 
of the resulting function by (27TPi)-3 Iz. 27 However, we as
sume atomic units, so that II = 1, k = p, and the preced
ing factor becomes (271)"312. On also setting 1 = m = 0, we 
obtain for the momentum amplitude function correspond
ing to the ns STO, (23), 
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'Pn(p, n = (271 }"11 2r(n + 1)(i/p)[ (I: + ip )"n-1 _ (I: _ ip )"n-1] . 

(28) 
From (2), (5), (9), and (7), 'Pn(p,l:) may be represented 
as a Gaussian transform, 

(29) 

with shape function [this is another example of Case II, 
since 'Pn(sl 12,1:) has a branch point at s = 0, at least] 

In(l, 1:)= (27T)"'/2r(n+ 1){i-nC 1[(S1/2 _il:)"n-1/s1/2j t] 

+ i n L -I[ (sl 12 + ii:)"n-1 / Sl 12; t] }. (30) 

Equation (30) may be reduced as follows (see Ref. 13, 
p. 212, No. 54, and Ref. 23, p. 117, Eq. 6): 

In(l, 1:) = 7T-1r(n+ 1)(2t)n /2 exp(_1:2t/2) 

Xli nD_n_1 (i21 12i;t liZ) + i -nD_n_1 (_i21 121: t 1 IZ)] 

= (2/7T)1/2(2t) nlz exp( -1: 2t/2)Dn(21 121; [1 I 2) , 

[Re(n»-2, Re(s»O]. (31) 

Further, if n is a nonnegative integer, substitution of 
(25) yields 

In(t, 1:) = (2/7T)1I2tn/2 exp(_1;2t)Hn(I:L1/2 ), 

(Il = 0, 1, 2, ... ) . (32) 

C. Angle-dependent Slater-type orbitals 

As our final topic we discuss the extension of the pre
ceding treatment to the radial part of the general angle
dependent STO in the momentum representation. We 
again assume this orbital has the form (27) in the coor
dinate representation; in this case the radial part, 
r"-l e-Cr, is independent of the quantum numbers land m, 
so that the corresponding shape function remains of the 
form (24), or for integer n, (26). On the other hand, the 
three-dimensional Fourier transform of (27), or general 
STO in the momentum representation, has a "radial" part, 

'Pn,(p, 1;) = (27T)"1/2r(n -l + 1)(ip)Z (p-I :pr (i/p) 

(33) 

which is dependent on 1 (but not on /JI)j the complete 
angle-dependent orbital in momentum space has the form 

'PnZm(P, 0, <Pj 1:) = 'PnZ(p, I:)plml (cos0)eim<l> , (34) 

where 0 and <P are spherical polar angles in momentum 
space [Ref. 22, Eqs. (12) and (13)]. 

Generalizing (30), the shape function corresponding to 
(33) is 

Inz(i,1;) 

= (27T)"1/2(2i)zr(n -l + 1)L -1 [S!l2( :s) 1 s-1/2 

X{il-n(sI/2 _i1;)I-n-1+i"-I(sI/2+i?;)l-n- I}; IJ 

= 2(n+l+1 ) I 2i 17T-1/z L -1 {s l/ 2 (:s) 1 L [u (n-O 12 exp( _1;2u/2) 

xD (21/2,.U,/2). s]) 
n .. l b " f 

= 2(n+l+l)/2rl7T-1/2L -1{SI/2L[u(n+!)/Zexp(_1;2u /2) 

xD (21/2,.1£1/Z ). SJ· t} 
n-l b '" 

(35) 
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where we have used Ref. 13. p. 212. No. 54; Ref. 23. p. 
117. Eq. (6); and (16). in that order. 

For l = 0 the expression on the final line of (35) reduces 
to fn(t. ~) of (31). or to (32) for n a nonnegative integer. 
The further reduction of (35) when l > 0 proceeds some
what differently for the cases of even and odd integer l. 
For leven, sl/2 is a positive integer power of s. and by 
Theorem 8. p. 184 of Ref. 9, (35) reduces to the form 

fn,(t, ~)= (_1),/22(n+,+1)/21T-1/2t:t) 1/2 

X [[(n+/)/2 exp(_1;2t/2)Dn_I(21/21;t1/2)]. 

(l = 2, 4,6, ... ) (36a) 

= (_1)'/2(2/1T)1/221~ :J 1/2 

x [t(n+/) 1 2 exp( -1;2t)Hn_1 (I; {112)] 

(n=0.1.2 •...• l=2.4.6 ••.. ). (36b) 

On the other hand. for l odd. sl/2 is a positive half-in
teger power of s which we rewrite as s-1/2 S (I+1)/2 [the 
alternative decomposition. S,/2S(/-lll2. is not useful be
cause L -1(S1/2) does not exist]. Then from Theorem 3. 
p. 37 of Ref. 9. the final line of (35) (exclusive of con
stant factors) reduces to the Laplace convolution of 
L -1(S-1/2)= (1Tt)" 1 12 and L -1{s(/+1l/2L[.F(u); s]; t}. where} (u) 
is the function within the square brackets in the final line 
of (35), But by the first theorem referred to in this pa
ragraph the latter inverse transform equals the deriva
tive F(l/2+112)(t). Hence 

fn,(t. 1;) = i(_1)(1+1) /2 2(n+I+1J/21T-1 

X f: [F(1/2+1/2)(U)/(t - u)1/2]du. 

(l=1.3.5 •••• ), 

where 

F (1/2+1/2) (t) 

(
a )(/+1 )/2 

= 8t [t(n+IJ/2 exp(_1;2t/2)Dn_I(21/2tt1/2)]. 

or for n a nonnegative integer, 

F (/ 12+1/2) (t) 

(a ) (/+1J/2 
= 2(I-n)/2 \at [t(n+/)/2 exp(-1;2t)Hn_I(1;t1/2)]. 

(n = O. 1. 2 •... ) . 

5. CONCLUDING REMARKS 

(37) 

(38a) 

(38b) 

Among the principal objectives of the present article 
have been the determination of existence and uniqueness 
conditions for inverse Gaussian transforms. and devel
opment of a systematic procedure for their calculation 
when these conditions are fulfilled (sec. 2), Basic rules 
for the manipulation of inverse Gaussian transforms 
have also been presented (Sec. 3). Finally, we have ap
plied these methods to obtain the inverse Gaussian 
transforms (or shape functions) for Slater-type orbitals. 
for noninteger and integer n. in both the coordinate and 
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momentum representations (Sec. 4). The last results 
are in large part new. and are certainly of some intrin
sic interest in view of the important role played by 
STO's in quantum chemistry. It remains to be seen 
whether they will be useful in extending previous Gaus
sian transform methods6 ,7 for the evaluation of multi
center quantum integrals over STO·s. However. the de
rivation of these generalized shape functions for STO's 
must obviously precede, and may stimulate. investiga
tions of their usefulness. 
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Within the framework of axiomatic field theory, the general case of a translationally noncovariant 
conserved local current is investigated. It is shown that the associated symmetry does not change the 
particle number nor the mass or the momentum of one-particle states. There is an integer N such that the 
N -fold commutators of the generator with the momentum as well as with the mass operator vanish. 

1. INTRODUCTION 

There is a series of investigations in the literature 
concerning the interplay of continuous symmetry trans
formations in general with the symmetries of the Poin
care group. Important contributions are given, e.g., in 
Refs. 1-3. The first two have the character of no-go 
theorems and lead to the result that there are no non
trivial combinations of those symmetries. In particular 
it is shown that the symmetries do not change the mass 
of one-particle states or their momentum. In Ref. 3 
these results are used (along with other results of Ref. 
2) to investigate the situation if supersymmetries are 
included. 

In Ref. 1, group- theoretic assumptions and methods 
are used to obtain the results whereas Ref. 2 heavily re
lies on assumptions concerning the scattering matrix. 
In the present work, we investigate the situation in a 
pure field-theoretic framework USing the Wightman 
formulation and the assumption that the symmetries in 
question can be obtained from conserved local currents. 

The case of currents transforming covariantly under 
translations is completely investigated if there is a 
mass gap and the theory is asymptotically complete, 
see, e.g., Refs. 4 and 5. (The mass gap assumption in 
this case excludes spontaneous symmetry breaking.) 
The associated symmetry generators are even known to 
be self-adjoint. 6 There are also results for the case of 
nontranslationally covariant currents of a specific 
structure as expected for the generators of the Poincare 
and conformal group, see, e.g., Refs. 7-10. 

If one is interested in the basic question whether there 
exist symmetry transformations changing mass or mo
mentum, the class of currents just mentioned is obvi
ously too restrictive. We therefore consider, in the fol
lowing, the general case of translationally noncovariant 
conserved local currents. In addition to the usual as
sumptions of the Wightman framework we need: (i) ex
istence of a mass gap (for the construction of the gener
ator); (ii) isolated one-particle hyperboloids of finite 
multiplicity (for the construction of asymptotic states); 
(iii) invariance of the vacuum [in general not implied by 
(i), compare Sec. 3]. 

Furthermore, we assume, in Sec. 7, asymptotic com
pleteness and in Sec. 8 we assume the existence of a 

local interpolating field for every particle. We then 
prove in Sec. 8 that also under these assumptions mass 
and momentum of one-particle states are not changed 
by the symmetry. In addition, higher multiple commu
tators of the symmetry generator with the momentum 
and mass operator have to vanish. 

Sections 2- 5 contain the discussion of the relation be
tween the current and the generator. In Secs. 6 and 7 
we give a natural definition of the generator on asymp
totic states which is consistent with the usual definition 
in case the current is covariant. We recover the result 
(known in the translationally covariant case) that the 
matrix elements of the generator between different num
bers of particles vanish. This then leads to the results 
in Sec. 8. The questions whether the generator is self
adjoint and commutes with the scattering matrix will be 
discussed in a subsequent paper. 

2. ASSUMPTIONS ON THE CURRENTS 

We consider a quantum field theory in the Wightman 
frameworkll given by a finite set of fields {¢i(x)}. By 
PSL we denote the polynomial algebra spanned by the 
¢ i (f) with f E D(R4) (test functions on R4 with compact 
support), by 0 the vacuum state, by Do the domain 
PSLO, by D the common dense domain of the elements 
of PSL ' and by U(a), aE R4

, the unitary representation 
of the translations. 

Besides the covariant fields above, we consider an 
operator- valued tempered distribution k(x) commuting 
with itself and with the elements of PSL for space like 
separation, fulfilling k(f)DocD and (k(g»*DocD, 
f,gED(R4

), * denotes the adjoint operator. However, 
k(x) need not be covariant under translations. The 
translates k(x, a) : = U(a)k(x) U"l(a) have the following 
properties: 

Lemma 2.1.: Let g E D(R4
), cp c. Do' Then 

(i) k(g,a)cp is strongly continuous in a; 

(ii) IIk(g, a)cpll is polynomially bounded as / a /- 00 

( / a /2 : = / aO /2 + / a /2). 

Proof of (ii): cp c. Do is a finite sum of vectors 
¢/

l 
(f/l)'" ¢In(fI)O. Hence 
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Ilk(g, a)epll2 = (U+(a)ep I k*(g)k(g)U-1(a)ep) 

=~(U(-a)cfJI (fl ),··1 
1 1 

x k*(g)k(g)U(-a)cfJI,(fI')'" n) 
1 1 

'" const~ Ilfl1 .a Il r1 •s1 .. '1lgllr,s 

X IIgllr slltl' allr' s' ... , 
, l' l' 1 

where II ·ll rs denotes the r, s norm on 511 which, for the 
translated functionfl, a is bounded by a polynomial in the 
components of a. 

Proof of (i): 

(k(g, a) - k(g, a'»ep 

= [U(a)k(g)U-1(a) _ U(a')k(g)U-1(a')]ep 

= [U(a) - U(a') ]k(g)U-1(a)ep 

+ U(a')k(g)[U-1(a) _ U-1(a')]ep. 

Keep a fixed and let a' - a. The first term vanishes 
strongly. The norm of the second can be estimated by 

where the second factor is bounded as in (ii).D 

By the regular transformation of variables (x, a) 

- (x+a=y,x) we can rewrite 

k (x , a) = j (x + a, x) , 

where j transforms covariantly under translations with 
respect to the first variable while the second remains 
unchanged. 

We now take four such nontranslationally covariant 
fields jI' (y, x), !l = 0,1,2,3, as components of a current 
density for which we assume 

(i) j" (y, x) is Hermitian; 

(ii) j" (y, x) is local and relatively local in y for every 
x· , 

a 
(iii) o"j"(y,Y):= oy"j"(y,y)=O. 

By translation one gets from (iii) o"j"(y+a,Y)=O for 
anya. 

3. DEFINITION AND SOME PROPERTIES OF 
THE GENERATOR 

A conserved current defines an infinitesimal symme
try transformation via a generator Q. Accordingly, we 
define a linear operator Q(a) by 

Q(a)f2: = 0, 

Q(a)Af2:=lim[Q r(a),A]f2, AE PSL 
r-~ 

with 

Qr(a): = J jO(y + a,y)3r(y)1)(yO)d4y , 

3r(Y)=3(1~1), 3EU(R
1
), 3(S)={~' 

, 

(3.1) 

(3.2) 

for 0", S '" 1 , 

for S ~ 2 , 
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Q(a) is well defined since f2 is separating for localoper
ators. As in the translationally covariant case, Q(a) 
does not depend on the unspecified details of 3 and 1). 

We now explicitly assume invariance of the vacuum 
under the symmetry transformations [not to be confused 
with (3.1)]: 

lim(f2 I[Qr(a),A]n)=O for all AE:: PSL' (3.3) 
r-~ 

[It would be sufficient to assume (3.3) for one vector a 
only.] In case of a nontranslationally covariant current, 
(3.3) is not implied by the mass gap assumption. 12 

(3.3) implies that Q(a) is symmetric and hence clos
able (for A, B E PSL ' 

(Af2 I QBf2) - (QAf2IBf2) = lim (f21 [Q"A*B]f2) = 0 
r-~ 

see, e.g., Ref. 6). 

Since the infinitesimal symmetry tranformation and Q 

are not affected by adding a c-number to j", we may re
definej" by j'''(y,x)=j''(y,x)- (f2Ij"(y,x)n) so that 
(f2Jj'''(y,x)n)=O and o"j'" =0, just as in the trans la
tionally covariant case. Henceforth we always assume 
that this redefinition has been done. 

Lemma 3.1.: Let Q(a) denote the closure of Q(a) and 
let 30 (a) denote its domain. Then 

30 (a)=:l{A1(f1)" .An(fn)f2}ttS<R4 ), Aj_ PSL' nc l' 

[A(x): = U(x)AU-1(x)]. 

Proof: The norm of 

QA1(X1) .. ·An(xn)f2 

= lim t A 1(xt> ... [Q"AI(XI )]" ·An(xn)f2 
T __ OO i=l 

(3.4) 

is polynomially bounded in Xl' ... ,xn : Consider a typi
cal term 

(3.5) 

where g I, XI denotes the test function g IE u(R4
) shifted by 

x I' Because of locality, the limit in (3.5) is attained al
ready for finite r, r~ro (suppgl,SUpP1)+ IXII. The 
norm of (3.5) is bounded by Schwartz norms 

2· constllg1,x11111,sl " ·113r ® 1)111,s' .. II iim,xm ll lmosm • 

The lliil,xlII11,sl are bounded by polynomials in XI and 

113r ® 1)11 I, s '" const(l + r l
-

S
) • 

Since we may choose r=ro+ lXII, boundedness follows. 

The scalar product of (3.4) with any vector in Do is 
continuous, weak continuity follows and we may inte
grate. For step functions XI(x j ) we get 

J X1(X1) ... Xn(xn)QA1(x1) .. ·An(xn)f2dxI .. ·dxn 

= QAI (Xl) ... An(Xn)f2 . 

(3.6) 

11 E S(R4
) can be approximated in the supremum norm by 

sequences of step functions XI,v, uniformly in XI' The 
induced sequence of the left- hand side of (3.6) con
verges weakly. AI(XI,V)" ·An (Xn,v n)f2 converges to 
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Al(fl)" .An(fn)n. Now (5.12), p. 165 of Ref. 13 implies 
the statement. D 

In the following, we write Q instead of Q. 

We note that, as in the translationally covariant case, 
[Q(a), ¢j(x)] is again local with respect to x, however it 
is not translationally covariant in x. 

4. MATRIX ELEMENTS OF Q 

We next discuss the convergence of matrix elements 
of Q r as r- 00 under the assumptions of the existence of 
a mass gap and the invariance of the vacuum (3.3). By 
Pl we denote the polynomial algebra generated by the 
A(j) with A E PSL ' fE 5(R4). 

Lemma 4.1: For all BE Pl' limr_~(n I Qr(a)Bn) = 0. 

For the proof we need the following lemma: 

Lemma 4.2: Let L > ° and 0L: = {x: Ixl + jxol <L}, and 
denote by PSL(OL) the subalgebra of PSL spanned by the 
¢j(f),fEu(R4), supp!COL • LetB be quasilocal, i.e., 
to every L > ° there is a decomposition 

B=BL+B-BL 

withBLE PSL(OL) andLNI/(B-BL)nll-O, LNI/(B*-Bt)nll -° for L - 00 and any N EN. Then 

lim (n I [QAa), B]n)= 0. 
r-~ 

Proof: (n I [Qr(a), B]n)= (n I [Qr(a), B L]+ (n, [Qr(a)(B 
-EL)]n). The first term is independent of r for r ~ L 
+ d(suppry) where d(suppry) denotes the diameter of 
suppry, and vanishes by (3.3) for L .; r - d. The second 
is bounded by 

which tends to zero for the choice L = r - d since 
I/Qr(a)nll is polynomially bounded in Y. D 

Proof of Lemma 4.1: It suffices to consider Hermi
tian B. Then by Lemma 4.2 

0= lim (n I [Qr(a), BJn)= 2i lim Im(n' Qr(a)Bn). 
T-OO T_OO 

(4.1) 

Because of the gap there existsl4 a B', Hermitian and 
quasilocal, such that 

Bn- (nIBn)=poB'n 

with the infinitesimal generator of time translations PO. 
Hence [remember (n/Qr(a)n)=O!] 

(n / Qr(a)Bn)= (n / Qr(a)POB'n) 

= -(n / [PO, Qr(a)]B'n) = -i(n IQ~(a)B'n), 

where Q;(a) belongs to the current (ajaaO)j"(y +a,y). 
Therefore, 

Im(n / Q(a)Bn) = - Re(n / Q~(a)B'n) 

and by (4.1) 

lim Re(n / Q~(a)B'n)= 0. 
r-~ 

On the other hand, the symmetry induced by Q~(a) also 
leaves the vacuum invariant [because this is the case 
for Qr(a) and all a]. Hence (4.1) applies to Q;(a) and B' 
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and yields 

lim Im(n' Q~(a)B'n)= 0. 
r-~ 

Thus, 

lim (n, Q~(a)B'n)= 0= lim (n I Qr(a)Bn). D 
T_OO T_OO 

An important consequence is 

Theorem 4.3: Let B, B' E Pl' Then 

lim (Bn / Qr(a)B'n) = (Bn I Q(a)B'n). 
r-~ 

Proof: By Lemma 3.1 we have 

(Bn I Q(a)B'n) = lim (Bn' [Qr(a) ,B']n) 
r-~ 

= lim «Bn / Qr(a)B'n) - (Bn /B'Qr(a)n». 
r-~ 

The last term vanishes by Lemma 4.2. D 

5. RELATED CURRENT DENSITIES 

For the next section it will be useful to consider the 
following objects: The Fourier transform 

jl-'(y,P):= (2~)2 f e- IPy(y,x)d4x 

(which, of course, needs smearing in y and P) is a co
variant field with parameter p, 

U(a)jl-' (y ,P) U-l(a) = JI-' (y + a,p) . 

JI-' (y , p) is not conserved, 

a "'I-' ) _ . "'I-' ( ) ayl-'J (y,P --zPI-'J y,p. 

However, the translationally noncovariant density 

jl-' (y ,p) : = ejP'jl-' (y ,p) 

is conserved, and f jl-'(Y,P)j(P)d4p= f j"(y,y+x)f(x)d4x, 
f E S(R4), generates the same symmetry transformation 
as 

with the generator 

Qf= f Q(x)f(-x)d4x. 

In the following, it will sometimes be convenient to 
use Qf instead of Q(a). [We will also use Qf(y): 
= U(Y)QfU-l(y).] Then we shall consider the following 
instead of Theorem 4.3. 

Theorem 5.1: Let B,B'E Pl' Then 

lim (Bn, Q~B'n) = (Bn' QfB'n) 
r-~ 

with 

Q~ : = f jOey, y + x)f(x)Jr( y)ry(yO)d4xd4y . 

Proof: It is sufficient to replace everywhere the local 
current denSity j" (y + a, y) by the local current denSity 
f j" (y ,Y + x)f(x)d4x . D 

Now, Q(a) or Qf resp. are defined on strictly local and 
some quasilocal states including one-particle asymptot
ic states. In view of Theorem 4.3 or Theorem 5.1 resp. 
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we give in the next sections a natural extension of Qf to 
multiparticle asymptotic states. 

6. ASYMPTOTIC ESTIMATES 

To get Q(a) on asymptotic multiparticle states one has 
to apply an asymptotic condition. For this, we slightly 
generalize the Haag- Ruelle construction1S-

17 to include 
a field with an additional parameter and nontransla
tionally covariant x dependence, respectively. (If the 
noncovariance results simply from multiplying a 
Wightman field by a c-number function this generaliza
tion has already been considered .18) 

Lemma 6.1: LetfED(R4
), 7]:=:D(RI

), lEN, BjE Pl' 
Then there exists mEN such that for all N EN the trun
cated vacuum expectation value 

W(al' ... ,al+n;y ,p) : 

= WI (al )· •• B l(a$O( Y ,p)B 1+1 (a l .. l ) ••• B I+n(a l +n) T 

fulfills 

I I W(a1 , ••• ,a l +,,; Y ,p)e jPY!( P) 7]( Y O)d4Pd4y I 

with a number C I, n, m, N not depending on a1, ... ,a". 

Proof: According to one of the standard results of the 
Haag- Ruelle theory, one has for 7] E D (Rl) that 

I W(a»" .. ,al+n;Y ,p)!(P}7J(yO)dyOd4p 

is strongly decreasing in the difference variables 

and a test function from 5 in these variables. We now 
keep supp! and sUpP7] fixed. Then outside suppf, sUpP7] 
we may put W= 0. The so changed W is in O~ with re
spect to the variables 

and has a representation as a finite sum19 

where lOll. are continuous, strongly decreasing functions 
and D~ is a differential monomial in p of degree Iv I (v 
is a multi- index). I Wf( P )dp is a continuous function in 
y; hence, ! may be replaced by eiPYf(p) and 

I WeiPY!(p)7](yO)d4yd4p 

=it I wlI..'-l)11I.1 [D~eiPYf(p) ]1)(yO)d4yd4p. 

For yO E sUpP7] and p E supp! one has an estima te 

ID~eiPY!(p)1 ""C,(1+lyI2)11I.1 

leading for all MEN to 

I WeiPY!(p}7J(yO)d4yd4p I 

""C Jd3Y(1+ lyl2)11I.1 1 ... 
M (1 + I a

l 
_ ~ 12)M 

1 1 
X"7(1'-+""7I-a-I_-y""7I"'2)""lTM (1 + I y _ a

l
+

1 
12)M •••. 

The integral over y can be estimated as 
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(6.1) 

with a l +1 - a l = a 

""const(l+ I aI12)1<:llal-2M+3+211i.1 

for I a I ~ 1. This implies the lemma. 0 

An immediate consequence is 

Corollary 6.2: Let!ED(R4
), 7]Eu(RI

), I E:t\, Bi E Pl' 
Then there exist m, m I E ~ such that for all N EN the 
truncated vacuum expectation value 

Wt(a" ... ,al+n;y,p): 

= (B1 (al' t)· .. B I(a l , t)JoCv,P)B 1+1 (a l +1, t)· .. B I+n(a l +n , t) T 

fulfills 

I I Wt(a" . .. ,al+n;y,p)eiPY!(p)7](yO)d4Pd4y I 

with a number C I, m, m',n, N not depending on al" .. a l +n, t. 

Proof: Translational covariance and 

a,'[J"(Y,P)e iPY ]= ° 
yield for the left- hand side 

I (B1(al'0) " .BI(al,O)]O(y,p)eiPYBI+l(al+uO) ... )T 

X e ipOtf( p )7]( vO)d4Pd4y . 

Taking into account the additional t dependence of (6.1), 
one gets the result. [J 

For the construction of scattering states one needs 
the following standard results on solutions of Klein
Gordon equations: 

Lemma 6.3: Let 

If' v d3
p f(x, t) = (21T)3! 2 exp[ -Z(Wpt - px)]! (p) 2wp , 

jES(R3), Wp=(p2+m2)1I2, m >0. 

(i) Define the velocity v:=p/wp , L:= {V(p):PE suppj} 
and let U be any open set containing L. Then 

I!(vt,t) I ""A ·(1+ Itl)"3/2 for VE U, (6.2) 

If(vt,t) I ""AN(l+ Ivl)"N(l+ Itl)"N forv¢U, (6.3) 

with constants A, A N not depending on v. 

(ii) For any polynomial P n of degree n in x, 

I Ipn(x)!(x,t)ld3x""C(1+ Itl)3/2+n (6.4) 

with a constant C. 

Proof: (i) and (ii) for P= const are due to Ruelle.20 

By rewriting the factor Pn(x) in p-space as derivatives 
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and applying partial integration (ii) is reduced to the 
case P = const. 0 

Lemma 6.4: Letf;, i= 1,2 be as in Lemma 6.3 with 
disjoint support in velocity space, [EN and N>l + %. 
Then there is a C I,N such that 

J If1(a1,t)llf2(a2,t)II3.:?121 d3 d3 
(1 + I a1 _ 3.:? 12)N a1 3.:? 

,,-: C I, N(1 + 1 t 1 )3+21-2N . (6.5) 

Proof: The left-hand side can be written as 

1 t 1
6+21 J If1 (v1t, t) I 1/2 (v2t ,t) I I v2 121 

d3 d3 
(1+t2Iv1-V212)N v 1 v2 • 

Denote by U;, i = 1,2 two disjoint open sets containing 
.0;, respectively. Splitting the integrals one gets 

(i) I t 1
6

+
21 f V2.r U2'" "-:C L2 (1+ ItltL2 

xf -"" d3 If1(a1,t)II3.:?1 21 
u-a1 a2 (1 I 1 2)N' + a1 - a2 

The 3.:? integration leads to a polynomial in a1 and (6.4) 
implies a bound of the form (6.5), 

(ii) I t 1
6
+
21 f V2' U2'" "-:C L (1+ ItltL1 

1 

xJ ~ d3 1/2 (3.:?,l) I 13.:? 121 
a1 3.:? (1 + I a1 _ 3.:? 12)N . 

Integrating over a1 and applying (6.4) again implies the 
bound. 

7. Q ON SCATTERING STATES 

A first step for the definition of Q on scattering states 
is 

Lemma 7.1: Let Iv be smooth solutions of Klein
Gordon equations with mass m > 0 as in Sec. 6 and with 
pairwise disjoint support in velocity space, and 

B t, t = f Bv(a, t)/(a, t)d3a. Bv E Pl' 

Let [ >- 2 or n >- 2. Then for all N EN there is a C N such 
that for IE 5(R4

) 

Proof: Assume l >- 2. Then 

1 f (B1 (al't) .. 'BI(al,t)eiP~.J°CV,P)BI+1(a'+1,t) ... )T 

l+n l.n 

X I( p)1](Y O
) II Iv(a v, t) II d3a vd4pd4y 1 

v=1 11=1 

I+n 
X II Ifv(av , t)1 II d3 av 

I/=l v 

by Corollary 6.2 withM>m+%. In case [=2, the left-
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hand side of the above equation equals 

C (1 1 t 1 )m' f (1 + 13.:? 12)m If1 (a1) I If2 (3.:?) I 
2,m,m',n,M + (1+lal-3.:?12)M 

x ~a1~3.:? II f I/v(a, t) 1 d3a 
v"3 

which yields the statement by Lemmas 6.4 and 6.3. In 
case [ > 2, the above equals 

x J (1 + 1 a,12)m If,(a" t) 1 d 3a, x II f 1 f)a, t) Id 3a . 
",;!!o3 

v # , 

Again the result follows by the same lemmas. '_l 

To get proper scattering states, we adopt the follow
ing normalization convention: The two-point function 
can be written as 

(B~v,t n IB~" tn) 

for B v, Bv' such that only one-particle states of mass q2 
=m~=m~, contribute. By a suitable choice of the Bv one 
can achieve that 

(Bv n 1 dEC q)Bv.n) = l5(q2 - m~)l5w,(iv( q)d 4q 

with an infinitely often differentiable (iv( q) > 0 for almost 
all q.17,21 

We now put 

iv(q): = (27Tt 3/:fv(q)V<rv(q) • 

Then 

(B~,t n IB:;:tn) = I5 w ' J J(p),g(p) 2(P2::;'2)1/ 2 

In this notation, a result of the Haag-Ruelle theory is 

Here, the left-hand side denotes the outgoing or incom
ing free n-particle state characterized by quantum num
bers Vi' masses niv' and wavefunctionsjj • It is as-' 
sumed that the J; ha~e compact support in p and pair
wise disjoint support in velocity space. The limit in 
(7.1) is then attained faster than any inverse power in 
t. 16,17 

The subsets D~~t of states of the form (7.1) are dense 
in the Hilbert spaces of asymptotic configurations. 

Theorem 7.2: Consider two states of the form (7.1). 
Then 

lim (Bl 1,t ••• Bliot n IQI B 1I1,t • •• Bllm,tn ) 
VI III I.ll tL m t--->-:t 00 

out .... ;." out. out 

= f 6 (cp~~ ••• v,(it> ... ,/,) la~~ (q)a~;(q/) 
;, k 

out 
X (nln (g- ••• gO » 

"f' J-L
1 
••• I-Lm 1 m 
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out out 
Here, a~n (q), a~n ,. (q) denote the usual annihilation and 
creation operators with commutation relations 

out out 
[a~n (q),a~: ,. (q')] =2(q2+m;)1/2o" vo3(q_q'). 

Proof: On the left-hand side we have 

x i(p )r](yO)d 4pd 4y 

since the last integral is absolutely convergent by, e.g., 
Lemma 7.1. 

We now follow Araki and Haag. By rewriting the inte
grand in terms of truncated functions, we get four types 
of expressions: 

(i) <jO)T{~II< •• ·)T}, 

(ii) (JOB~:,t)T'{~II<'" )T}, 

(iii) < (B~~' t)*j ° B!Z' t) T { ••• } , 

(iv) «B~:,t)* ••• (Bt:,t)*jo B:;,t • •• B!l,t){ • •• } , 

with at least two B's either before or behind )0. (i) and 
(ii) do not contribute by the normalization of j" and 
Lemma 4.1. The contribution of (iv) vanishes in the 
limit t - ± 00 by Lemma 7.1. Consider the contribution 
of (iii). The first factor is time independent and gives 

01Jt out 

«B~:'t)*Q'B:!,t)T=(a~~" (j1)nIQ'a~~ '" (gk)n) 

Its coefficient { ••• } converges to 
out A. A. A. A. 

(<p~~ ••• VI _lvl +1' •• V, (f1' •• ''/1 -ufl + U ••• '/,) 

out A. A A A. 

X min ••• Jl Jl ••• Jl (f g g ••• g» 
't'tLl k-l k+l m ~1'···' k-l' k+l m 

out out A. A 

X a~: (g k)<p~n1' •• "m (gu ... ,g m» 
(For the states considered the test functions have non
overlapping support.) ~:: 

Assume now asymptotic completeness. 

Corollary 7.3: Qf maps one-particle states into one
particle states. 

Proof: Consider 

(BIl,t • •• BfhtnlQ' Bc",tn) 
Vl VI ~ • 

The one-particle state B!,tn is independent of t and lies 
in the domain of Q' (Lemma 3.1). By Theorem 7.2, the 
matrix element converges to zero for t - ± 00 if l> 1. 
Since the states on the left are dense, the statement 
follows. 

Theorem 7.2 leads to a definition of Q' as quadratic 
forms on the Hilbert spaces of asymptotic n-particle 
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states which extend the action of Qf on one-particle 
states. On their domains they coincide with the forms 
of the formal operators 

out out 

~~t = f t,; Qv ~(q, q')( a~n (q» *a~n (q') 

d 3q d 3q' 
x 2(q2+m~)172 2(ql2+m~)172 (7.2) 

where the kernel 

(7.3) 

is the same and is fixed by the action of Q on one-par
ticle states. In the following Q~ stands for either Q{,ut 
or Q{n. The form domain of Q~x includes 

fjex:={a~:"'(j) ••• a~:"'(jn)n}fiE5!1h,nEo:->' 

Obviously, Q~x commutes with the corresponding par
ticle number operator. For Q~x(Y)= U(Y)Q~P-1(y) this 
leads to 

Lemma 7.4: Let A E P SL and denote by A OX(x) the in
coming or outgoing field belonging to A(x). Then, in the 
sense pf matrix elements between scattering states 
from Dex 

Proof~ A ex(x) is defined for Hermitian A as an opera
tor on Dex by 

Aex(x) leaves bex invariant. Therefore 

x (at (q)n/ Qf(y + x)a~(q')n) {[ at (q)a" (q'), a:(p)] 

x (a:(p)n IA(x)n) + [at(q)a,,(q'), ap(p)] 

x A (x)n la:(p)n)} 

d 3 d 3 , 

= i L f 2( )~72 2( )~72 (a~(q)n I Qf(y + x) a~(q')n) 
v, " 

x {a~(q)(a~(q')nIA(x)n) 

-a,,(q')(A(x)nlat(q)n)} . 

By Corollary 7.3 this is equal to 

d 3 q' 
- ~ ~(A(x)nlQ'(y+x)at(q')n)a,,(q') 

= f= f 2f;~72 (a~( q)n Ii [Qf(y), A] (x)n) a~( q) + h.c. 

=i[Q'(y),A]ex(x) .i~ 
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8. INVARIANCE OF THE PARTICLE MASS UNDER THE 

SYMMETRY 

Up to now, we only used the fact that asymptotic one
particle states can be reached by polynomials in the 
smeared fields. For the following, we assume the 
existence of an interpolating Wightman field ¢v(x) for 
every asymptotic particle with quantum number II. We 
may assume that the ¢v are Hermitian fields. 

Lemma 8.1: 

[Q I( Y), ¢ v(z) ]ex(x) =~ P~~Z(ox)¢~x(z + x) 

P~~Z(o,) : = 2~',/(axl + A~~Z(ax)o~. 

2~~z, A~~z are polynomials in the spatial derivatives ax' 
Both sides are meant as form-valued tempered distri
butions in z , x , y on the domain D ex X D ex' 

(The additional y dependence will later be convenient 
in Jacobi identities.) 

Proof: (i) Assume first that all asymptotic fields are 
scalar. [Q I(y), ¢ v (z) ]ex(x) is localized at z + x. 

Fv" : = [[Q 'ev), ¢v(z )]ex(x), ¢~x(u)] 

depends for fixed y as a c- number only on x - u, z, ful
fills a Klein- Gordon equation of mass m" in u, and van
ishes for z + x - u space like by locality. (For the latter 
we have used the fact that transition to asymptotic 
fields preserves the local structure.22

,23) 

F considered as a generalized function of ~ = z + x - u, z 
fulfills a Klein-Gordon equation in~. Hence it has an 
initial value representation 

Fv" (~, z) = f {Fv,,(~', z)oo6.m" (~ -~') 

+ 00 F v " (~', z )6.m (~_ ~')}d3l;' , 
" 

where the initial values have support in ~' = 0 and are 
therefore finite linear combinations of derivatives of 0 
functions, 

Fv" (L z) = i (2 v" (a e) + A V" (a e) a eo)6.m" (~) 

=~pv",(a,)[¢~X,(z +X), ¢~X(u)] 

(for fixed parameters y and z). Irreducibility of the 
{¢~X(x)} now implies the statement. 

(ii) The same method of proof can be used for the gen
eral case too: One may replace the system of free 
fields {¢:x} by an "equivalent" system of free fields 
{I/'~x} with commutation relations 

[I/'" (x), I/'B(y)]. = i1)"BOm"mB6.m" (x - y) 

so that no derivatives on 6.m" occur. Here 1)"6 is an in
vertible Hermitian matrix, real for integer spin, and 
imaginary otherwise. "Equivalent" means that the ¢~x 
can be obtained from the {I/'~x} by differentiation and lin
ear combination. 24 

Diagonalizing 1)"6 by a unitary matrix w ""," one gets 
another set of irreducible fields 

x~X(x) = w "'" ,I/'~".(x) , 

and associated fields 
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(;\" denotes the eigenvalues of 1) with 

[X~X(x), X~X(y)]. = iO"'66.m", (x - y) . 

Now one proceeds as in (i) and exploits the fact that 
X~X(x) is a linear combination of derivatives of the ¢~x. 1_. 

We note that the assumption of the existence of local 
interpolating fields for all particles has been used in the 
locality argument. 

Lemma 8.2: 

[Q~x( y + x), ¢~X(z + x)] = 6 p~-"Z(a,)¢~X(z + x) , 
" where the polynomials 2, A in the derivatives ax depend 

only on the parameter y - z. Both sides are meant as 
form- yalue~ tempered distributions in z , x, y on the do
main Dex x Dex' 

Proof: Combining Lemmas 7.4 and 8.1 we get 

[Q~x( y +X), ¢~X(z + x)] =~ p~~Z(ax> ¢~X(z + x) . 

Translation by a yields 

6 (';;'Y'Z(a l+Ay,Z(a )aO)¢eX(z+x+a) 
u ....... 1)1-1 x lJ U X X '" 

=6 (,;;,z+a,Y+a(a )+Az+a,Y+a(a )aO)rl-.eX(z+x+a) 
/.L -I) U X v,.,.. X x '+' /.L • 

By commuting with ¢:x,(z+x'+a), the invariance of 2 
and A follows. [ __ 

To show that the matrix elements of Q between one
particle states of different mass vanish, we need a fur
ther restriction on 2 and A: 

Lemma 8.3: P.,,, (a~)6.m" (1) = ~:e (a_~)6.m)-1) 
without summation over Jl or II. 

Proof: Commute both sides of Lemma 8.2 with 
¢",(z'+Y) and use the Jacobi identity. I J 

Lemma 8.4: (i) p~v(an) = 0 for m" *mv, (ii) p~v(a~) is 
a polynomial also with respect to ~. 

Proof: ConSider the polynomial 

pi (a) = 6 (Cklk2k3(O + dklk2k3(~)aO)(al)kl(a2)k2(a3)k3 
/.LV 'T1 Rl,k2,k3 /.LV jJ.V 1/ 11 'T1 T/ 

(a~=a/o1)l.' ;\=0,1,2,3), 

with its Fourier transform in ~ and 1), 

P~v(p) =6(C~~k2k3(q) _id~lvk2k3(q) • pO)(ipl)kl (ip2)k2 (ip3)k3 . 

Lemma 8.3 reads 

k~k (C~hk2k3(q) - ipoa~hk2k3(q» 
1 2 3 

X (ipl)k1(ip2)k2(ip3)k30 (p2 _ m~)E(pO) (8.1) 

= 6 (Cklk2k3(q)+i(PO_qO)dklk2k3(q»(_ipl+iql)kl 
klk2 k3 1J.1I IJ,V 

X (_ip2 + iq2)k2(_ip3 + iq3)k30« p _ q)2 _ m~)E(-pO + qO) . 

We next show that the support in q of this expression 
is at most {q = o}: Consider for a fixed q * 0 (more cor
rectly, one should smear in q with test functions with 
small support not containing the origin) Eq. (8.1) as a 
function of p. The intersection of the supports of both 
sides of this equation is contained in {p : p2 = m!} 
n {p : (p - q)2 = m~}= : S. For q * 0 the complement of S in 
{p : p2 = m~} contains both for pO> 0 and pO < 0 open three-
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dimensional sets, symmetric with respect to pO = 0, 
which we call U. and U •. On these, the right-hand side 
of (8.1) and hence the left-hand side vanish, and there. 
fore 

~t;~~k2k3(q)(iPl)kl(iP2)k2(iP3)k3 = 0, 

~ d~~k2k3(q)(ipl )k1 (ip2)k2(ip3)k3 = ° 
for all p: (pO,p) E: U. U U •. Since the sum is finite, 

t;klk2k3(q) = dklk2k3 = ° IIfJ V#J. 

for q * 0. For q = 0, (B.l) leads again to (8.2) unless 
m .. = mv' This proves (0. 

(B.2) 

For m .. =mv' we have shown that l'~1k2k3(q) and d~1k2k3(q) 
have support at most at q = 0, hence (ii) follows. [J 

We collect our main results on the symmetry genera
tor: 

Theorem 8.5: 

(i) [Q:x, CP~X(x)j= ~ p;;:(axlcp~X(x), 

" mlJ.=mll 

where 

p;;: (ax) = ~~: (ax> + A~: (a) 8~ . 

~v'" A v" are polynomials both in x and the spatial de
rivatives ax, and the sum is restricted to asymptotic 
fields with mass mv' 

(ii) Q:x does not depend onj(p) for p *0. 

(iii) There exists an integer N such that the N-fold 
commutator of Q:x with the momentum operator van
ishes, 

[ ... [Q:x,P"1), ... ,P"Nj=O. 

(iv) The commutator of Q:x with the mass operator p 2 

vanishes on one-particle states 

[Q~x' p2}cp~X(x)n = 0, [Qf, p2J<P~X(x)n = 0. 

All equations containing Q:x are meant as matrix ele
ments between states from D.x' 

Proof: (i) is a restatement of Lemma B.4. 

(ii) Consider Lemma B.2 for which we now may write 

[Q:x(Y+x), CP~X(x)J=Z; P~,,(i.lx)CP~X(x). 

Therefore, 

(<p~X(z)n I Q~x(Y + x) CP~X(x)n) = p~p(axl (CP:X(z)n I cp:X(x)n) 

= (cp:X(z)n I Qf( Y + x) cp~X(x)n) . 

Integration with g( y) gives for the last expression 

(CP:X(z)n I Qh(x)cp~X(x)n) 
with h(P) = (2rr)4i(p)if(-P). This has to be independent of 
if if suppg31 ° by Lemma B.4 (ii). 

(iii) From (i) one gets 

[ ... [Q:x, P"l J, ... ,pI' N]<p~X(x)n 

=~ {(i8"1)'" (ia"N)py (a )} cpex(x)n 
/..I. y y" IJ. X y=-x fJ 

which vanishes for N large enough by Lemma B.4 (ii). 
Hence the local operator 
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[[ ... [Q:x,P"lj, ... ,P"N], CP~X(x)j 

annihilates n and thus vanishes. The irreducibility of 
{cpJv implies (iii). 

(iv) From (0 

[Q:x ' p2}cp:X(x)n = ° 
and Q:x coincides with Qf on one-particle states 
(Corollary 7.3). f'~ 

Remark: (iii) of Theorem B.5 implies [without uSing 
(iv)] that the N-fold commutator of Q:x with p2 vanishes 
too, see the corollary to Lemma I in Ref. 1. 
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A detailed study is made of the wave-mechanical representation of a one-dimensional Bose-like oscillator 
whose canonical variables satisfy the general commutation relations first proposed by Wigner. The 
eigenvalue problems of the momentum and Hamiltonian operators are completely solved, and this is made 
possible only when wavefunctions in general are allowed to be hyperfunctions, The equivalence between 
the wave- and matrix-mechanical representations is thereby established for any value of c (a characteristic 
parameter of the theory), contrary to the conclusion reached previously by Yang, It is also found that for 
the case - 1/2 < c < 0 or 0 < c < 1/2 there exist two classes of eigenfunctions that are mutually separated 
by a superselection rule, 

I. INTRODUCTION 

The system of a one-dimensional, Bose-like oscilla
tor is described by the Hamiltonian of the classical 
form H = (P2 + q2)/2 given in suitable units. Here the 
pair of canonical variables q and p -= q are assumed to 
satisfy the commutation relations (1. 1) below, wpich 
follow from the Heisenberg equation of motion i A 
=[A,H] with A=q,p, combined with the requirement 
that the variable q satisfy the equation of motion again 
of the classical form q + q = 0, 

(1. 1) 

The most general matrix-mechanical representation of 
the operators q and p that satisfy (1. 1) were obtained 
by Wigner. 1 In terms of the annihilation and creation 
operators 

a-= 2-1 / Z(q + ip), at -= 2-1 / 2(q - ip), 

they are given as 

{ 
{2Eo + n)l 12 for n = even, 

= {n + 1)112 for n = odd, 

(1. 2) 

(1. 3) 

where the quantum number n = 0, 1, 2, ... is related to 
energy eigenvalues through En = Eo + n with Eo> 0. The 
case of the usual canonical commutation relation [q, p] 
=i, describing an ordinary Bose oscillator, corre
sponds to Eo = i. In this connection it is of interest to 
note that a set of operators such as J1 -= (aa + at at) /4, 
Jz=i{aa- at at)/4, and J3=(at a+aat )/4 with a and at 

given by (1. 3) satisfy the commutation relations of the 
Lie algebra SO(2, 1) [or equivalently Sp(2, R)]: [J1, J 2 ] 

=-iJ3, [Jz,J3]=iJt. [J3,J1]=iJ2. In terms of unitary, 
irreducible representations of the group SO(2, 1) first 
obtained by Bargmann,2 Wigner's representation speci
fied by the single parameter Eo> ° corresponds to a 
direct sum D(+)(- Eo/2) + D(+){- (Eo + 1)/2). We also note 
that the commutation relations (1. 1), when expressed 
in a and at, take the same form as the so-called para
bose commutation relations for a system of one degree 
of freedom. 3 

Now the purpose of the present paper is to investigate 
the corresponding wave- mechanical representation for 
the operators q and p. A preliminary investigation on 
this problem was made by Yang4 some time ago, whose 
results, however, seem to be unsatisfactory for the 
following reason. On the basis of a very restrictive pre
sumption that wavefunctions for the oscillator should 
be analytic at the origin q = 0, Yang concluded that only 
for the case of some discrete values of c, a character
istic parameter which is related linearly to Eo [see 
(4.37) below], can the eigenvalue problem of H be 
solved, and further that the expansion theorem of quan
tum mechanics does not hold unless C = 0. Since the 
matrix- mechanical result (1. 3) is valid for any value 
of c or Eo c 0, Yang's conclusion implies that the equi
valence between the wave- and matrix-mechanical rep
resentations does not hold in general. However, in view 
of the fact that the formalism of quantum mechanics 
does not usually depend upon the choice of representa
tions we would expect that the above conclusion might 
only be specific to his too restrictive presumption. In 
fact, according to the general principle of quantum 
mechanics anything that is susceptible of the probabilis
tic interpretation should be entitled to a wavefunction. 
Taking such a standpoint we shall show in what follows 
that when wave functions are allowed to be hyper- as 
well as ordinary functions, 5 eigenvalue problems can 
be solved for any value of c, so that the equivalence 
between the two representations can be recovered in 
its complete form. 

In Sec. II the expression for the momentum operator 
p in the wave- mechanical representation is given, and 
its eigenvalue problem is solved in Sec. III. It is shown 
that corresponding to the two cases (i) c > - i and (ii) 
c < t, c * 0 there exist the respective classes of eigen
functions, and that the eigenfunctions are given in gen
eral by hyperfunctions. The eigenvalue problem of the 
Hamiltonian H can also be dealt with in essentially the 
same manner, and is solved in Sec. IV. Again there 
exist two classes of eigenfunctions corresponding to the 
above- mentioned ranges of c. It is found in particular 
that the ground states of the cases (i) and (ii) are given 
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by even and odd (hyper-) functions, respectively. For 
any value of c the resulting matrix elements of a and 
at completely agree with (1. 3). 

One of the most characteristic features of our results 
is that for the case when c falls in the range - i < c < 0 
or 0 < C < i both classes of eigenfunctions (0 and (ii) be
come possible. It is shown in Sec. V, however, that 
superposition of eigenfunctions belonging to different 
classes is absolutely forbidden, so that the Hilbert 
spaces spanned by the respective classes of eigenfunc
tions are separated by a superselection rule. The paper 
is concluded, in Sec. VI, with some supplementary re
marks concerning the use of hyperfunctions in quantum 
mechanics. 

II. THE EXPRESSION FOR THE MOMENTUM OPERATOR 

When the operators q and p satisfy the canonical com
mutation relations [q,p]=i we may putp=-id/dq in 
the wave-mechanical representation. The purpose of 
the present section is to derive the corresponding ex
pression for p when the operators concerned satisfy the 
general commutation relations (1. 1). For completeness 
of arguments we describe the derivation in some detail 
which is originally due to Yang. 4 

Introducing the operator 

S=[q,p]-i, (2.1) 

we can rewrite (1. 1) in the form 

{P,S}=O, {q,S}=O. (2.2) 

In discussing the wave- mechanical representation it is 
necessary, first of all, to make the following 
assumption: 

Eigenvalues q' of the operator q have a continuous 
spectrum such as _ 00 < q' < 00. Further, the Hilbert 
space H can be expanded in the eigenfunctions I q') of q, 
or H is a subspace of the space spanned by I q')' s. The 
validity of this assumption will be seen to be justified 
a posteriori. 

Sandwiching the second relation in (2.2) with Iq') and 
I q '') we obtain 

(q'+q'')(q/lslq'') =0, (2.3) 

whence 

(q 'I S I q") = 2ic(q')6(q' + q"). (2.4) 

The relation S = - st imposes a restriction on the func
tion c(q ') such as 

c*(q') =c(- q'). (2.5) 

Using (2.1) we write the left-hand side of (2.4) explicitly 

(q'lslql') =(q'l ([q,p] - i) Iq"> 

= (q' - q") (q 'Ip I q'') - i6(q' - q"). 

This together with (2.4) then gives 

68 

(q'lp I q') = - i6'(q' _ q") + iC«() 6(q' + q") 
q 

+ B(q')6(q' - q"), 
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(2.6) 

(2.7) 

where the undetermined B(q') should be a real function 
owing to the hermiticity of p, and l/x=f(x) is an odd 
function satisfying xf(x) = 1. Writing as usual the wave
function for a state I ) as 1j!(q') = (q 'I ), and applying to 
(2.7) the completeness condition J dq I I q')(q 'I = 1, we 
find 

(qllp I ) =;~ 1j!(q') + ic(() 1j!(_ q') 
1 dq' q 

+ B(q ') 1j!(q '), 

and hence 

1 d ic(q) 
p=-:--+--R+B(q) z dq q , 

where R is a unitary operator such that 

(2.8) 

(2.9) 

(2.10) 

The undetermined function B(q) can be eliminated by 
means of a unitary transformation exp[iF(q)] with F(q) 
=- Jq dq' B(q'): 

p - exp[ - iF(q)]p exp[iF(q)] 

=;~+iexp[-i(F(q)-F(-q»]c(q) R. 
z dq q 

(2.11) 

Since exp[ - i(F(q) - F(- q» ]c(q) satisfies (2.5), we may 
write the whole expression as c(q). Thus, as an expres
sion which is unitarily equivalent to (2.9) we can adopt 
the following, 

p =;~+ ic(q) R. 
1 dq q 

(2.12) 

So far use has been made only of the second equation 
in (2.2). We now make use of the first equation thereof. 
From (2.4) we obtain 

S=2ic(q)R. (2.13) 

Substituting this and (2.12) in the first equation of (2.2) 
we obtain 

{ 
d } {C(q) } dq' c(q)R = -qR, c(q)R . (2.14) 

When use is made of the relations 

R2 = 1, R (!) R = - 1. , 
q q (2.15) 

R (~) R=-~ 
dq dq' 

which are all obtainable from (2.10), (2.14) leads to 
dc(q)/dq=O so that 

c(q) = c = real const. (2.16) 

on account of (2. 5). We thus arrive at the final expres
sion for p, 

1 d . c 
p=-:--+z-R. z dq q 

(2.17) 

The theory does not impose any restriction on the con
stant c, except that it is a real constant. In the follow
ing sections we shall see, by actually solving the eigen
value problems of p and H, how the value of c affects 
the structure of the theory. 
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III. THE EIGENVALUE PROBLEM OF THE 
MOMENTUM OPERATOR 

Let ~p. (q) be the eigenfunction of the momentum oper
ator p with eigenvalue p'. The equation to be solved is 
then given by 

(3.1) 

where use is made of (2.17). Since ~p.(q) -exp(ip'q) for 
I q I being sufficiently large, the condition for the pro
babilistic interpretation of ~p' (q) to be possible may be 
written as 

j" \ dq 1 ~p. (q) 12 = finite (A> J1 finite). (3.2) 

To begin with let us consider the case p' '" 0. Putting 

x =p'q, ~p.(q) = ljJ(x) , 

we obtain from (3.1); 

(:x - i) I/I(x) =f 1/1(- x), 

(:x + i) 1/1(- x) =f ljJ(x) , 

For the functions 1/1(' )(x) defined by 

1jJ(')(x) '" ljJ(x) ± ~(- x), 

we have 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Special caution must be exercised at x = ° where Eqs. 
(3. 6) have a singularity. Let us therefore solve the 
equations first in the region x '" ° and then pass to the 
region including x = 0. 

Applying (d/dx+ c/x) to both sides of the first equa
tion in (3.6) and then using the second equation therein, 
we find 

(~+1_c(cx21» <p<+/(x) =0 (x",O). (3.7) 

For f(x) defined by 

(3.8) 

we have 

( d2 +.!~+1_(C-1/2)2).f(X)::=0 (x", 0), (3.9) 
fiXl x dx x2 

which is Bessel's differential equation. According to 
(3.2), on the other hand, I/I(+)(x) andf(x) are required 
to satisfy the conditions 

lim j" \ dx 1 1/1(+' (x) 12 = lim J \ dxlxl If(x) 12 
" -0 " - 0 " 

= finite, (3.10) 

for A> J1 > 0. Thus, by taking account of the fact that 
f(x) is an even function, we obtain the following three 
candidates for <p(+ )(x); 
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(i) Jxll/2Jc_1 / 2(lxl) (c>-i), 

(H) IxI 1
/
2J1 / z-c(lxl) (c<%), 

(iii) IxI 1
/ 2YO(lxl) (c=i). 

(3.11) 

When such I/I(+)(x)'s with x'" ° are substituted in the first 
equation in (3.6), the corresponding 1/I(-l(X)'S with x",O 
are obtained. Like (3.10) such I/I(->(x)'s have to satisfy 

limrdxl<p(-)(x)12=finite. (3.12) 
,,-0 " 

Let us first consider the case (iii). Here ~(-l(X) with 
x",O is found to be 

~(~-~) [lxI 1
/
2Y (Ixl)] z dx 2x 0 

=~E(X) Ixll /2Yl(lxl), 
1 

(3.13) 

with 

d X )={ 1 x> 0, 

- 1 x < 0. 
(3. 14) 

We know that in the neighborhood of x = 0, Y 1 (I x I), a 
Bessel function of the second kind, behaves as - _ IT-l 

[Ix 1_1 _ Ixlloglxl + O( Ix I)], so that the 1/I(-l(X) given by 
(3.13) does not satisfy (3.12). The case (iii) is thereby 
excluded. We are thus left with the cases (i) and (H). 
The ¢(-)(x)'s with x",O obtained by substituting (3.11) in 
the first equation of (3.6) are idx)lxll/2Jc+l/2(lxl) and 
-iE:(x)lxI 1

/ 2J_1 / 2-c(lxl) for the cases (il and (H), re
spectively. Now the conditions under which the 1/I(-l(x)'S 
thus obtained satisfy (3.12) are given as follows; In the 
case (i) the condition agrees with the one obtained above, 
i. e., c> - i, whereas in case (H) a stronger condition 
has to be imposed, that is, c < i. Summarizing, the 
1/1<.) (x) 's with x'" ° which satisfy (3.6), (3.10), and 
(3.12) consist of the following two classes; 

(il c > - i, 

I/I(+)(x) = Ixll/2Jc_l/2(lxl), 

1/I(-l(X) =iE(X) 1 x 11 /2JC+1 /2( I x I), 

(H) c < i, 
I/I(+)(x) = 1 x 11 /2J1 /z-c( Ix I), 

¢(-l(X) = _ idx) I x 1 11 2 J_1 /2-c( 1 xl). 

(3.15) 

(3.16) 

Let us now try to extend the above results to the re
gion including x = 0. In such an extended region we may 
interpret (3.15) and (3.16) as 

Ixll/2J (Ixl) =i' (-1)" IxI2n+v+l/2 
v ;:0 22"Wn !r(n + v + 1) , 

(3.17) 

or 

x E(X) 1 X 1 2"+V+l /2. (3.18) 

Formally these are none other than the power 
series expansions of the Bessel function, but our 
intention here is to try to interpret each term in the 
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expansions, i.e., Ixl" or dx)lxl" (O'>-t) as a hyper
function. Thus E (x) I x \" as a whole is to be regarded as 
a single hyperfunction, 6 and should not, in general, be 
identified with the produce of two hyperfunctions dx) 
and Ix \": For distinction such a product will hereafter 
be denoted by dx) . Ix I" . 

Now, in the present formalism the basic operation 
consists of q and p, and it is necessary, first of all, 
to make clear how the operators x, a/dx, and 1/x act 
on the hyperfunctions Ix \" and dx) I x \". According to 
the theory of hyperfunctions6 we have the following 
rules8

: 

and 

x·lxl"=dx)lxl"'+1 (0" -~), 

x'E(x)lxi"=ixI"'+1 (O'~-~), 

d 
dx[dx)lxl"'J=O'lxl"-1 (O'':-~, 0';t0), 

d 
-;>E(X) =26(x), 
"x 

(3.19) 

(3.20) 

where the region of 0' can further be extended, but this 
will not be needed for our present purpose. Although in 
(3.20) the third formula follows from the second by 
taking the limit 0' - 0, we have written them separately 
for the sake of later convenience. As for the product of 
1/x and the hyperfunctions let us adopt the follOWing 
rules: 

(3.21) 

The case 0' = 0 is excluded in the second equation of 
(3.21) for the following reason: The right-hand side of 
the equation (1/x) . E(x) == /x 1_1 contains, as a hyper
function, an ambiguity of the form c6(x) with c being a 
constant, and it is not possible in general to fix the 
value of c in such a way that any calculation becomes 
consistent at every step. 9 As will be seen below, how
ever, there exists a fortunate situation for the present 
case such that we can develop the discussions without 
directly touching upon this point. 

In this connection let us insert a supplementary re
mark concerning products of the type (3.21), since as 
is well known the product of two hyperfunctions is not 
always well definable. In the present case Ix I'" and 
dx) Ix I" are regarded, respectively, as the even and 
odd hyperfunctions among the solutions j(x) of the equa
tion xdf(x)/dx = 0'/(X),10 We therefore have the relation 
(1/x) ·f= (1/0')(djldx) + c6(x) which involves an undeter
mined term. The products (3 0 21) correspond to c = 0, 
and are, in fact, the extensions to x = 0 of the relations 
valid for x'* 0, The relations (3. 19) and (3.20) corre
spond also to the same kind of extensions. When the 
eigenfunctions which have been found for the region x 
;t 0 are made to satisfy (3.4) with x = 0, it is quite a 
reasonable procedure to adopt the relations (3.21) ex
tended from the region x'* O. In fact, it can easily be 
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confirmed that when the term c6(x) (C;t 0) is retained in 
the above relation it is not possible to satisfy (3.4). 
Stated otherwise, the ambiguity inherent in the product 
of the above- mentioned two hyperfunctions can be uni
quely fixed when considered within the framework of 
the eigenvalue problem under consideration. 11 Accord
ingly, in dealing with hyperfunctions in what follows 
we shall consistently use the relations (3.19) -(3. 21). 

In the case (i) the relations (3.17) - (3.21) enable us 
to show easily that the functions (3.15) satisfy (3.6). In 
the case (ii), on the other hand, we find that (3.16) fails 
to satisfy the same equation only when c = O. In fact, 
for the case (ii) with c = 0 we have 1jJ(+ lex) = (2/1T)1/ 2 sin I x I 
and 1jJ<-)(x)=i(2/1T)1/2E(x)coslxl, whereas according to 
(3.20) (a/dx) [E(x)coslxIJ=26(x)-sinlxl, thereby im
plying that the second equation in (3.6) with c = 0 is not 
satisfied. In this respect let us make the following re
mark. For etO the formulas (3.21) give (c/x) ·E(x)lxl.c 
=clxl-c-l, whereas liffic_uclxl-c-l =- 26(x) as known in 
the theory of hyperfunctions. Thus the second equation 
in (3.6) is satisfied in the sense that liffic _oed/ax + clx) 
[- iE(x) Ix 1

1 / 2J_1/ 2.c( Ix I)J =i Ixll /2J1 /2(X). It should be 
noticed, however, that this expression does not coin
cide with the corresponding result (d / dx) [- idx) I xii /2 

XJ_1/2(lxl)] for the case in which c is set equal to zero 
from the outset, where p = - id/ dx. 

For p';t 0 we have thus found the following, two class
es of eigenfunctions: 

(i) c'-L 
z/!p. (q) =~ Ip Iq 11 /2[J_1 /2+C( Ip'q I) 

+ iE(P'q).Jl /2+c( Ip'q I)), 

(ii) c<t, n'O, 

IjJp. (q) = ~ Ip Iq 11 /2[J1/Z-c (I pI q I) 
- iE(Plq)J_1 /2-c(ip'ql )]. 

(3.22) 

(3.23) 

Let us now turn to the case p' = O. Since both (3.22) 
and (3.23) have Ip Iq I as arguments, they may be inter
preted either as hyperfunctions of q with - 00 < q < 00, 

pl;t 0, or as the same kind of functions of x'" p'q with 
- 00 < x < 00. In the latter case zi,p. (q)' s may be regarded 
as hyperfunctions of p' with - 00 <: p' < 00. In other words, 
(3.22) and (3.23), when regarded as such functions of 
p', can be extended to the point pI = 0, thereby provid
ing the required eigenfunctions. Throughout the follow
ing arguments 1'p.(q)'s are to be understood in this 
sense. That q and p' can be treated in such a symme
trical manner is due to the reciprocity, or invariance 
under the transformation q - - p, p - q of the basic re
lations (1. 1). 

Lastly we show that in any of the two classes (i) and 
(ii), the eigenfunctions if!p.(q) form a complete, ortho
normalized system. Since J:p• (q) f- 0 as I q I - oC, and 
since they are not square integrable, let us define their 
inner products by introducing a damping factor as 
follows: 
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where both </Jp• and </Jp .. are taken to belong to one and 
the same class (i) or (ii). (The case when two eigen
functions belong to different classes will be discussed 
in Sec. V.) The expression (3,24) contains products of 
two hyperfunctions. For such products let us assume, 
as usual, the following relations: 

Ip'ql" 'lp"qIB=lp/I"'lpIlIBlql"+B, 

~(P'q) Ip'q I" . ~(P'q) Ip"q IB 

= ~(p ') Ip 'I" ~(P ") Iplll 8 I q 1"+8, 

Ip'q I"· €(p"q) Ip "q IB 

= Ipll"~(P") IpIlIB~(q) Iq 1"'+8 (a,13 > -t). 

(3.25) 

Further, the integral (3.24) for the product of an even 
hyperfunction and an odd hyperfunction is taken to be 
vanishing. The assumption (3.25) is a reasonable one 
in the sense that each element on either side of (3.25) 
is a function integrable for any finite interval. In fact 
it will be confirmed in later discussions that the above 
assumption does not cause any difficulties at alL 

In evaluating the integral in (3.24) we make use of 
the formula12

: 

;:~ dq exp(- ~q2)[ Ip 'q 11 /2J" (Ip I q 1)][ Ip"q 11 /2J" (Ip "q I)] 

Ip'p"ll/2 ( lp/1 2 + IP"1 2) (lpIP"I) 
2~ exp - 4~ If> 2~ 

(a> - 1), (3.26) 

where f" (z) stands for a modified Bessel function with 
the asymptotic behavior: f,,(z)-ee/(2nz)1/2 as z_oO. 
We thus obtain 

1 ( (Ip/l- IP'I)2) 
(3.26) 2(n ~)I 72 exp \- 4 ~ 

for small ~, (3.27) 

and hence 

lim(3.26)=6(lp'I-l p "I). (3.28) 
(~O 

This together with (3.24) and (3.25) then gives 

=6(p'-p"). (3.29) 

Interchanging the roles of p' and q we also obtain 

lim l:dp' exp(- ~pl2)</Jt. (q)</Jp. (q') = 6(q - q'), 
(·0 

(3.30) 

which is our completeness condition. [At this point the 
following remark may be in order. As can be seen 
from (3.26), (3.29) has been derived under the condition 
p', P II *- O. However, the points of either or both of p' 
and p' being zero yield merely vanishing contributions 
with measure zero, Let j;(p') (i = 1,2) be good functions 
and let!;(q) be defined by 

(3.31) 

Taking account of the fact that </Jp. (q)' s are hyperfunc
tions, we then find from (3.26) and (3.27) that 
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lim i:dq exp(- ~q2)Jt(q)12(q) = f_:dpl Jt(P')j2(P/). 
(-0 

(3.32) 

As a matter of course, the delta function on the right
hand side of (3.29) is to be understood in this sense. 
The same remark applies to (3.30) and (5.18) given 
below. ] 

We have thus solved the eigenvalue problem com
pletely for any given value of c. Particularly note
worthy is the fact that for the case when c happens to 
be in the range (-L 0) or (0, t) both classes of eigen
functions, (0 and (ii), become available. The interrela
tion between the two classes will be discussed in Sec. 
V. 

IV. THE EIGENVALUE PROBLEM OF THE 
HAMILTONIAN 

In discussing the eigenvalue problem of the Hamil
tonian H the expression for H that is obtained by sub
stituting (2.17) in H = (P2 + q2)/2 is not convenient. In
stead we shall use the one that is obtained by substitut
ing in H={at , a}/2 the following relations [cf. (1. 2)]: 

a = 2-1 
/2 (:q + q _ ~ R) , 

(4.1) 

at =2-1
/

2 
(_ :q +q+ ~R). 

Since Hand R are commutable, these operators pos
sess simultaneous eigenfunctions </J(')(q) such that 

R</J(±)(q) =± </J1.±)(q), (4.2) 

[(~+q±£)(~- q'f£) dq q dq q 

+ (d~ -q±~) C~ +q'f~) ] 4'(±)(q) =- 4E</J(±)(q). (4.3) 

As in the case of p we first try to solve (4.3) for the 
case q *- O. Breaking up the bracketed factors in (4.3), 
we obtain 

(~-2 ~_C(C'f1»)/±)() dl q dq q2 q 

=- (2E-l)jl.±)(q) (qi-O), 

where we have put 

(4.5) 

It is now sufficient to consider (4.4) with q > O. In fact, 
once a solution j(q) of (4.4) for q > 0 is known, the cor
responding solutions for q*O will be obtained asj(+)(q) 
=j(lql) andj(-)(q)=E(q)j(lql). By putting 

we can further rewrite (4.4) in the form 

[x ;2 + (13(0) -x) :x - al.±1 g(O)(x) = 0, 

where 
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Thus, our equation has been reduced to a confluent hy
pergeometric equation. 

We now solve (4.7) by dividing the possibilities into 
the following three cases: (1) /3(') *integer, (2) /3(') 
=n+l, and (3) /3")=-n, where n=O, 1, 2,···. 

(1) The case /3(') * integer 

In this case the two independent solutions of (4.7) are 
given by confluent hypergeometric functions such as 

(± ) (. > a (. > 
<I>(a ,/3 ;x)=I+-;;--(ijx 

i3 

a (± )(a(' > + 1) x2 

+ /3('>(/3 t.) + 1) 21 +. 00, 

which is regular at x = 0, and 

<..) 
~-8 <I>(a(')-i3(') + 1, 2-/3"); x), 

(4.9) 

(4.9') 

which is singular at x = 0. In order to see the behavior 
of I ~'. )(q) I for Iq I - 00 we make use of the asymptotic 
form of <I>(a, b; x) for x_ oo , 

<I>(a b' x) _ r(b) exx·-b 

" x-~ r(a) 
(4.10) 

(a * 0, - 1, - 2, ... ). 

Thus, the asymptotic forms of I 1jJ"')(q) I obtained from 
(4.9) and (4.9') are given, respectively, by 

izp(±)(q)i - Ir(/3:>; lexp(q2/2)(q2)-CE+l/2)/2 (4.11) 
lol_~r(a ) 

if a">*O, -1, - 2,"', 

and 

x exp(q2/2)(q2)-CE+l/ Z)/2 (4.11') 

if a"') -/3('>+ 1 *0, -1, - 2,···. 

As a consequence, I zp(± )(q) I would have the wrong be
havior for ! q! - 00 unless 

a(±> = - k for (4.11), 
(4.12) 

where 

k=O, 1, 2,···. 

Conversely, if (4.12) holds, then the <I>'s in (4.9) and 
(4.9') will become polynomials in x of the kth degree, 
and hence the corresponding I zp(' >(q) I 's will rapidly 
tend to ° as I q I - 00. The eigenvalues of E can then be 
obtained from (4.8) and (4.12). In this way we are led 
to the following results: 

E= 2k±c +L 

E=(2k+l)'fc+~, 

l/J(±)(q) = (!(q») Iqll~eexp(_q2/2)<I>(_k,'fC+~; q2), (4.13') 
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where ~ In» implies that 1 and E(q) are to be chosen for 
zp(+>(q) and zp(-i(q), respectively. 

Here, c cannot be an arbitrary real constant, but is 
subj ect to the restriction 13 (±) * integer. Further restric
tions will come out when we examine the behavior of 
1jJ(' >(q) in the neighborhood of q = 0. It is required that 
1jJ('>(q) satisfy the conditions corresponding to (3.10) 
and (3.12), 

and further 

lim L' dq i a</>(' >(q) 12 = finite, 
" - 0 

lim f,,' dq 1 at zp(' )(q) 12 = finite, 
" - 0 

(4.14) 

(4.15) 

for A> I.J. > O. To evaluate the contributions to (4.14) or 
(4.15) from the region q - I.J. we may put zp(±)(q) 
- ~ (0» I q I'e for (4. 13) and zp'" )(q) - C (q ) I q 11~e for (4. 13'). 
When this is done, (4.14) and (4.15) provide the follow
ing conditions: 

± C > - ~ for (4.13), 

'fc>-~ for (4.13'). 

(4.16) 

(4.16') 

[Under the condition (4.15) we may also think of (4.13') 
with 1'f 2c = 0, which contradicts our premise 13(' i * in
teger, however. J 

Let us now extend the region of q into the one includ
ing q = 0, and regard (4.13) and (4.13') as hyperfunc
tions of q defined for - 00 < q < 00. We then have to ex
amine whether these functions satisfy (4.3) in the ex
tended region of q. Since we have already seen that this 
is the case with q * 0, we have only to examine the prob
lem in the neighborhood of q = 0. Here we may make 
use of approximate expressions for zp(')(q). Since zp(±)(q) 
are hyperfunctions, we rewrite (4.13), for example, 
as a sum of hyperfunctions such as 

zp(± )(q) =(!(q») exp(- q2 /2) 1 q I·e + (± ;: 1/2) G(q») 

2 I l.e+2 (-k)(-k+1) 
x exp(- q /2) q + (± C + 1/2)(± C + 3/2) 

x G(q») exp(- q2/2) I q l·e+4 + . ", 

by use of (4.9), where it is to be understood that 

( 1 ,) exp(- q2/2) j q i ±c+2n 
E(ql 

(4.17) 

T=O rl (4. 18) 

)

i5 (-1/2JY Iqjc+2n+2T , 

- ~ (- ~;2r E(q) i q 1 "'+2n-2T • 

In what follows, all hyperfunctions including (4.13') are 
to be understood in a similar manner. Clearly, we do 
not have to invoke such expansions for q * O. Thus, by 
applying the formulas (3.20) and (3.21), we obtain the 
following result: For zp(+)(q) of (4.13) and zp(-i(q) of 
(4.13'), equation (4.3) is satisfied under the same con
ditions as (4.16) and (4.16'), respectively, whereas for 
zp(-)(q) of (4.13) and 1jJ(+)(q) of (4.13') it becomes neces-
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sary to impose a new restriction c*-O in addition to 
(4.16) and (4.16'), respectively. Needless to say, in 
both cases we have, of course, the restriction J3 "') 
= ± C + ~ *- integer. 

Summarizing, we have the following two classes of 
eigenfunctions and eigenvalues: 

(4.19) 

with E=~ + c + 2k, 

1jJ(-)(q) =€(q) Iq l1+e exp(- q2/2)<I>(_ k, c +1; q2) (4.20) 

with E=~ + c + (2k + 1); 

(ii) c < ~, c *- 0, - ~, -1, - t ... , 
1jJ(-)(q) = €(q) 1 q 1 -<: exp(- q2/2)<I>(_ k, - c + ~; q2) (4.21) 

with E=~ - c + 2k, 

(4.22) 

with E=~ - c + (2k + 1). 

(2) The case {3"')=n+ 1 (n=O, 1,2,"') 

The solution of (4.7), which is regular at the origin, 
is given by (4.9) but with {3(%) =n + 1, i. e., 

<1>(0''''), n + 1; x), (4.23) 

whereas the solution corresponding to the so-called 
logarithmic case is obtained by the Frobenius method 
as 

00 

<1>(0' "'), n + 1; x) logx + x-r!,0 hr '" )xT
, (4.23') 

T=O 

with hr (%) being appropriately chosen constants. The 
1jJ(%)(q) constructed from (4.23') behaves for small iqi 
like 

1jJ(%)(q)-(!(q») Iql%c (logq2+hoq-2n). (4.24) 

On the other hand, 1jJ'" )(q) must satisfy, for any positive 
integer m, the following conditions corresponding to a 
generalization of (4. 15): 

lim "C dq 1 amljJ'" )(q) 12 = finite, 
I> -0 (4.25) 

lim LA dq 1 atmljJ(% )(q) 12 = finite, 
I> -0 

for A> J1 > 0. However, when (4.24) is substituted in 
the left-hand sides of (4.25) we find that the integrals 
do not become finite for large m. That is to say, from 
(4.23') we cannot construct 1jJ'" )(q) which satisfies (4.25). 
Hence (4.23') should be excluded. 

Let us next examine (4.23). In this case we can argue 
in the same way as in (4.9) of (1), and find that a"') 
=-kwithk=0,1,2,···. Further, t3"')=n+lgives 
± c = n + ~. For any of such values of c it is easy to 
show that (4.14), (4.15), and (4.25) are all satisfied. 
In the same way as in (1) we can also show that 1jJ(%)(q), 
as a hyperfunction defined for _ 00 < q < 00, satisfies 
(4.3). The permissible eigenfunctions are thus classi
fied into the following: 
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(i) C =~, 1, ~, ... , 
(4.26) 

with E = ~ + c + 2k, 

(ii) c=-~,-1,-t···, 

1jJ(-)(q) =€(q) 1 q I -<: exp(- q2 /2)<1>(- k, - c +~; q2) (4.27) 

with E=~ - c + 2k. 

(3) The case (3 (') = - n (n = 0,1,2, ... ) 

One of the solutions of (4.7) is given by (4.9') but 
with f3(%) = - n, i. e., 

x1+n <l>(a(%) + n + 1, n + 2; x), (4.28) 

and the other, corresponding to the logarithmic case, 
is given by 

00 

x1+n<l>(O'(') + n + 1, n + 2; x)logx + 6 h:%)' xr. (4.28') 
roO 

However, the 1jJ"')(q) constructed from (4.28') does not 
satisfy (4.25), and therefore is excluded. Arguing in 
a way similar to the above we obtain from (4.28) the 
following eigenfunctions: 

(i) c =i. 1, ~, ... , 
1jJ(-)(q) = €(q) I q 11

+e exp(- q2 /2)<1>(- k, C + 1; q2) (4.29) 

with E=~ +c+(2k+l), 

(ii) c = - t -1, - t ... , 
(4.30) 

with E=~ - c + (2k + 1). 

We have thus solved the eigenvalue problem com
pletely. Writing the eigenfunction with eigenvalue En 
as IjJn(q) (n = 0,1,2, ... ) we can summarize the results 
of (1), (2), and (3) as follows: 

(i) c>-t En=:~ +c+n, 

( 
kl )1/21 I 

IjJn(q) = (- l)k r(k + c + 1/2) q e 

X exp(- q2 /2)L~-1/2(q2) for n = 2k, 

IjJn(q) = (- l)k (r (k + :1+ 3/2)Y 12 €(q) I q le+l 
(4.31) 

x exp(- q2/2)LrI/2(q2) for n = 2k + 1; 

(ii) c < t c *- 0, En =: ~ - C + n, 

(4.32) 

IjJn(q) = (-l)k(r (k _ ~I+ 3/2») 1/2 1q l-c+l 

X exp(- q2/2)L;'+1/2(q2) for n = 2k + 1, 

where L~ (x) denotes the generalized Laguerre poly
nomial defined by 
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'" ( .) _ (k + Ct.) ( Lk X = k q, - k, Ct. + 1; x) 

_~(k+Ct.)(_X)r 
-~ k - r r!' (4.33) 

By use of the orthogonality relation for generalized 
Laguerre polynomials 

10" dx e-XxOl L~ (x)L~. (x) = 0kk.r (Ct. + 1;> + 1)/k! (4.34) 

(Ct. -:-. - 1), 

we can prove that the I/!n(q)'s form an orthonormalized 
system for either of the classes (0 and (ii). Using (4.1), 
(3.20), (3.21), and the formulas13 for L~ (x), 

L~(x) - :xL~(x) =L:+\x), 

d 
x-

d 
L~ (x) + Ct.L~ (x) = (k + Ct.)L~ -l(X), 

x 

x :t L~ (x) + (Ct. - x)L~ (x) = (k + 1)L~;~(x), 

(4.35) 

we can also prove14 that the following relations hold in 
either of the classes (i) and (ii): 

for n=even, 

for 1l= odd, 
(4.36) 

for n= even, 

for n = odd, 

in agreement with (1. 3). The equivalence between the 
wave- and matrix-mechanical representations is now 
complete. Here the parameter Eo, the lowest eigenvalue 
of H, is given by 

for the class (i), 

for the class (ii). 
(4.37) 

Thus, we find 0 < Eo < co for the class (i) and 0 < Eo < t 
or t <; Eo < co for the class (ii). It is to be noted that 
while the case of canonical quantization Eo = ~ is in
cluded only in the class (i), the cases of all other values 
of Eo are included in either of the two calsses. 15 In this 
connection we recall that the situation was similar for 
the eigenvalue problem of p: The eigenstate of p = - id/ 
dq satisfying the canonical commutation relation [q, p] 
= i is included only in the class (0. 

The results obtained above are summarized as fol
lows. For any given value of c we have solved the eigen
value problems of p and H completely. For c = 0 or 
c 2': ~ the eigenfunctions belong to the class 0), and for 
c ~ - t they belong to the class (ii). For - ~ <: c < 0 or 
0< C <: t both classes of eigenfunctions become avail
able. The last case is a very unusual situation and is 
discussed in detail under a separate heading. 

We conclude the present section by making the follow
ing remark. In the foregoing we have been able to solve 
the eigenvalue problems only by invoking hyperfunctions 
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If, on the contrary, we had restricted ourselves to or
dinary analytic functions, the wave-mechanical repre
sentation would have been possible only for discrete 
values of c such that for the calss (i) c equals zero or 
a positive even integer, and for the class (ii) c equals 
a negative odd integer. In fact this is precisely what 
was done by Yang. 4 Further he was also led to conclude 
that the expansion theorem does not hold as far as c 
'* 0: For example, wavefunctions that are nonvanishing 
at the origin, such as o(q - q') with q' = 0, cannot be 
expanded in the eigenfunctions of H because the latter 
functions all vanish at the point. 16 In our opinion, how
ever, the first principle of quantum mechanics does 
not seem to require that wavefunctions be analytic func
tions, but only that they be susceptible of the proba
bilistic interpretation. Accordingly, in solving eigen
value problems we should not impose any other unneces
sarily restrictive conditions on eigenfunctions. What 
should be done here instead is only to examine whether 
the wavefunctions thereby obtained are consistent with 
their inner products as well as with hermiticity of the 
basic operators q and p. This will be discussed in the 
following section. 

V. THE RELATION BETWEEN THE TWO CLASSES OF 
EIGENFUNCTIONS AND HERMITICITY OF THE 
MOMENTUM OPERATOR 

We now examine, for the case - i < C < 0 or 0 < c < i, 
the relation between the two classes of eigenfunctions 
(i) and (ii), placing emphasis upon hermiticity of the 
operator p. Let us begin by noting some general fea
tures common to the eigenfunctions of p and of H ob
tained in the preceding sections: First the ranges of 
c are the same, and second the singular parts are of 
the same form. Here by singular parts we mean the 
following. Any wavefunction can be written as a sum of 
even and odd functions, and each of them in turn can be 
written as a product of analytic and nonanalytic func
tions. Such nonanalytic functions are called the singular 
parts. For example, as can be seen from (3.22), the 
singular parts of even functions in the space spanned 
by I/!p'(x)'s of the class (i) are given by iqlc. From 
(4.31) we also see that these are precisely the Singular 
parts of even functions in the space spanned by <J;n(q) , S 

of the class (i). Similarly, we see from (3.22), (3.23), 
(4.31), and (4.32) that for either of the classes (i) and 
(ii) <J;p.(q)'s and I/!n(q)'s have the Singular parts of the 
same form as given in Table I. 

From now on let us denote any wavefunction of the 
class (i) and that of the class (ii) by ¢(q) and ¢(q), re-

TABLE I. The singular parts of even and odd functions in 
the space of eigenfunctions. Any even or odd function belongin).( 
to the space can be written as a product of the analytic 
function F(q2) and the Singular part given in this table. 

region of c 

(i) (-1,"') 
(ii) (-'" ,0) 

(0, ~) 

singular part 
even function odd function 

E (q) I'll <>+1 

E ('1) 1'1 I-a 

Y. Ohnuki and S. Kamefuchi 74 



                                                                                                                                    

sepctively. In general, these are, of course, given as 
hyperfunctions. For each of the classes we have so far 
been defining inner products as 

«(/>1, CP2) =0 r ro dq CPt(q)CP2(q), 
,_00 

(¢b ¢2) '" r:dq ¢t(q)¢2(q). 

F or the case when e is in the range - ~ < e < 0 or 0 < e 
<~, it may appear reasonable to define inner products 
between cP and ¢ by (cp, ¢) = L:dq cP*(q)¢(q). If this were 
possible, we could then define inner products for arbi
trary wavefunctions j(q) and g(q) by 

(5.2) 

irrespective of which class they belong to. The situation, 
however, is not so simple as this. As an example, let 
us take j(q) == I/!o(q) given by (4.31) and g(q) = 1/!1(q) given 
by (4.32). The corresponding eigenvalues are (~+ e) 
and (t - c) and are unequal to each other as far as - E 
< c <. 0 or 0 < e < i. We might therefore expect that the 
inner product (f, g) would be vanishing. A calculation 
shows the contrary, however: 

(t, g) == [r(e +i)r(~ - e)l-l/2 [dq 1 q 1 exp(- q2) 

XL~_1/2(q2)Lo+1/2(q2) 

(
2 cos(7Tcl)1/2 

-2 *0 - 7T(1- 2e) . 
(5.3) 

Where does such a paradox originate from? To answer 
this question is then our last task in the present paper. 
At any rate this example at least indicates that to define 
inner products between cP and ¢ by (5.2) is not a legiti
mate procedure. 

In the theory concerned the basic operators are cho
sen to be q and p, and these operators have been consi
dered Hermitian. Generally speaking, however, hermi
ticity should be guaranteed, in connection with inner 
products, by (f, qg) == (qj, g) and (f, pg) dpf, g). Stated 
otherwise, inner products should be so defined as to be 
consistent with hermiticity of q and p. When definition 
(5.2) is employed, hermiticity of q is obvious. The 
above result (5.3) thus implies that the inner product 
(5.2) taken between two wavefunctions j and g belonging 
to different classes does not make p Hermitian: For, 
if p is Hermitian, the two wavefunctions corresponding 
to different eigenvalues of (P2 + q2}/2 must be orthogonal 
to each other. In order to clarify the nature of what is 
happening here, let us therefore examine the question 

of under what conditions hermiticity of p is 
guaranteed. 

From the results of Table I we see that the general 
forms of even and odd wavefunctions belonging to the 
class (i) or (ii) are such as given in the second row of 
Table II. The way in which the basic operators q and p 
act on such wavefunctions can then be easily found when 
(3.19) - (3.21) are taken into account, the results being 
given in the third and fourth rows of Table II, respec
tively. Now, in checking the relation (t, pg) = (pj, g) we 
have only to consider the case in which one of the func
tions j and g is an even function and the other an odd 
function, because both sides of the above relation vanish 
when both j and g are even or odd functions. 

(1) The case j, g E (i) 

Putting j(q} = I q IC F(l) and g(q} = dq) Iq Ic+
1G(l) we 

find from Table II, (3.25), and (3. 20) that 

D(f, g) '" f*(q) .{pg(q)} -{pj(q)}* . g(q) 

=;'{(2C + 1) 1 q 12c F*(q2)G(i) + 21 q 12c
+

2 

l 

X [F*(q2)G'(q2) + F* '(q2)G(l) l} 

=7-~ [dq} 1 q 1
2c 

+1 F*(q2}G(q2} 1, 

which guarantees hermiticity of p. 

(2) The case f, gE (ii) 

(5.4) 

Putting j(q} = I q I-c+l F(l) and g(q} = dq) I q I-cG(i} we 
similarly obtain the following relation, 

(5.5) 

which guarantees hermiticity of p. 

Next we turn to those cases in which one of the func
tions of j and g belongs to the class (i) and the other to 
the class (ii). Here the following two cases must be ex
amined, where of course i e I <: i. 

(1') The case j E (ii), g E (i) 

Putting f(q) = iq l oC +1p(l) and g(q) == E(q) I q Ic
+

1G(i) we 
find that 

1 d 
D(t,g)==-:--d [dq)lqI2 F*(l}G(l)], 

l q 

which is consistent with hermiticity of p. 

(2') The case j E (i), g E (ii) 

(5.6) 

TABLE II. The gene~al forms of even and odd wavefunctions belonging to the class (i) or (it) and the effects of the basic operators 
q and p on such functIOns. Here P(z) denotes a function analytic on the real axis. 

f(q) 

qf(q) 

Pf(q) 

75 

the class 0): - ~ <c <00 
r q r CF(q2) 

E(q) Iqlc+1F(q2) 

E (q) I q I c+1F(q2) 

I q I c{q2F(q2)} 

~I q I c{2c + 1)F(q2) 
l 

+2q2F'(q2)} 
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the class (ii): _00 <c <1. c". 0 
Iq 1-c+lp(q2) E(q) Iq I-CF(q2) 

E(q) Iql-c{q2p(q2)} Iql-e+1F(qi 

-k (q) 1 q I-c {(- 2c + 1)p(q2) ~ 1 q 1-c+1F' (q2) 
l . Z 

+ 2q2F' (q2)} 
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Putting f(q) = I q Ie F(l) and g(q) = dq) I q I ""G(l) we 
find this time that 

D(f, g) =; I q I [F*'(q2)G(q2) + F*(q2)G'(q2)] 
1 

=~E(q) dd [F*(q2)G(q2)], 
1 q 

(5.7) 

which results in 

=2iF*(0)G(0). (5.8) 

This implies that hermiticity of p is violated because 
F*(O)G(O) does not always vanish. 

We have thus found that inner products (5.1) within 
either of the classes (i) and (ii) guarantee hermiticity 
of q and p, and hence that of H, whereas this is not the 
case with (5.2) for which! and g belong to different 
classes. The origin of the paradox encountered above 
can thus be attributed to the latter situation. 

Weare led in this way to the consistent definition of 
inner products: 

(f,g) = 

r:dqj*(q)g(q) for both! and J[E (il 
or EO (ii), 

o for f E (i) and g EO (ii) 
or f E (ii) and gE (i). 

(5.9) 

The latter part of this definition does not give rise to 
any difficulty: As can be seen from Table II, the singular 
parts are transformed only within the same class under 
the action of q and p, or in other words, the two classes 
are separated by a superselection rule. For this reason 
it would be nonsensical to consider a superposition of 
wavefunctions belonging to the two different classes. We 
may therefore say that even when the parameter c takes 
a common value the eigenfunctions belonging to the 
class (i) and those belonging to the class (ii) span the 
different Hilbert spaces. In fact, it has already been 
shown in (3.30) that the eigenfunctions of P form a com
plete set of basis functions within either of the classes 
(i) and (ii). The situation is the same for the eigenfunc
tions of H. 

In connection with this let us make a few remarks. 
In either of the classes (i) and (ii), the L z space spanned 
by the eigenfunctions l)!n(q) of H is contained in the one 
spanned by the eigenfunctions l)!p.(q) of p, and any l)!n(q) 
can be expanded in the l)!p.(q) 's within the same class. 
In fact, by using the formulal8 

tCdq[ Ip'q 11/2J" (Ip'q I) l[ I q 1"+1/2 exp(- qZ !2)L~ (i) 1 
= (_ l)k exp(- p'2 /2) Ip' I ,,+1/2 L~ (p'2) (0' > - 1), (5.10) 

we can easily compute (l)!p" <Pn), 

(5.11) 

where A = (- l)k and - i(- l)k for <Pn(q) given by the first 
and the second equations in (4.31), respectively, and 
A = (- l)k and i(- l)k for <Pn(q) given by the first and sec
ond equations in (4.32), respectively. Performing an 
interchange q_p' in (5.10) and using (5.11) we im
mediately find 
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(5.12) 

When the completeness relation (3.30) for <pp.(q)'s is 
conSidered, it is realized that (5.12) is the equation 
which holds true only when the space spanned by <Pn(q)'s 
is contained in the one spanned by <pp.(q)'s. 

There still remains a question as to whether we can 
conversely expand <pp.(q) in <pn(q)'s. Since <pp.(q) does not 
tend to zero as I q 1- 00 whereas <Pn(q) does so, it may 
appear at first sight that such an expansion is not pos
sible. Let us now examine the situation a little further. 
We start with a formula which holds in the sense of 
uniform and absolute convergencel9

: 

.~ 1<1 (- flk [\ 1"'+1/2 ( 2 '2)LOI. ( 2)] 
~O r (1< + 0' + 1) q exp - q ! k q 

1 (1 -t (P 12 2 \ 
(1 + t)t0l. )2 exp - 2(1 + t) + q )) 

x Ip'qII/2J", (~t~; ip l q i) (5. 13) 

(- 1 < t < 1, 0" - 1), 

and substitute (5,10) in the second bracket on the left
hand side of (5. 13), thereby obtaining 

1 ro ( k 1 t
k 

I I'" +1 2 2" 2 zE r(1<+O'+l)[lq I exp(-q /2)Lk (q)1 

x { I: dq[ I q 1"'.1 12 exp(- q2 /2)L~ (q2)] 

X [Ip' q 11/2J", (Ip' q I) l}) 
1 (1 - t (,2 2)\ 

(1 + t)t" /2 exp - 2(1 + t) p + q '} 

X \plq\1/2J", (2;~: Iplqi). (5.14) 

By using (3.22), (3.23), (4,31), and (4.32) we thus find 
that for either of the classes (i) and (ii) 

ro 

B (l)!n, l)!p.)l)!n(q)t ln/2 ] 
n=O 

(5.15) 

that is, 

lim(t (l)!n' l)!p')¢n(q)tln/2J) = i/Jp.(q). (5.16) 
t -1_0 "=0 

If we carry out the limit for each term separately and 
put t = 1, then the uniform convergence of the series 
for _00 < q < 00, namely 

IV 

I Ipp.(q) - B (<Pn, l)!p')<Pn(q) I r 11 
n=O 

for any q will be spoilt. This may easily be understood 
by observing the difference between the behavior of 
<Pn(q) and that of l)!p.(q) for Iql_oo. Thus, all we can say 
about our problem is as follows: The formal expansion 
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of 1/!p,(q) in the 1/!n(q)'s, i. e., Z;;'O(1/!n,1/!p,)1/!n(q), does not 
uniformly converge, and the expansion theorem holds 
only in the sense of (5.15) or Abel summability (5.16). 

It can be seen further that the replacement t - - t 
and p' -q' in (5.13) gives 

'£ kIf' [/ql"'.1/2exp(_q2/2)L~(l)] 
k=Qr(k + Q' + 1) 

x [i q' 1 ",.1 /2 exp(- q,2 /2)L~ (q'2)] 

1 (1 + t (2 '2)\ 
=(I_t)f",/2exp -2(1-t) q +q 'J 

x Iqq' 11/2/", (~f~/: Iqq'l) (-1 < t < I\. (5.17) 

Using the asymptotic form of /", (z) for z - 00 which is 
given immediately after (3.26) we obtain the following 
relation for either of the classes (i) and (ii), 

lim ( i5 1/!n(q)1/!: (q')t" ) = c(q - q'). (5. 18) 
t ~1~0 n.O 

The relation (3.30) implies that any eigenfunction 
c(q - q') of q can be expressed as a superposition of the 
eigenfunction of p. In the beginning of Sec. II we have 
started by assuming that the spectrum of q ranges con
tinuously from - 00 to 00, i. e., - 00 < q' < 00. The above 
results thus makes it clear that this assumption in fact 
has been a consistent one. As repeatedly stated, for 
the case - ~ < c < 0 or 0 < c < ~ the expansion in the en
ergy eigenfunctions of one and the same eigenfunction 
c(q - q') can be made in two different ways. 

The existence of the two classes of eigenfunctions, 
(i) and (ii), has been revealed by working in the wave
mechanical representation for q and p. The operator 
calculus of matrix mechanics, on the other hand, is too 
formal and straightforward to exhibit such an intricate 
structure of the theory, although of course nothing is 
wrong with this method. The existence of the two classes 
of wavefunctions thus implies that ket vectors also have 
a corresponding structure, that is, there exist two 
kinds of ket vectors to be denoted by 1 > (I) and I > (II)' 

In view of (5.9) their inner products must, of course, 
be assumed to be (1)( I ) (II) = 0, and the two spaces 
spanned by I ) (! /s and by I ) (Il) 's form the respective 
superselection sectors. This explains the reason why 
in the matrix- mechanical treatment assuming the ex
istence of the unique vacuum the two spaces make no 
appearance simultaneously. 

VI. CONCLUDING REMARKS 

We have seen above that in the wave- mechanical rep
resentation of a Bose-like oscillator, wavefunctions 
can be obtained completely by invoking the use of hyper
functions and that only in this way can the equivalence 
with the matrix-mechanical representation be restored. 
The use of hyperfunctions, of course, is nothing new in 
quantum mechanics: We usually employ the 15 functions 
as eigenfunctions of operators such as q. However, we 
shall argue in what follows that the present case pos
sesses a characteristically new feature. 

Generally speaking, a hyperfunction encountered in 
quantum mechanics is of the following two-sided as-
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pect: It may be interpreted either as a hyperfunction of 
the eigenvalue concerned when the variable q is kept 
fixed, or as that of q when the eigenvalue is kept fixed. 
Of course, the former applies only for the case of con
tinuous spectra. As for the eigenfunction c(q - q') either 
interpretation is applicable. In this case, however, it 
is possible to form a square-integrable wavefunction 
by superposing the eigenfunctions c(q - q') with q' rang
ing over a certain finite interval, the wavefunction being 
thereby reduced to an ordinary function. In this way the 
explicit use of hyperfunctions may be avoided if so 
desired. 

In contrast with this we should say that the wave
functions obtained in the preceding sections are, essen
tially, hyperfunctions of the variable q. Indeed, our 
Hamiltonian H has discrete eigenvalues, and the cor
responding eigenfunctions are square-integrable by 
themselves. Hence it is not possible to remove the sing
ular parts, with respect to q, of the eigenfunctions by 
the method applicable to the case of c(q - q'). The situa
tion is essentially the same for the eigenfunctions of the 
momentum operator p: Even when a square-integrable 
wavefunction is formed by a superposition of the eigen
functions (3.22) and (3.23), the singular parts still sur
vive in general cases. This is the point where the hyper
functions encountered in the present case are basically 
different from those of the usual case including c(q - q'). 

In ordinary quantum mechanics there exist very few 
cases in which hyperfunctions must be employed for 
square-integrable wavefunctions (an example will be 
given below). We should say, however, that such a situ
ation is merely an accidental one, and it is impossible, 
in fact, to deduce on some physical grounds that wave
functions shall be restricted to those functions which 
are nonsingular with respect to q. Thus, the necessary 
and sufficient conditions for 1/!j (q) 's to be wavefunctions 
may be stated as follows: (1) The product of 1/!i(q) and 
1/!J(q) can be defined, and the inner product C:dq 
x 1/!t (q) <PJ (q) exists; (II) the action of the basic operators 
q and p on wavefunctions is well defined, and the re
sulting functions can also be regarded as wavefunctions, 
where hermiticity of q and p must of course be guaran
teed in connection with the inner product considered in 
(I). It is to be noticed here that (I) implies J'/ dq 1 <p(q) 12 
< 00 for arbitrary 11 and A with 11 < A, thereby enabling 
us to adopt the probabilistic interpretation. 

Contrary to the case of ordinary functions a hyper
function does not always have the functional value for 
a given value of q. Such a property, however, does not 
contradict the above conditions (I) and (II). What is ne
cessary to do here is to define products of the hyper
functions concerned in a proper way: They must be con
sistent with all operations that arise within the frame
work of a given theory. In the preceding sections we 
have faithfully carried out such a program in accor
dance with the conditions (I) and (II) for the specific 
model. 

Before concluding the present paper let us give an 
example in ordinary quantum mechanics that necessi
tates the use of hyperfunctions, i. e., the eigenvalue 
problem of the dilatation operator, 
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D=Mq,p}=T (q :q +i)· (6.1) 

The problem can be solved completely only in terms of 
hyperfunctions, and the even and odd eigenfunctions with 
eigenvalue A are given, respectively, by 

1J\(+)(q) = (41T)-1 121 q 1_1 12+~1, 

~-)(q) = (41T)_1 !2E(q) I q 1-1/2.~i 

(_oo<x<oo). 

(6.2) 

Here, the action of the operators q and d/ dq on these 
functions is defined by the same formulas as (3019) and 
(3.20) but with (lI being replaced by a complex number 
- t + Ai. As for products of these functions we also use 
the previous formulas (3.25) with QI and i3 being replaced 
by complex numbers. It is then easy to check that the 
above eigenfunctions ~)(q) form a complete, ortho
normal system: 

i:dq ~. )*(q)iff, )(q) = 6(X - x'), 

i: dq 1J\'" )*(q )IJ\~ )(q) = 0, 

i:dX{~+)(q)~+)*(q') + 1/!~-)(q)1/!i-)*(q')} = 6(q - q'). 

It is to be noticed that even a square-integrable wave
function formed by superposing the eigenfunctions with 
A ranging over a finite interval does not always become 
a nonsingular function. In other words, such square
integrable wavefunctions must also be treated as hyper
functions of q. 
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The three-dimensional convolution of reduced Bessel 
functions and other functions of physical interest 
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A method for evaluating convolution integrals over rather general functions is suggested, based on the 
analytical evaluation of convolution integrals over functions 

B~L(r) = (2hr)1I2rL +vKv(r) Yf(8,</», 

which are products of modified Bessel functions of the second kind KvCr), regular solid spherical 
harmonics r LYf(8.</». and powers r v. 

1. INTRODUCTION 

In many branches of mathematical physics one en
counters the problem of how to evaluate three-dimen
sional convolution integrals 

ip(R) = f dr g(rif(R - r) (1. 1) 

with given functions g andf. 

A common method for evaluating these integrals is 
based upon the Fourier transform convolution the
orem1~ which states that the Fourier transforms ~, 
g, andf are related by 

(1. 2) 

This relationship allows the transformation of the two
centric convolution integral ip(R) of Eq. (1. 1) into the 
one-centric Fourier integral 

ip(R) = (21T)-3/2 f dkexp(ik'R)~(k) 
= f dk exp(ik . R):g(k){(k) (1, 3) 

which usually is easier to calculate. This method, how
ever, requires the evaluation of three integrals, name
ly], g, and the integral of Eq. (1. 3). Often this is 
rather cumbersome or even impossible. 

In the present article we shall suggest another method 
of evaluating convolution integrals ip(R). This method is 
easy to handle and leads to simple results in many 
cases. It is based on some properties of the so-called 
reduced Bessel functions (RBF's) which so far do not 
seem to have been recognized properly. It will be 
shown in this paper: First, the convolution product of 
two RBF's is simple, in fact it is given by a combina
tion of some other RBF's. Second, many functions can 
be expanded in terms of RBF's. Therefore, also for 
these rather general functions the convolution integrals 
can be obtained analytically in terms of RBF's, making 
any further integration superfluous. 

In addition to the mathematical aspects discussed so 
far, there are strong physical reasons for investigating 
the integral properties of RBF's. The RBF's are close
ly connected with Slater-type orbitals (STO's) which 
play an important role in molecular theory. 

The RBF's are of physical interest not only because 
of their peculiar integral properties, but also because 
of their local behavior, which allows the construction 

of physically meaningful wavefunctions. Shavitt suggest
ed that the RBF's may be used as the radial part of a 
generalized type of orbital in atomic and molecular cal
culations. 5 Recent calculations of the ground state en
ergies of small molecules have shown that in fact the 
RBF's represent a good basis set for LCAO-MO 
(linear combination of atomic orbitals-molecular orbi
tals) calculations. 6-8 This is another reason for in
vestigating molecular integrals over RBF's, which are 
always connected with convolution integrals. 

2. DEFINITIONS AND BASIC FORMULAS 

The following definitions and formulas will be used. 

We define a function B~L(ar) by 

Bi:L (ar) = (ar)L kv(ar) Yf(S1r) = kv (a-r)Yf (ar). 

The order II is arbitrary. For half-integer order II 

=N - ±, it is advantageous to define 

P~_l!2.L(O'r) = [2N+L(N + L)! ]-1 

(2.1) 

(2.2) 

The anisotropy is expressed by the surface spherical 
harmonic Yf(Qr) using Condon-Shortley phases. 9 The 
function B~:L(ar) is a product of a regular solid spheri
cal harmonic Yfjcyr) = (arjLYf(e, 1» and a reduced 
Bessel function kv (ar) of arbitrary order which is de
fined by 

kv(ar) = (2/1T)1/2(cyr)VKv (ar), (2.3) 

where Kv(ar) is a modified Bessel function of the sec
ond kind. 10 Here, a denotes a scaling parameter, kv 
should not be confused with the spherical Bessel func
tion kl' which for integer l is defined by 

(2.4) 

Certain properties of the reduced Bessel function are 
of special interest. The function kv (x) is finite at the 
origin if II ~ ° and increases like x-2v for x - ° if II < 0, 
while for x - 00 it decreases exponentially. For half
integer order v, one has 

,. () -l-x 
1?_1/2 X =x e , 
;: () -1 -x 4- (2N - P - I)! 
?N-1/2 x =x e ;:1 (p-1)!(N-p)! 

(2.5) 

(2.6) 
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for natural numbers N = 1, 2, .... The reduced Bessel 
function obeys the relationshipll 

(2.7) 

where the "Bessel operator" is defined by 

D~v = (x-1 d/dx)N, (2.8) 

The following recursion formulalZ holds for all v 

If r(x) denotes the gamma function, 13 the Pochham
mer symbol14 (a)N stands for 

(a)" = a(a + 1) ... (a + N - 1) = r(a + N)/r(a), (a)o = l. 

(2. 10) 

Use will be made of the Jacobi polynomials, which 
can be represented by the following series expansion15 

pU-"vl (x) = r(1l + N + 1) • '£ r(1l + 1'+ N + P + 1) 
N r(ll+v+N+1) p=op!(N-p)!r(ll+p+1) 

x (x; 1y. (2.11) 

Because16 

p(!-',vl (_ 1) = (_ l)N r(N + 1'+ 1) = (_ 1V(N + v) (2.12) 
" N! r (v + 1) N' 

Eq. (2.11) becomes Vandermonde's theorem17 for 
x=-l. 

For the integral over the product of three spherical 
harmonics, which is the Gaunt coefficient18 and may be 
expressed by Clebsch-Gordan coefficients19 as in
dicated, the Dirac notation is used, 

(L 1M 1 IL 2iI12 Ilm) 

* = I dQ Yfl (Q)Y~~(Q)Y7(Q) 

== [(2l + 1)(2L2 + 1)]1/Z l47T(2L1 + 1)]-1/2 

X e (Z, L 2, L 1; 0, o)e (Z, L z, L 1; m, .'vlz). (2.13) 

The angular momentum quantum numbers L 1, L 2, and 1 
often appear in certain combinations for which we in
troduce the following abbreviations, where A should 
remind us of the triangular condition: 

Al = (L 1 + L2 -Z)/2, ALI = (L z + 1 - L1)/2, 

ALz = (l + Ll - L z)/2, (2.14) 

a(L1) = a(Lz) = a(Z) = (L1 + L2 + Z)/2 = a. (2.15) 

The double factorial function is defined by 

(2n)!!=2.4.6 ••• (2n)=2"n!, (2.16) 

(2n + 1)! ! = 1,3,5, , , (2n + 1) = (2"n! )-1(2n + 1)!, 

(2.17) 

0!!=(-1)!!=1!!=1. (2,18) 

3. CONVOLUTION OF REDUCED BESSEL FUNCTIONS 
WITH UNEQUAL SCALING PARAMETERS 

In this section it will be shown that the convolution 
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p~oduct of the functions 1?~~-1(2,L ~O'r) and B~2~t/2,L2({3r) 
WIth N1,N2 = 0,1,2,'" and WIth dIfferent scallI1g param
eters 0' and {3 leads to the following formula: 

forB ~r-l /2, Ll (ar)BX~_1 /2, L2 [(3(R - r)] 

="0 (L2M21 L1Mlllm) 
I 

(3.1) 

Hence, the resulting linear combination contains only 
functions B'::..I/2,1' 1. e., functions of the same type as 
those contained in the integrand of the convolution inte
gral. The coefficients 

C~;~;:(a, i3) = (_1)"2+~2+t47Ta-3(;) ~1 [1- (!) 2r/c~cl 
x P (-"2-<l.~1 +t, "1+<l.~2) ((a 8)2 + 1) (3. 2) 

"2+A2- t (a (3) - 1 

are related to the Jacobi polynomials defined by Eq, 
(2,11), The expansion Eq. (3.1) is finite: The summa
tion index 1 is restricted to the values allowed by the 
triangular condition 

ILl - L21 Zo ls Ll + L 2• (3.3) 

Due to the Gaunt coefficient one has 

(3.4) 

In Eq. (3.1) it is not possible to set a = (3 due to 
the occurrence of singularities in this case. Although 
these singularities cancel each other, the compact 
formula for the case a = f3 will be derived in a different 
manner in the next section. 

For the derivation of Eq. (3.1), we consider the 
following integral: 

L1L2 ( ) I M* ( M2 [ ( ] SN1N2 a,{3,R = drBNI-l/2,Ll ar)BN2-1/2,L2.{3 R-r). 
(3.5) 

With the help of Eq. (2.7) we obtain for Nl = ° 
S~I~22 (a, (3, R) = (- 2r N2 -L2[ (N2 + L 2)! ]-1/32N2+L2-1 (3.6) 

xl drDMt (ar)D N2+L2{3L2+1 D-l/2,L1 a 

x k L {(31 R - r I ) y~2 (QR-r). 
2 2 

The product of the spherical Bessel function k L [as 
defined by Eq. (2. 4)] and the spherical harmonfc Yf~ 
is called a modified Helmholtz harmonic. 20,21 The 
addition theorem for this function is given by20,21 

kL [(3IR - rl]' Yf2(QR-r) 
2 2 

=47T{3-1' 6 6 (L2M2IZ1mlIZ2m2) 
'1

'
2 m l m2 

(3.7) 
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with 

r<=min(r,R), r)=max(r,R), (3.8) 

and 

(3.9) 

We now represent the product I. K in the addition 
theorem by the following "discontinuous integral22

" 

(- 1 )'<+'21,<+1 /2 (j3r<)K,> +1/2 (/3r») 

= (- 1 )<l l -'2+n) /2/3n. f
o
" dttl -n(t2 + a2tlJ'l+1 /2 (rt) 

XJ'2+1 /2 (Rt) (3.10) 

with n being an arbitrary natural number such that 
(Zl -Z2 + n) is even. If we introduce Eq. (3.7) and Eq. 
(3.10) into Eq. (3.6), the integration over the angular 
variables can be performed making use of the ortho
gonality relations of the spherical harmonics. The 
application of the Bessel operator Df2+L

2 on 
j3L2+n(t2 + 132r l in the integrand of the remaining integral 
produces an expression independent of n, yielding 

X0 '0 (-1)AI2(L2MziZlmliZ2m2)l/"l(UR) 
11'2 "'1 1112 

X 0Il' r,. 0"'1' Ml fo 00 dr fo '" dt e-<Y.r 

x r Ll +1/2 (t2 + a2tN2-L2-1tL2+1 

XJ, +1/2 (rt)J, +1/2 (Rt). 
1 2 

(3.11) 

The integration over r can be performed according to23 

1. .. dryLl+l/2J (ty) e-<Y.r 
o Ll+l/2 

(3. 12) 

If the Bessel operator D:l is applied to both sides of 
Eq. (3.11), because of the definition Eq. (2.8) together 
with Eqs. (2.7) and (2.6), one obtains 

L1L2( 
SN

1
N

2 
Q,/3,R) 

= L: 25/2rrl/2(_1)Alw2Nl+Ll-1132N2+L2-1R-1/2l/"2(UR) 
' 2"'2 2 

X(LzM2iL1M1iZ2m2> V<:;B 
and the remaining integral V, becomes 

2 

Because for Q '* f3 it is true that 

[(t2 + a 2) (t2 + f32 )]-1 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

where IVa-and equivalently Wll-are special cases (q 
= 0) of the integral 

1-1"" = 1'" dt tLl+L2+3/2(t2 + (2)-q-1J (Rt) 
q 0 . '2 +1 / 2 , 

q==0,1,2,3,···. (3.17) 

It is advantageous, however, to define the more general 
integral Eq. (3.17), because we obtain integrals of this 
type after having carried out the derivatives with re
spect to a and f3 in Eq. (3.16) with the help of Leibniz" 
rule. In the next step, the integral Eq. (3. 17) can be 
reduced to a definite integral, which is known, 24 if the 
properties of the Bessel operator Eq. (2.7) are utilized. 
One obtains 

H": = (rr/2)1/2(2qq! )"1R"'2-1/2D~/2 

Collecting the results of the various calculations as 
indicated, we arrive at the following relationship: 

SL1.L2 (a f3 R) 
N1• N2 ' , 

X6q! (~2 - (32)q{aq(Nl' N2, L 1, L 2). ~ 
q 

+ (_ I)Nl +N2+L1+L2-q+l a (N N L L)' ~q I (0'2 _ f.l2)q} 
q 2, 1, 2, 1 Q' tJ 

(3.19) 

with the coefficient 

a (N N L L )=7Tl/225/2(ql)-I(-Nl-Ll-1) 
q l' 2, 1, 2 . N2 + L2 _ q • (3.20) 

In order to obtain an analytical closed form expression 
for the integrals of the type ~, in Eq. (3.18) the de
rivatives with respect to R are to be taken. Before 
doing so, it is advantageous to expand the expression 
of Eq. (3.18), on which the Bessel operator is to be 
applied, in terms of pure k functions, because then 
Eq. (2.7) can be utilized and cumbersome expressions 
are avoided. A method for expanding certain given 
functions in terms of reduced Bessel functions is given 
in Sec. 5. Here we use the following expansion: 

2 ~ 

R qko(2 )_Q+l/2(OIR) 

=0I-
2QEt(!) (- 2a2+1)p ko+q_P+l/Z(OIR) (3.21) 

which is a special case of Eq. (6.1). The expansion is 
finite, because the summation limits are determined 
by the binomial coefficient and/or the Pochhammer 
symbol, which only for certain p values do not vanish. 

If the Bessel operator is applied to each term of the 
series given by Eq. (3.21), one obtains, due to Eq. 
(2.7), a shift of the indices of the k functions. In Eq. 
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(3.19) there remains a dou~le summation over q and p. 
Because the indices of the k functions contain, among 
others, p + q, a rearrangement of the terms of the 
double sum by collecting Ii functions with the same index 
gives a simple sum of Ii functions whose coefficients 
turn out to be Jacobi polynomials. With the help of the 
transformation16 

(;)p~_I'B) (x) == (n;~) (x; 1 y p~~iB)(X) 
we obtain the formula given in Eq. (3.1), 

4. CONVOLUTION OF REDUCED BESSEL FUNCTIONS 
WITH EOUAL SCALING PARAMETERS 

For equal scaling parameters ~ == ~ the relationsr.ip 
Eq, (3,1) does not hold, because then it contains in
determinate expressions like 00 - 00 or % although the 
limit 0' - (3 should exist. It seems easier, however, to 
consider an independent evaluation of the integral 
st1t2 (0' , 0', R) which will be given in this section, The 
re~u1t is the following compact formula: 

5;1';2 (0',0', R) 
l' 2 

= fdr.BXr-1/2'Lt(O'r)BX~-1/2'L2[~(R - r)] 

= 41Ta-3I (1-211121 LtMtlZm> L (- 1)1 (f:J.Z) 
Itt 

X 13:Vt +N2+Lj +L2-I-t+1/2, I (aR). (4.1) 

The summation indices 1 and t run over all values for 
which the Gaunt coefficients and the binomial coeffi
cients do not vanish. This is the case for 

IL2-L11~l~Ll+L2' m==M2-Mj, O~t~c"l. (4,2) 

The derivation follows the lines explained in the pre
ceding section up to Eq. (3,14). Setting 0' =(3 in Eq, 
(3.14), one sees that the integral Vr;", defined by 
Eq. (3.14) is equal to ~ defined by Eq. (3.17) with 
q =N1 + N2 + L2 + 1. Obviously q is fixed now; there is 
no summation over q anymore. This is due to the 
fact that one does not need the partial fraction expan
sion Eq. (3.15) as was necessary for the case ~ #- (3. 

The remaining integral ~ is again given by Eq. (3.18). 
Carrying out the derivatives with respect to R with the 
help of Eqs. (2.7) and (3.21) we obtain the final result 
Eq. (4.1) if we use Eq. (6.1) and Eqs. (2.11), (2.12). 

If one "angular momentum quantum number," for 
instance L 2, vanishes, the sums over Z and t in Eq. 
(4.1) reduce to one term, because c"Z = 0 for L2 = M2 = 0, 

f dr EXr'1I2'L1(O'r)B~2.j/2,o[a(R - r)] 

(4.3) 

5. CONVOLUTION OF FUNCTIONS BY EXPANSIONS 
IN TERMS OF REDUCED BESSEL FUNCTIONS 

As has been shown in the preceding section, the con
volution integral of two 13 functions, 

(5.1) 

for half-integer v, v', leads to simple results. The re
sult is a simple sum of B functions, which for the case 
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of unequal scaling parameters a and l3 is given by Eq. 
(3.1), for the case of equal scaling parameters by Eq. 
(4.1). The simplicity of these relationships also makes 
it possible to evaluate the convolution integrals of 
functions of the type g(r)Yf(r), if the radial part of these 
functions can be expanded in terms of reduced Bessel 
functions liv (r). In this case, the corresponding convolu
tion integral can be expressed by a series of integrals 
of the type given by Eq. (4. 1), because the functions 
13:' L (r) are given-apart from a constant-by liv (r)yt(r) 
as defined by Eq. (2.2), 

In this section we give a method which, under certain 
conditions, enables us to expand a given functionj(x) in 
a series of reduced Bessel functions according to 

j(x) =6 apRp+".ll2 (x). (5.2) 
p 

The functions j(x) considered here must fulfill the 
following rather general conditions: 

(a) j(x) can be represented by a Laplace integral 

j(x) = [ ds exp(- sx2}j (s), x> O. (5.3a) o 

(b) The Laplace transformj(s) has the property that 
the following power series expansion hOlds: 

exp(4s)"1]. j (s) 

= (2/1T)1/2I; ap {2s)"P-,,-1/ 2, s> O. (5.3b) 
p 

(c) The following series, which represents the inte
grand of the Laplace integral Eq. (5,3a), 

I; ap (2s)"P." -1/2 exp[ - (4s)"t - sx2 ] 
p 

converges uniformly with respect to s for 0 ~ s < 00 

and for all x> 0, 

(5.3c) 

Under the conditions (a), (b), and (c), j(x) can be 
expanded in terms of reduced Bessel functions accord
ing to Eq. (5.2) with Jl and ap being determined by 
Eq, (5.3b). The proof is easy: Insert Eq, (5, 3b) into 
Eq. (5,3a) and interchange the order of integration and 
summation, which is allowed because of (c), then use 
the well-known Laplace transformation for reduced 
Bessel functions given by, 25 

(5,4) 

This yields Eq. (5,2), Q.E.D, 

Obviously, the recipe is rather simple: If the 
Laplace transform 7 (s) is known, one has to expand the 
left-hand side of Eq. (5.3b) as a power series of s, A 
comparison of the coefficients of the left-hand side with 
those of the right-hand side of Eq. (5.3b) furnishes Jl 
and the coefficients ap, which can be inserted into Eq. 
(5.2). This yields the expansion of j(x) as a series of 
reduced Bessel functions, For functions whose expan
sions contain only reduced Bessel functions of half
integer order (i. e., if Jl is integer), the convolution 
integral can be evaluated by using the formulas given in 
the preceding sections. 
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6. EXAMPLES 

As examples we give some expansions which were 
found by application of the method described above. 

The following formula allows the product of a power 
of x times a reduced Bessel function to be represented 
by a finite sum of pure reduced Bessel functions: 

tt' '" p(t/2) (1- 2n- t) ~ ( ) 
X Rn_l/2(X) =;:0 2 p 2 pkt_p+n_l/2X (6.1) 

for n = 1, 2, 3, .• " t = - 1,0,1,2,000. 

The summation limits are determined by the binomial 
coefficient and the Pochhammer symboL This formula 
Eq. (6.1) was obtained with the help of the Laplace 
integral26 

X2/.L-2h 2v (x) = J~ ds expl- sx2 ]{s-/.L+1/2 
o 

(6.2) 

where W~.K is Whittaker's function. II1ultiplying the 
whole equation (6.1) by Yf(S1R ), one obtains for n = 1 and 
t+L=N-1, because ';l/Z(x)=exp(-x), 

X%,L (ca) = (0' y)N-l e-arYill(S1r) 

(- 2)P-N+L(N - L)! M =: (2p - N + L)! (N _ L _ P)! B p- 1I2 ,L (Il'r). 
(6.3) 

The summation index p runs from minp to maxp=N-L 
with 

l
eN - L)/2 

minp== 
(N - L + 1)/2 

for N - Leven, 
(6.4) 

for N - L odd. 

This formula gives the expansion of a Slater-type atomic 
orbital in terms of reduced Bessel functions. It is help
ful for the evaluation of molecular integrals which occur 
in LCAO-MO calculations. 

The Coulomb potential may be represented by the 
series 

r-1 == I;2-P(P!)-1'~_1/2(J·) (6.5) 
p=O 

which can be derived from the Laplace integral27 

r-1 =7T-1/2 1~ ds s-1/2 exp(- s;). (6.6) 
o 

A generalization of Eq. (6.5) is the expansion of an 
irregular solid spherical harmonic Z1 (r) = r-L

- 1 Yf(S1r ) 

in terms of /3 functions, 
~ 

Zf (ar) = [(2L - I)! ! J-1 ([3/O')L+l L B;~L-ll2. L ([3r). 
p=O 

(6.7) 

Another useful relationship is the following expansion 
of the product of two RBF's as a finite sum of RBF's: 

';N1+lf 2 (O'r) k N2+l /2«(31') 

N~N2 2$1-1 (q + I)! 2,-N1-N2 
= 2..; '6 (- l)S+Qa q 

5=0 Q=' (q - s)! (2s - q + 1)! (0' + (3). 

x II:l NZ (~) li.+l1 2 [(0' + (3)r] • (6.8) 

Here the polynomials n:1N z are given by 
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n:1NZ ({3/tt) 

_ mintN2) (2N1 -q+p)!(2N2 -p)! (P')p 
- />=max(O:Q- Nl) (q - p) ! P ! (Nl - q + p) ! (N2 - p)! 0' • 

(6.9) 

As an illustration of the advantages of the method 
suggested here we will discusss the evaluation of the 
two- centric nuclear attraction integral over Slater
type atomic orbitals (STO's) as defined by Eq. (6.3), 

fdrx~,~(OIr) Ir~RI x~:,~,({3rL (6.10) 

This, of course, is also the potential at the point R 
which is generated by a charge distribution 
x~ ~(O'r)x~; ~,(f3r). Because of Eqs. (6.3) and (608), 
this moledular integral can be expressed by a sum of 
integrals of the form 

A%,L (0', R) == f dr (I r - R I )-1/3%_1/2,L (ttr). 

If the operator (I r - R I )-1 is expressed by the series 
Eq, (6.5), one obtains with the help of tile convolution 
theorenl Eqo (4.3) the formula 

AX, L (0', R) == 47T(lI-2(_ tyR)L Yf(QR)D~R{Q N, L (O'R)}, 
(6.12) 

where Q N, L stands for the infinite series 
~ 

Q N, L (etR) == L 2-P-
N-1[(p+ N + L + I)! J-1';P+N+L+11 2 (a R). 

p=O (6013) 

Putting p + N + L + 1 ==q, a comparison with Eq. (6.5) 
shows that Q N, L can be represented as 

N+L 
QN,L(O'R) = (0'R)-1_ L; 2-

q
(q! )-l kq_1/2(oR). (6.14) 

.=0 

The application of the Bessel differential operator 
D~R is now straightforward and leads to the remarkably 
simple result for the crucial integrals AX L of Eq. 
(6.11), ' 

A~,L (0', R) == 47T0'-2 [(2L - I)! !Zf(aR) 

N+L 
- L; £~L-ll2,L (O'R)}. (6.15) 

q=O 

This is a simple linear combination of irregular solid 
spherical harmonics Zf and J3 functions. 

The analytical evaluation of other types of molecular 
integrals based on this method will be discussed some
where else. 28 

7. RELATION TO DIFFERENTIAL EQUATIONS 

As is well known, a solutionf of the inhomogeneous 
differential equation 

Lf(r) =p(r) (7.1) 

is given by the convolution integral 

fer) == f dr' G(r - r')p(r'), (7.2) 

where L is a linear differential operator and G is the 
corresponding Green's function with 

LG(r - r') = o(r - r')o (7.3) 

E. Filter and E.O. Steinborn 83 



                                                                                                                                    

A solution of the differential equation (7. 1) can be 
obtained as an expansion in terms of B functions if both 
the Green function G as well as the function p, which 
represents the inhomogenity, can be expanded in terms 
of B functions: In this case the convolution integral 
given by Eq. (301) of Sec. 3 or Eq. (401) of Sec. 4 can 
be utilized, Therefore, the method described in Sec. 5 
is helpful also for the solution of certain differential 
equations. 

For the following differential equation 

[(:rY -a2]/(r)=_47TP(r), (7.4) 

which is an inhomogeneous "modified" Helmholtz equa
tion, the Green function itself is a special RBF, namely 
ii-liZ' because29 

[Ur)2 -a2}i_1/2(alr-rll)=-47TOO(r-rl). (7.5) 

Therefore, with the help of the Green function (1/2, 

a solution / of the differential equation (7.4) can be 
written as the convolution integral 

/(r) = J dr' p(r')(l/2(O' I r - r' I). (7.6) 

In this case, only p needs to be expanded in terms of 
RBF's in order to utilize the convolution integrals 
Eqs. (3.1) and (4.1). 

If p itself is a B function, a comparison of the convolu- ! 

tion integrals Eqs. (7.6) and (4.1) shows that a solution 
f is also a B function, fulfilling the following differential 
equation (7.7), which of course can be verified directly, 

(:r) 2B%_1/2,L(CI'r) 

= a2[B~_1 /2,L (ar) - 2(1'1 + L + 1)BX-3/2,L (0 r) J. (7.7) 

This relationship is very helpful for the evaluation of 
matrix elements of the kinetic energy operator, because 
it allows the expression of these matrix elements in 
terms of convolution integrals. 

These considerations show that not only the proper
ties of the B functions with respect to integration, but 
also their properties with respect to differentiation are 
of physical interest. 

8. CONCLUSION 
In this article, some properties of reduced Bessel 

functions (RBF's) have been investigated. For greater 
applicability, the so-called B functions were introduced, 
which are defined by Eq. (2.2) as products of a RBF 
times a regular solid spherical harmonic. We have 
shown that the convolution products of two B functions 
can be represented by a rather simple sum of-again
B functions. The result for the convolution integral of 
B functions with equal scaling parameters is given by 
Eq. (4.1), whereas the corresponding formula for the 
case of unequal scaling parameters is given by Eq. (3. 1). 

In Sec, 5, a rather general method is suggested which 
allows us to expand arbitrary functions in terms of B 
functions o By this method it is possible to use the sim
ple results of Secs. 3 and 4 also for the evaluation of 
three-dimensional convolution integrals over other 
functions than B functions. 

Convolution integrals are of special interest in quan
tum chemical problems which require the application of 
LCAO-MO methods. In this case, the multicentric 
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molecular integrals, which occur, may be considered 
as convolution products. For instance, Gaussian-type 
orbitals (GTO's) are frequently used in molecular cal
culations because the convolution product of two primi
tive Gaussians is a simple one-centric integral over 
another Gaussiano 30 This advantage, however, is partly 
compensated by the drawbacks of the GTO's due to 
their intrinsic shape. Therefore, it is desirable to use 
other basis functions, e. g., STO's, which may lead to 
a better convergence. So far, this was not possible 
because most of the multicentric molecular integrals, 
which occur for these basis functions, are extremely 
difficult to evaluate. Because the B functions considered 
in this article are closely related to STO's, the results 
obtained here are of great advantage for the investiga
tion of this problem. 28 
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A generalized prolongation structure and the Backlund 
transformation of the anticommuting massive Thirring model 
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The prolongation structure method of Wahlquist and Estabrook is generalized to Grassmann algebra 
valued differential forms and used to determine a Backlund transformation for the equations of the 
anticommuting massive Thirring model. 

1. INTRODUCTION 

The massive Thirring' model is defined by the 
equations 

(1. 1) 

(1. 2) 

It has been shown by Kulish and Nissimov2 that in the 
case where the fields ¢, and ¢2 anticommute, the equa
tions possess an infinite number of conserved quanti
ties. Such a situation has always Signaled the existence 
of soliton type behavior and a related Backlund 
transform. 

In Sec. 2 we will determine a prolongation structure 
for the Thirring equations by generalizing the Wahlquist 
and Estabrook3 method to Grassmann algebra-valued 
differential forms. Following this in Sec. 3 we deter
mine the Backlund transformation as a diffeomorphism 
from the original ideal to the prolonged ideal. 

Finally, in Sec. 4 we prolong the ideal further by 
introducing a potential w. It is then shown that this leads 
to the Kulish and Nissimov result of an infinite set of 
conservation laws. 

2. GRASSMAN ALGEBRA VALUED PROLONGATION 
FORMS 

Equations (1.1) and (1.2) and their complex conjugates 
can be represented by the closed ideal of Grassmann 
algebra-valued forms spanned by 

0', =d¢J\ dT +i[m¢2 +g1)2¢2¢,JdX AdT, (2.1) 

(2.2) 

(2.3) 

(2.4) 

We seek to determine a I-form !1 having the property 
that the ideal spanned by 0'" 0'2' a" a2 , !1, Q is also 
closed. 

The prolongation form !1 is taken in the form 

!1=dY+F(¢" 1)" ¢2' ¢2' Y, Y)dX 

+G(¢" 1>" ¢2' ¢2' Y, Y)dT, 

where Y, Yare Grassmann algebra-valued 
pseudopotentials. 

(2.5) 

If we denote the Grassmann algebra which is assumed 
to be over the complex field by A then F and G both be
long to M(A, A), the space of maps of A into itself. 

The derivative of a function HE: M(A, A) can be de
fined as follows. As every element Y of A has the 
property y2 = 0 there is a unique element H y of A such 
that 

H(Y) =Hy Y. (2.6) 

The element H y is defined to be the right partial deriva
tive of H(Y) with respect to Y. Further details of 
differential geometry on Grassmann manifolds can be 
found in the work of Fronsdal4 and Mansouri. 5 Using the 
normal prolongation structure technique we find, taking 
care to maintain the order of terms, that 

G4>
l

O'l +F4>20'2 +G 01 a, +F02 a2 +[F, GJ=O 

and 

G4>2=G~2=F4>1 =F~, =0, 

where 

[F, G] ~!GyF -FyG +GyF -FyG. 

If we take F and G in the forms 

F=Xo(Y, y) +X,(Y, Y)¢2 +X2(Y, Y)¢2¢2 

and 

(2.7) 

(2.8) 

(2. g) 

(2.10) 

(2.11) 

then substitution of these forms into (2.7) gives the 
relations 

[Xo, X3J=0, [Xo, X5J=0, [X2, X5J=0, [X2' X3J=0, 

(2.12) 

(2.13) 

(2.14) 

(2. 15) 

(2.16) 

(2. 17) 

In the case of a normal manifold these relationships 
would be the basis of the prolongation structure. How
ever in this case we cannot remove the fields ¢" ¢2 to 
the outside of the Lie brackets without assuming some
thing about the Xj(Y' n. The situation is, on the other 
hand, Simpler as we know that each Xj must have the 
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form 

XJY, Y)=x j +"jY+ZjY+wjYY, (2, 18) 

We will restrict ourselves to the case when 'X"" )Ii' Zi' 

and UJ i are complex numbers. Substitution of such 
general forms will lead to a number of quadratic rela
tions between the Xi' )'i> "i' and Wi' 

For the Grassmann algebra case we will refer to that 
set of quadratic constraints as the prolongation struc
ture of the original equations. 

We will not attempt to determine the most general 
prolongation structure but choose special forms from 
the start to reduce the algebra. Take the generators Xi 
in the forms 

(2.19 ) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

X5 ='5 Y' (2 24) 

The commutator relations (2.12) are automatically 
satisfied by this choice and so we have only to consider 
Eqs. (2.13)-(2.17). 

[Xo, X4 0J 1 1 == - ('ox4 - 3'4XOYY)¢, = im(x, + V, YY) (2.25) 

or 

(2.26) 

(2.27) 

and so 

(2.28) 

which yields the constraints 

c:lc1=-im'4' .V ,x3 =inzY4' (2.30) 

(2. 31) 

giving 

:1'5'(, = ig'(" )',:1'5 = - igyu (2.32) 

(2.33 ) 

which leads to the final pair of constraints 

(2.34) 

Equations (2.26), (2.28), (2.30), (2.32), and (2.34) 
form a prolongation structure for the massive Thirring 
equations with anticommuting fields. This prolongation 
structure has the two-parameter solution 
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Xo= -Am, (2.35 ) 

X, = 2gmp-1, Yl = iAp, (2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

where A is a real constant. By rescaling Y we can make 
P take any value. For convenience we make )'4 = ig to 
match with x2 and '(5' This gives the prolongation form 

Q = d Y + [- Am Y + (2mi - AgYY)¢2 +ig¢2¢2 YI dx 

+ [lilA -J Y + (- 2mA -J + if{ yY)¢l +ig¢l ¢l YjdT. 

(2.41) 

3. THE BACKLUND TRANSFORMATION 

In terms of prolonged ideals a Backlund transforma
tion can be considered6 to be a diffeomorphism from the 
original ideal spanned by Qll, 0'2' a" Q2 to the prolonged 
ideal spanned by Cl'u 0'2' a" a2 , Q, i1. Thus we seek 
new functions ¢{ = ¢{( 1J" ;P" t/!2, ¢2' Y, Y) and ¢~ 
= (l)~(tb" 1)" cP2, d,)2' Y, Y) having the property that 

IY{ = d¢{ 1\ dT + i[m ¢; +!{1);¢~t/!{ !dX 1\ elT 

=f,O', -t-/~Cl'2 +f3a, +1~a2 +1],I\Q +1]2I\Q, (3.1) 

IY~ = d¢~ 1'. dX - i[mt/!{ + grp{¢{ rf;; I dX I\dT 

=g,Cl'l +g2 IY 2 +!{3Q l +i{4 a2 +1]31\Q +1]4I\Q. (3,2) 

As we are dealing with a Grassmann algebra we know 
that 

¢;=aJcP" rp" fP 2 , rp2) +Pi«i)" (fi" ¢2' (2)Y 

+Wj(dJ" (fi2' m2, (2)Y +Kj(cP" CP" ¢2, <P2)YY' 

(3,3) 

By substituting these forms into (3.1) and (3.2) it is 
possible to determine the functions ai' Pi> Wi> and K j • 

The calculations are very tedious so we present only the 
final result. The mappings B" defined by 

B":(OJ,, fP 2, Y)--(-Cb 1 +Y+~:: YY¢" 

cP 2 + iAY + ~~! YY ¢2, Y) 
has the property that 

IY{ = - 0', +e~;! Y¢, -1) dT Q -f;~% dT) 1\ 11, 

QI; = Cl'2 +(iAg Y¢2 -l)d X f\ Q _(12'
Ag 

dX) 1'. i1. 
2m m 

and is therefore a Backlund transformation. 

(3.4) 

(3.5) 

(3.6) 

To obtain a more conventional form of the trans for -
mation we must section the prolongation form (2.41) 
onto a solution manifold of the ideal (2.1)-(2.4). This 
gives 

Yx = Ani Y - (2mi - Ag YY)¢2 - ig¢2 cP2 Y, (3.7) 
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Y
T

= -mA-Iy -(-2mA-I +igYY)<PI-ig¢lIcf>IY, 

which together with Eq. (3.4), 

(3.8) 

(3.9) 

(3.10) 

give the complete form of the Backlund transformation. 

We note that this transformation has also been deter
mined by Izergin and Stehr? uSing different methods. 

From the trivial solution cf> = 0 one easily generates 
the single soliton solution 

cf>{ = a exp[m(U - \ -IT)], (3.11) 

cf>~ = i\ a exp[m(U - \ -IT}], 

where a EA and AER. 

(3.12) 

4. FURTHER PROLONGATION AND CONSERVATION 
LAWS 

As we have managed to prolong our original ideal 
0'1' 0'2' au a2 , to O'u 0'2' au a2 , n, IT it is natural to 
enquire if we can prolong this ideal also. It is not diffi
cult to show that the form w defined by 

W=A('Pz Y + Ycp2)dX +i(CP1Y - Ycf>I)dT (4.0 

is a potential for the prolonged ideaL In fact 

87 

dw = A(a2 Y + Ya2 ) +i(al Y - YO'I) 

- (A'P2 dX +i'PI dT)A n + (Acf>2 dX - icf>l dT) A n. 
(4.2) 
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Following the arguments for prolongation structures on 
a normal manifold, 3 we deduce from the Stokes theorem, 

(4.3) 

that if we choose a curve C lying in a solution manifold 
of the prolonged ideal which is closed, then 

(4.4) 

Expanding W as a series in A, 
~ 

w=L Aiwo 
i=O 

(4.5) 

we see that (4. 4) yields the infinite set of conservation 
laws 

fcWi=O. (4.6) 

These are the Kulish and Nissimov2 conservation laws. 

IS. Coleman, Phys. Rev. D 11, 2088 (1975). 
2D. Kulish and E. Nissimov, JETP Lett. 24, 247 (1976). 
3H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16, 1 
(1975). 

4C. Fronsdal, U. C. L. A. preprint UCLA/76/TED/1 (1976). 
5F. Mansouri, Yale preprint COO-3075-152 (1976). 
sR. Hermann, Interdisciplinary Mathematics, Vol. XII: The 
Geometry of Non-Linear Differential Equations, Backlund 
Transformaticns and Solitons, Part A (Math. Sci. Press, 
Brookline, Mass., 1976). 

7 A. Izergin and J. Stehr, DESY preprint 76/70 (1976). 
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Eigenvalues of S'7T for spins 1/2, 1, and 3/2 
D. L. Weaver 

Department of Physics. Tufts University. Medford. Massachusetts 02155 
(Received 28 February 1977) 

The eigenvalues of the matrix operator S'7T for a constant magnetic field are derived in a parallel way 
for spins 112, I, and 3/2 using only the algebra of the spin matrices and the commutation relations of the 
components of 7T. 

INTRODUCTION 

The matrix operator S • 7T, where 5 i (i = 1, 2, 3) are the 
spin matrices for integer or half-integer spin 5 and 7T 

= P - qA with p the momentum operator - i'V, q the 
charge, and A the vector potential for a constant mag
netic field B in the z direction so that A = tB(- y, x, 0), 
appears in quantum physics when the interactions of 
charged particles with spin are considered. 

The purpose of this paper is to derive the eigenvalues 
of S • 7T and indicate some of the applications for the 
three lowest nonzero spins, that is, t, 1, and %. The 
method applied in this paper is to utilize only the alge
braic relations of the spin matrices found from their 
Lorentz transformation properties and their status as 
angular momentum operators, and the commutation re
lations of the components of 7T which follow from the 
fundamental commutator of Xi and Pj' These relations, 
along with the known eigenvalues of some operators such 
as 53, as well as the standard methods for finding the 
roots of quadratic, cubic, and quartic equations, are 
sufficient to determine the eigenvalues. 

The plan of the paper is to deal in order with the 
three cases starting with the well-known spin-t case, 
which is included primarily for completeness and as the 
simplest example of the method. 

For all spins there are two relations among the spin 
matrices that will be utilized. They are the commutator 

[5 i , 5 Jt = iEiJlJSk' (1) 

and the related relation 

(2) 

The components of 1T have the commutator 

(3) 

and the related relation 

(4) 

1. SPIN t 
The algebra of the spin-t matrices is very well known, 

usually stated in the form 

(5) 

where u/ are the Pauli spin matrices, U = 2s. Equation 
(5) can be found using the 2x2 matrix representation of 
(1 very readily. The equivalent algebraic relations for 
higher spins are not so easily derived using a particular 
matrix representation. However, a general, represen-

tation independent method exists 1 that employs the 
Lorentz transformation properties of the symmetric, 
traceless covariantly defined spin tensor2 5" vp ••• with 
2s indices, each Greek index ranging from 1 to 4. All 
the elements of the spin tensor may be derived, starting 
from 544 ••• 4, by separately considering pure rotations 
and pure special Lorentz transformations. The results 
are2 

544 ••• 4 = (i)2s, 

54'" 4j=(i)2S-15/5, 

(i)2s-2 
54 ••• 41 k S (2s _ 1) {51 5 k + 5 k 51 - s 6 jk} . 

(6) 

(7) 

(8) 

By combining the transformation properties for ro
tations with those for special Lorentz transformations, 
the general, algebraic relations for any spin are found 
to be 

54'" 411 .,. iN 5 j 

=~(2s -N)54 •• , 41il "'IN -~6Jil 54'" 4i2 ••• iN 

- -
X5 4 ,., 4ki 2 ••• iN - ~ E Ji2k 54 •• 0 4ki

3 
••• iN - • , , , (9) 

where N can be any integer from 1 to 2s. Equation (5) 
follows for s = t and N = 1. 

The eigenvalues of (1. 7T follow from Eq. (5) because 

«(1' 7T)2 = UiU/Tfirrj = rr2 - qa· B 

using Eq. (4). The result for S is 

(8' 7T)2 = Hrr2 - 2q8 'B} 

where O! is defined by 

O! '" 1T2 - 2qS' B, 

(10) 

(11) 

for any spin. The operator O! is particularly important 
in magnetic field interaction problems because it com
mutes with S' 1T as well as rr2 and S· B. The eigenvalues 
of Q are qB(2n + 1 - 2m,) + P~ with m. the eigenvalues of 
53 for spin 5, P 3 the eigenvalue of -i(a/az) and n=O, 
1,2, •. '. The dependence on n follows because 1T~ + 1T~ 
has the form of the simple harmonic oscillator 
Hamiltonian operator. 

The spin-t equation 

(12) 
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with </J the eigenfunctions and A1 12 the eigenvalues has 
the eigenvalues 

A1/2 = ±t[a(n, m s , Ps)P 12 

(13) 

utilizing Eq. (10), and taking </J). to be the simultaneous 
eigenfunctions of the mutually commuting. Hermitian 
operators S 'rr, 0', and P 3 • 

2. SPIN 1 

The spin-1 algebraic relations are not as well known 
as those for spin ~. They may be found from Eq. (9) for 
s = 1 and N = 2, the result being 

(14) 

Contraction of Eq. (14) with rrjrr,rrk produces the result 

(S·rr)3=aS'1I'+qBP3· (15) 

The eigenvalues then follow from the equation 

S· 7T</J). = \ </JI.' 

by applying S '11' to </J). two additional times to obtain 

(16 ) 

{as·1I' + qBP3}</J). = A~l/!)., (17) 

resulting in the cubic equation 

A1- aAI - qBP3 = 0, (18) 

for the spin -1 eigenvalues of S· rr, where the operators 
0' and P 3 have been replaced by their eigenvalues. USing 
the standard methods, 3 the eigenvalues of S '1T for spin 
1 are 

(19) 

where 

(20) 

and 

t2 = tq~P3 _ fB~P~ _ ~~) I/J 1/3. (21) 

Only the real eigenvalues Al are of physical interest, 
and their reality depends on the expression - q2 B2 pV 4 
+ 0'3/27 being positive or zero. Using the specific ex
preSSion for 0', it is easy to see that for n ::> 1 and any 

a""qB+P~, (22) 

so that 

--~""-- ...::..a. +3...::..a. 375...::..a.+1 0'3 q2B
2
p

2 
(qB)3 {(P2)3 (P2)2 p2} 

27 4 27 qB qB -. qB . 

(23) 

Reality of the eigenvalues AI, thus depends, for n> 0, on 
the expression b3 + 3b2 - 3. 75b + 1 being greater than or 
equal to zero, with b=PVqB. The expression is always 
greater than zero except for P~ =qB/2 when it is zero. 
For n = 0, however, and ms = + 1, 0' ==P~ - qB and the 
eigenvalues of S • 1r can be complex. This will occur 
when P~ <qB. 
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These spin-1 eigenvalues of S· 11' may be utilized4 in 
deriving the enery levels of the Sakata-Taketani equa
tion5 for a spin-l charged particle. 

It is worth noting that when P 3 ==0, Eq. (15) simplifies 
to 

for the transverse components only, resulting in the 
eigenvalues 

(24) 

Al =ms[a~(n,ms,0)]'12, (25) 
1 

in analogy to Eq. (13) for spin t. 

3. SPIN ~ 

With s = ~ and N = 3, Eq. (9) yields the algebraic 
equation for spin- ~ spin matrices corresponding to Eq. 
(5) for spin t. After considerable simplification the re
sulting equation is 

5 j (5 i 51 5 i ) + (5 i 5 j 5 j )5j 
1 2 3 I 2 3 

- - t {6.. 6· . + 6.. 6· . + 6.. 6· . } 
- "1 '2'3 "2 '1'3 J'2 '1'3 

(26) 

where (5 j 5 j 5 j 3) indicates 1/3! times a sum over all 
permutati6n§ of the three indices. The simplest conse
quence of this equation is the characteristic equation 
for spin t 

{S. e + ~}{S. e - %}{S. e + t}{S. e - t}= ° 
which reduces to 

(S • e)4 = ~ (S • ej2 - !B . 

Other useful relations are, for example, 

[5h5~J.=·H5hSkL i*l?, 

Sj(5 j 5 j SI )+(Sj Sj 51 )Sj=HSj 5 j 1., 123 123 23 

and cyclic permutations. 

(27) 

(28) 

(29) 

Both sides of Eq. (26) are contracted with 1I j 1l j 111 11. 
I 2 '3 to derive the relation between (S '11)4 and lower powers. 

Some intermediate results are 

{6ji16j2i3 + 6ji2611j3 + 6ji36jli2} 1Ij1li]1fi21fi1 

= 3{(1f2)2 + q2B2}, (30) 

{6iil[5i2,Sj3J. + 6ji2[5jl ,5i). + 6Ji/5il,5i2]J 1fjrri]1fi21fh 

+ BiqS' (rrxB)S. rr - 3qS' rrB' rr, (31) 

and 

= 6rr 2(S' rr)2 + 12qrr2S· B + 18iqS· (rr xB)S'1I' 

- 9qS • rrB . 1T - ¥q2B2 + 6q2(S • B)2. (32) 
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Denoting the right-hand side of Eq. (26) contracted with 
"/fi /f i/f i.1 

by RH8, the result is 

RH8 =-f0!2 + 50! (8 '1f)2+ 4q0!8' B 

+ 16q2(S' B)2 + 12iqS' (" x B)8 . rr 

+ 10q8 ·B(8· rr)2 - 6q8' rrB'rr _¥q2B2. (33) 

Similarly, contraction of the left-hand side of Eq. (26) 

with "J"il"i2"i3 and denoted by LHS yields the intermedi
ate results 

5 J· (s. S. 5 i ) rr J". ". ". It 12 3 11 t 2 ':1 

and 

= (S' rr)4 + 2qS· B(S' rr)2 + q"2S' B 

+ 3iqS • (rr x B)S . rr - !2 q2B2 + q2(S . B)2 
4 

- ~qS . rrB . rr, 

= (S' rr)4 + 8qS' B(S' rr)2 + 3q"2S' B 

+ 9iqS' (rr xB)S· rr _15q 2B 2 

+ 7q2(S' B)2 -1¥-qS. rrB' rr, 

with the final result for LHS being 

LH8= 2(S' rr)4 + 4qCl!S' B + 16q2(S' B)2 

+ 12iqS' (rr xB)8' rr + 10qS' B(S' rr)2 

(34) 

(35) 

- 18qS . rrB . rr - 72.q 2E2 (36) 
4 

Equating LHS and RHS, one sees that remarkable can
cellations occur so that only mutually commuting terms 
remain. The result, the spin-% equivalent of Eq. (15) is 

The spin -% eigenvalues of S . rr then follow from the 
equation 

which by repeated applications of S . rr and the use of 
Eq. (37) leads to the quartic equation 

(38) 

XL2 - ~O!AL2 - 6qBP3A3/2 +* {0!2 - 4q2B2}= O. (39) 

Application of the standard methods 3 leads to the four 
eigenvalues. 

A great simplification occurs when the coefficient of 
the term linear in A3/2 is negligible, say P 3 :; O. Then 
the quartic equation is readily solved to give 

(40) 

Expanding in powers of q2 B2 / O!i yields the approximate 
eigenvalues 

(41) 

similar to Eqs. (13) and (25), but with corrections de
pending on the field strength. 
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4. UNITARY OPERATORS 

For spin ~, the operator 

U [
'Q rr1 _l(\""\)~ 

1/ 2 = expz fJO! • [;J tan ----;;;- 'J (42) 

with 

and 

is used to reduce the Dirac equation with a constant, 
external magnetic field and anomalous magnetic moment 
interaction to a form whose square is diagonal and 
gives the energy eigenvalues directly. 5 In the absence 
of the magnetic field, Eq. (42) is the Melosh trans
formation operatorB proposed to relate the constituent 
and current quark pictures of elementary particles. 
USing Eqs. (15) and (37) with P3 =0, the equivalent 
operators for spin 1 and spin % are derived below: 

Spin 1: The appropriate operator is 

[ 
rr1 (\rr11)~ U j = exp 1301' -I -I tan -.- , (43) 

'"1' m 

with the same definitions for the matrices as in the 
spin-~ case. The result is 

U1 =1- (0!~~")2 +cos~an-1C:~;)J (Ci~:")2 

+sin ~an-1C~~I)J [~lii~2 
(Ci • rr1)2 

(44) 

Replacement of tan _l ( 1"1 1/ m) with other values leads to 
an alternate form for U. For example, tan-'(I"li/(Ll'1 
+111 2)112) is appropriate for the spin-1 Foldy-Wouthuy
sen operator. 7.8 These operators may be used to trans
form Hamiltonians and other useful operators to forms 
appropriate for particular applications. ~ 

Spin %: Consider the spin-% operator 

(45) 

It has the expanded form 

exp (%13 ~ ;"~" ~= (j+ 1) cos%u8 - fcos%v8 

1 {[u2 
. 3 8 1,2 . 3 ~ 

+~ -sm"v --sm"lt u -v 11 U 

(46) 
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where 

and 

2 5 ~ 2 5 J.L±.!2 
u =2(2f+1)' v ="2 (2f+1)' 

2 
choosing one of the two possible values for A(3/2)L' 

(47) 

(48) 

When B is set to zero, U312 reduces to the expected 
form for such an operator, i. e., the same form as the 
spin -% rotation operator with is in the rotation operator 
replaced by %(3a. 

Another, simpler form of a spin-% unitary operator 
may be derived by replacing 17TLI in Eq. (45) with 
N= [(0:' 7TL)4jl/4= [O:L(O: '1T1)2 - !s(0:~4qB2)y/4. Then the 
expanded operator form is 

_2300:'1Tlg 
exp fJ N 
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(49) 

Other forms are also readily found using the algebra 
of S • rr. 

ID. L. Weaver, J. Math. Phys. 18, 306 (1977). 
2T. J. Nelson and R. H. Good, Jr., J. Math. Phys. 11, 1355 
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(1975). 

GH. J. Melosh, Phys. Rev. D 9, 1095 (1974). 
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Spaces of positive and negative frequency solutions of 
field equations in curved space-times. II. The massive 
vector field equations in static space-times 

Carlos Moreno 

Physique MatMmatique, College de France, Paris 
(Received 18 January 1977) 

The space-times considered in this article are static, Vn X R, with compact space-section manifolds 
without boundary, Vn , and such that the trajectories of the Ki1ling vector field are geodesics. For the 
physical field of spin I and mass m > 0 in these space-times, field equations are solved in any adapted atlas, 
by the one-parameter groups of unitary operators generated by scalar and vector Hamiltonians, i -11) -I, 
j = 0, I, in Sobolev spaces H/ (Vn) X HI.! (Vn ), IE JR. Hilbert spaces of positive energy solutions of field 

. I 
equations, as well as those of reduced solutions and their canonical symplectic and complex structures, are 
determined. The existence and the uniqueness of Lichnerowicz's (I-I) current on space-time are 
established, and the corresponding frequency-solution Hilbert spaces are constructed. Within the framework 
of Segal, a definition of quantum field operators is given, leading to the postulated commutator for the 
physical field concerned. 

I NTRODUCT ION 

Let Vn+l be a globally hyperbolic, (n + 1)-dimensional 
Lorentzian manifold of class C~ with metric tensor g 
of the same class. 

The physical neutral free field of spin 1 and mass 
m > 0 in Vn+l is by definition described by the real solu
tions of the system of equations 

(.:In+l- m2 )CP=0, 

ocp = 0, 

(1) 

(2) 

where An• l = do + od is the Laplacian operator on 1-form 
fields on Vn+1> d the exterior differential operator on 
Vn+l> and 0 the codifferential operator on V n+l • 

In the neighborhood 0 of each point of Vn+l , the pro
pagator lC of Eq. (1) is a (1-1)-current1 [or a (1 -1)
distribution form], defined2 as the difference of the two 
fundamental solutions of this equation. 3,4 

In the domain of a local chart of V n+1> containing 0, 
the Cauchy problem for Eq. (1) and for the spacelike 
hyper surface L: is solved2

,5 locally by the expression 

cp"'(x) = Jr;{cp),' (x')\7 ~' 1C~. (x:x') - 1C~,(X:x') 

X\7~, CP).·(x')}dL:~·(x'), (3) 

where Ci., A', J.1.' = 0, 1,"', n; \7~. denotes the covariant 
derivative at the point x' of V n+1; {C:'(x;x')} are the 
components of 1C in natural frames, and {dL:~'(x')} are 
the components of the surface vector of L:. 

The foLLowing expression, 

b(<p;I/J) = Jr;{cpP(x). \I).~/x) - \I). <pP(x) ' I/Jp(x)}dL:'(x) , (4) 

where cp and ~ are two solutions of Eq. (1), is the local 
expression of a bilinear skew-symmetric form on the 
vector space of solutions of Eq. (1). Expressions (3) and 
(4). are independent of the choice of L:. 

The development, for the considered field, of the 
standard quantization program,0-9 needs at first a 
suitable definition of frequency parts cpEB, cp8 of any 
real solution cp of the system of equations (1), (2) as 

well as a suitable Hilbert structure on the vector space 
of these solutions. In other words, 8,10 the equation 
system (1), (2) must provide some real Hilbert space of 
real solutions and some suitable complex structure 
operator, orthogonal in this space. 

In the Minkowski space-time Mn +1 , the foregoing 
definitions are usually given by means of the Fourier 
transform. 6,11,12 Nevertheless, it is possible to give 
these definitions, without the help of this transform. 13 

As in the scalar case, 14 the central role in the new 
definition is played by the following properties of the 
usual 1C1 current on M n+1 , determined by the distribution 
kernel C1 or AI, D1 etc.: (i) It is real, symmetric, and 
a solution of Eq. (1): (ii) the fundamental Lichnerowicz 
convolution relation 

G'" ( . ") J' JC l ",( • 1)\7 G1e'( n. ,) 1 X'~ X,X == r;1.1 13' X,X ~'l)./' X .X 

C 1W(. II. ,')\1 C 1",(. T)\.d"'~'( '} - 1 X" X ,X J.L' t jl4 X.X f i..J X (5) 

is satisfied; (iii) if we define a transformation J between 
real solutions of the system of equations (1), (2), by 
the local expression 

(JCP)",(x') = Jr;{cpe(x)\7). 1C~ (x' ;x) 

- lC~,(x':x)\7).CPe(x)}dL:·(x), 

then the expression 

{<p:<tJ= b(cp;Jij;) 

(6) 

(7) 

is a scalar product on some real space of real solutions 
of the system of equations (1), (2). 

The usual frequency parts of the real solution cp of 
the system of equations (1), (2), are now the expressions 

cpG3=~(I+iJ)CP, cp8=~(I-iJ)<P. (8) 

Obviously, this process of definition of cpffi and cp8 
in Minkowski space-time can be formulated in any 
curved space-time Vn+1 • 

Because it is not possible to define a Fourier trans
form in a general manifold V n+1' the foregoing process 
then becomes a natural generalization to Vn+l> of the 
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notion of frequency -solution Hilbert spaces. The pro
blem is then to find a 1 C' current on V n.' satisfying the 
foregoing properties. 

For the commutator of quantum field operators, the 
expression 

also becomes a natural generalization'3 to any curved 
space-time. Here n is the reduced Planck constant; 
oC and 1 C are the scalar and vector propagator for the 
Klein-Gordon equation in Vn• , • 

The foregoing process to introduce on any curved 
space-time, the notion of frequency-part solutions, 
has been proposed by Lichnerwicz. 13 

In the Minkowski space-time it can be provedll,12,15,16 
that there is a bijective mapping between the solutions 
of field equations (1), (2) (the so-called nonreduced 
solutions) and the solutions of Eq. (1) on 1-form fields 
on V n• ll with temporal component zero in the canonical 
coordinates system (the so-called reduced solutions). 

In the space-time we shall consider, definitions of 
reduced and nonreduced solutions of field equations can 
still be given, and a bijective mapping between the sets 
of these solutions can still be established. 

The space-time considered in this work are statiC, 
VnxlR with compact space-section manifolds without 
boundary V n and such that the Killing vector field tra
jectories are geodesics. On these space-times our 
main goals are (a) to give an existence and uniqueness 
theorem for the ,C' current, (b) to construct the cor
responding Hilbert spaces of positive and negative fre
quency solutions, (c) in the context of Segal's work'0,17 

to give a definition of quantum field operators for the 
physical field concerned, leading to the postulated 
commutator (9). To achieve these goals, we need to 
determine the functional spaces of solutions of the sys
tem of equations (1), (2) and those of the reduced solu
tions, as well as the symplectic and complex canonical 
structures of the associated dynamical system (see 
Chernoff and Marsden'S ). 

1. FIELD EQUATIONS 

Let VnxIR be a static space-time with compact 
space-section manifolds without boundary Vn and such 
that the trajectories of the Killing vector field are 
geodesics. There is then an adapted'9 atlas of the 
differentiable structure of Vn xlR such that the metric 
element takes the form 

(10) 

where I is the canonical coordinate of lR-the time-and 
d<J2 the Riemannian metric element on V

n
, defined by 

the metric tensor with components gjj, i,j = 1, ... , 11. 

A simple calculation proves that the connection sym
bols rail' the components of the Ricci tensor Rail' and 
the components of the Riemann tensor R aflYe , defined 
by the metric element (10), are zero, if at least one of 
the a, {3, Y, 0 is zero. 

Let cp be a I-form field on V n x lR and a solution of 
Eqs. (1), (2). Let cpo, cp1 be the temporal and spatial 
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components of cp in the adapted atlas considered. cpo and 
cp' then satisfy the following equations: 

Gocpo = _ Ocp1, 

G~cpo + Mocpo= 0, 

G~CP'+M,CP'=O, 

(11) 

(12) 

(13) 

where il 0= il / il t, 0 is the codifferential operator of V n' 
Mo= Ll.o + m 2

, M, = Ll., + m 2
, and Ll., is the Laplacian 

operator on l-form fields on Vn• 

We shall write Eqs. (12) and (13) in the differential 
system form 

d { cpo \ _ T-
' 

( cpo ) 
dt \(d! dt)cpoJ - 0 (d! dt)cpo , 

(14) 

_ cp - T-
' 

cp d ~ ') ~ 1 ) dt (d/ dt)cp1 - 1 (d! dt)cp' , 
(15) 

where 

_1 (0 I) 
To = -MoO' 

_1 (0 I) 
T, = -M, 0 . 

2. FUNCTIONAL SPACES AND OPERATORS TOl, T-: 

(a) Let Ar(V n)' r = 1, ••• , n, be the vector bundle of 
r-forms on Vn and H: the usual20 Sobolev spaces of 
sections of Ar(Vn ). 

We recall20 that the space of distribution sections of 
A,(Vn), D~(Vn)' is the inductive limit of spaces H~ and 
the space of smooth sections of Ar(Vn), C;(Vn)' their 
projective limit. 

Clearly the space It;. is identical to the completion of 
C;(Vn) space with respect to the scalar product21 

(a;f3}r 0= Jy a i !"'i r /3i!"'i 1), a,{3E C;(Vn), (16) 
'n r 

where 1) is the volume element of V n defined by the 
metric tensor {gij}' and ai!"'i n are the components of 
a. H~ becomes, in this way, a Hilbert space with scalar 
product (16). 

The exterior differential operator don V
n

, is a 
continuous operator from H~ to H~~: and the codifferen
tial operator 0 is a continuous operator from H S to 
Hs- 1 r 

r-l' 

We recall some properties of d, 0, and A operators. 

Proposition 1: If a E H~, {3 E H~+l' then 

(da;i3)r+1,o= (a;of3}r,o'· 

Corollary 2: If a, {3 E H; then 

(Aa;f3}r,o= (a,Af3}r,o and (Ll.QI;a)T,O"" O. iI 

PropOSition 3: If aED;(Vn ), then 

dAa=Ada, oAa=Aoa .• 

(b) M = (A + m 2
) is a second-order differential operator 

on the vector bundles A,(Vn). By Corollary 2, M is 
invertible, strictly positive in H~, and for A < 0 we have 

/I(M-Al)-l/lr,o'" IAI-'. 
From the results of Seeley22,23 and Balakrishnan, 24 
complex powers operators M', 1 E a:: of M can be defined. 
In particular, 23 M' is a top linear isomorphism from 
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H: to H:-2R
eO), r = 1, ... ,n. Hence, the expression 

(a'j3) == (Mk/2a'Mk/2j3) a {3E Hk (17) 
, r,1l • 1',0" 1" 

is a scalar product on H~ compatible with the topology; H: becomes, in this way, a Hilbert space in which 
operators MP, P E lR, are self -adjoints and strictly 
positive. Consequently, space H: x H:- l becomes a 
Hilbert space with respect to the scalar product 

{a ;{3}., k = (a1; (31)r,k + (a2;{32)r,k_l' a 10 J3 l E w;., a 2, (32E H:-1. 

The following theorem can now be easily proved: 

Theorem 4: For j = 0, 1, we have 

(i) Tjl is a toplinear isomorphism from Hr1 XH~ to 
H~ XH~-l. 

(ii) i-I Tt is self-adjoint in H; XH;-l with domain 
H;+1 XH;; and for aE H;+l XH~ and AE lR - {o} we have 

II(Tj1 - A)-lll j ,1 "" I AI-I, IITj 1all j ,l == Il a ll j ,l+l' 

(iii) iTj with 

T;~C -Mt) 

(18) 

is a compact (Rellich theorem) self-adjoint operator on 
H~ XH;_l; A = ° is an accumulation point of the point spec
trum; the eigenfunctions are in C;(Vn)xC7(Vn) and 
TJ Tjl == Tj1T j = I .• 

Remark 1: By straightforward calculation on the 
Balakrishnan24,25 expression defining Tjl, we obtain 

(

COS1T( -l/2 )M1/2 - sin1T( _l/2)MI-l /2) 

T;l== Sin1T(-l/2)M:+ l / 2 COS1T(-l/2)~~/2 . 

(See Refs. 14, 26.) We can now verify the relation 

{a:J3L,I={T;I+la; T;I+l{3}T,s' 0', (3E H~ XH~-l. 

3. SOLUTION SPACES OF THE KLEIN-GORDON 
VECTOR EQUATION. THE VECTOR PROPAGATOR 

(a) Let CUrt)} (or {jUt}), j=O,l, be the one-parameter 
group of unitary operators generated by Tjl in the space 
H~ XH;_l. We have dk/dtk (jUtcp) = Tjk(jUtcp) with CPE Hrk 

XH;+k- l . The restriction of this group to the space H~ x 
x Hrl , s > l, is identical with the group of unitary opera
tors generated by T j1 in H; x H~-l still denoted j U(t). 
Cauchy problem for Eqs. (14) or (15) is solved by the 
expressions 

with cpj (.); lR - H; +1 X H; a continuously differentiable 
mapping. cpl(o) will be called a solution of Eqs. (14) or 
(15). 

For a fixed time to each element of H; XH~-1 is the 
Cauchy data at time to of a unique solution of Eqs. (14) 
or (15). We can then to identify each solution with its 
Cauchy data at to' It has then a unambigous meaning to 
say that H] XHJ-l is a space of solutions. 

With obvious changes of notation, the proof of the 
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next propostion is the same as that given in detail, for 
a similar proposition in the scalar case. 14 

Proposition 5: In the space X j =C7(Vn)xC;(Vn) the 
operator T;l generates a uniform equicontinuous one
parameter group of operators. The operators of this 
group are the restrictions to Xj of the operators jU(t). 
In x~=D~(Vn)xD~(Vn) the operator Tjl generates a uni
form equicontinuous one-parameter group of operators. 
The restriction to H; XH~-l of the operators of this group 
are the operators JU(t). The groups engendered by Tjl 
in Xj and X~ will still be denoted by jU(t) and we have 
d k

/ dt k j V t = Tjk jUt in the sense of the uniform topology 
of operators in Xj or X;. • 

Notation: Hereafter, a (T,,)(V~+l) denotes the space of 
smooth (r, s )-currents with compact support in V2 +1' 
C;(Vn+l ) ~D~(Vn+l) denotes the space of r~egular-o~-the
left (r,s)-currents in Vn+l> and D;(Vn+l)2! C;(Vn+l) the 
space of regular on the right (r, s )-currents. The same 
meaning is supposed for similar notations with V n 

instead of Vn+l . 

Let jU~b, a, b= 1,2 be the matrix-element operators 
of the operator jUt. By ProIJ)s ition 5, j U~b determines a 
regular (j,j)-current, jC~b on Vn defined by linearity 
and continuity from the expression 

< jcab(t); cp2! J; )v~ = - (j V~bcp;lJj)j,O cP, 1) E C7(V'). (19) 

The following proposition is an immediate consequence 
of PropOSition 5. 

Proposition 6: The mapping 

lR - C~~ D~(V ) 
j J n' 

t - jCab(t) 

is of class C~. See Also Ref. 14 .• 

Let CPj be in C~(lR2;C7j,jl(V~). Then 

Corollary 7: The function from lR2 to a; defined by 

(t' ; t) - < Cjb (t' - t); cP j (t' ; t) v~, 

is of class C~, and the Leibniz formula for derivatives 
with respect to t or t' holds .• 

Corollary 8: The mapping from lR2 to C7(Vn) defined 
by 

(t';t) _<jcab(t' - t); </Jj(t)y~ , 

is of class Coc, and the Leibniz formula for derivatives 
with respect to t or t' holds .• 

Let cil,k' l,l?=O, 1 be mappings of class cro from lR2 

to C71 k) (V~), canonically determined by the element 
<l> of D(1,l/V~+l)' Then 

Corollary 9: The expression 

CC;<l» = 6 J 2< ,C12(t'-t);.i j j(t',t)y2dtdt' (20) 
j=O,l IR J I n 

defines a regular element of D(l,l)(V~+l)' which is the 
propagator of the Klein-Gordon vector equation (1).11 

(c) Let NIj' j = 0, 1 be the symemtric (j - ,j}-current 
on Vn X Vn defined by operator M j • Then 

Proposition 10: 

(0 (pab(t))'= (_l)a+b jcab(_ t); (ii) (pab(t))' = jcab(t); 
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Here * denotes the Volterra-Schwartz27 convolution of 
currents, and the apostrophe the transposition of 
currents. 

Proof: (i), (ii), and (iii) follow immediately from 
the relations 

(21) 

and the representation formula25 for one-parameter 
groups of operators. (See Proposition 5.) (iv) is a con
sequence of (i) and definition (20) .• 

(d) We now wish to establish a relation between scalar 
and vector propagators for the Klein-Gordon equation. 
See Lichnerowicz. 2,5 This relation will be used in Sec. 
8. 

Let us consider the operator 

(d tB d): H' xHI -
l 

- H~-l XH~-2 

(u;v) - (du; dv) 

Proposition 11: 

dtBd)oUt = lUt (dtBd). (22) 

Proof: This relation follows, by continuity, from 
relation (21), the relation dM = Md, and Proposition 5. • 

Each matrix element operator on the left side of 
expression (22) is continuous from C"(Vn) to C~(Vn); the 
corresponding adjoint operators are continuous from 
C~(Vn) to Coo(Vn); the former operators then determine 
regular (1 - OJ-currents, 1 .. 27 H~b, defined by linearity 
and continuity from the expression 

(H~b:cp0lj!> = - (d(oU~bcp);ijj)l.O' 

a,b=l, 2, CPEC"(Vn)' lj!EC;(Vn}. 

From expression (19) we now obtain 

< ~b: cp '5?J lj! >v2= < (d ® 1\ G~b; cp'5?J lj! >y2. 
n n 

(23) 

From the right side of expression (22), we similarly 
find 

(24) 

Then 

(d2: I) Gab - (Ig 0) Gab ° t - 1 t • 

This relation, for (ab) = (12), and relation (dj dt') oG~:_t 
= - (dj dt) oG:.2 

-t' implies in view of defintion (20), the 
desired relation 

(25) 
- -where d is the exterior differential operator and 0 the 

codifferential operator on V n x lR. Relation (25) holds 
locally5 in any space-time Vn+1 • See also Ref. 21, 
pp. 170-77, for similar relation in Riemannian 
geometry. 

4. ENERGY SCALAR PRODUCT AND SPACE OF 
REDUCED SOLUTIONS 

(a) The following proposition is immediate: 

Proposition 12: Let cpJ", (cp{; cp~) be an element of 
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Di(Vn) xD;(Vn) , j=O, 1. A solution of Eqs. (14) and (15), 
with Cauchy data cpo and cpl respectively (at some fixed 
time), is also a solution of Eq. (11) if and only if 
cpo = L cpl where 

( 0 M;/O) 
L= -0 0 .• 

(b) From the Lagrangian density5 

L (cp) = tgVPgILa (V IL CPv - V vCP ,J(V aCP P - V pCPa) + tm2gILVcp IL CPv' 

we obtain (1) and (2), as Lagrange equations, and 

Tar (cp) = V'" cpP 0 V pcp" _ V'" cpa , V"cp a + va ql 0 V"CPa 

- VPql. V pcp" + tgarvpcpa 0 VpCPa - tgarvacpp 0 V pCPa 

+m2cp"ql_tm 2g arcpl' 0 CPIL' 

as components of the energy-momentum tensor. 28 This 
tensor is not symmetric, and it satisfies V" T"s (cp) 
= V S T"s (cp) = 0, cp being a solution of field equations (1) 
and (2). 

In the space-time considered, the notion of total 
energy of a smooth solution cp, of the field equations 
has a meaning. 29 Its expression, in the chosen atlas on 
VnxlR, is 

K(cp)= Iv 2TOO (cp)1J. 
n 

Now let cpiE C7(Vn) x C;(Vn) , j = 0, 1, be Cauchy data 
(at some fixed time to) for a solution cp of Eqs. (14) and 
(15). A straightforward calculation gives 

K(cp) = - (cp~; cp~)o.o - (cp~; CP~)O.l + (~; CP~)l,O + (cp~; CP~)l 

= _ {cpo; cpO}o, 1 + {cpl; cplh,l' 

This expression is not definite-positive, and is indepen
dent of to because JUt is unitary on H;xH7. If, moreover, 
cp is also a solution of Eq. (11), we must have, from 
Propsoition 12, cpo = L cp I, and then 

K(cp) = «(od + m2 )cp:; CPDI,O + (M;:l(od + m2) cp~; CP~)l,O' 

(26) 

The energy of any smooth solution of the system of 
equations (11), (12), (13) is then definite-positive. 

Theorem 13: There is a unique linear operator P in 
C;(Vn)' symmetric with respect to the scalar product 
of ~, commuting with d and 0, and such that if 

PAl = cpi, PA2 = cp~ 
for some All A2 in C~(Vn)' expression (26) becomes 

K(cp) = (A 2 ; A2)1,O + (MIAI; AI)t,o' 

This operator is 

(27) 

P=!+ (ljm)(Mi/ 2 + m)-ldo (28) 

with inverse 

(29) 

Thus P and p_t are self -adjoint, strictly positive in 
Hilbert spaces H~, and p-t is bounded. 

Proof: From expression (26), we have 

K(cp) = «od + m2)p2At; AI)t,o + (Mi1(od + m 2 )p2A 2; A 2 )1,0' 

This expression is identical to (27) if and only if 
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Mi1(15d + m 2)p2 = I, p2 Mi1(od + m2):= I. 

Therefore, 

(p2)-1:=Mi1(od+ m 2 ). 

In H~, (p2)-1 is a bounded self-adjoint positive operator: 
it then possesses a unique positive square root 
«p2)-1 )1/2, which we can verify to be given by the right 
side of expression (29). We now define p_l", «p2)_1)1/2 
and we find that P 0 p-l = pol 0 P = 1. • 

Corollary 14: Let A", (AI; A 2 ) be a solution of Eq. (15) 
in Hf xHf~l. Set cpl = (p x P)A; cpa = Lcpl. Then, cpa E HI- l 

XHI-2, cplEH~~lXHf-\ and (cpO;cpl) is a solution of the 
system of equations (11), (14), (15). Conversely, let 
(cpa; cpl), cpa = L cpl be a solution of the system of Eqs. 
(11), (14), (15) with cpl E H~ X Ht- l • Then A = (p-l Xp_l) 

cpl is a solution of Eq. (15) and A E Hi XH~-l .• 

Definition: Solutions A of Eq. (15) are called reduced 
solutions of the field equations. Solutions (cpa: cpl) with 
cpO=Lcpl of the system of equations (11), (14), (15) are 
called nonreduced Solutions of the field equations .• 

From Corollary 14, it follows the there is a bijective 
mapping between the set of reduced solutions and the 
set of nonreduced solutions of the field equations and 
that H~ XH~-l is a Hilbert space of reduced solutions. 

5. CANONICAL SYMPLECTIC AND COMPLEX 
STRUCTURES ON SOLUTION SPACES 

(a) Following SegaPO,17 (see also P. Chernoff and 
J. MarsdenlB

) let J j = T j (- T~)-l/2 be the unitary part of 
the polar 3o decomposition of T. in the real space HI 

J j 

XH~_l, j=O, 1. The proof of the following theorem is 
immediate 

Theorem 15: 

( 
0 _ M-1 / 2 ) 

J j = M;/2 oj , 

this operator defines a complex structure on the real 
space H;xH;_l of real solutions of Eqs. (14) or (15), 
1. e., (i) J

j 
is a top linear isomorphism of HI XH~-l, 

(")J2 I ("') V Tl 1 j 11 j=-' III J t' j =Tj 'jV t ,. 

Because the range of J in HI xHI-l is all of HI XHI-l t j j j j 

and that of T j is only H~+ XH~, we obtain (i) and (ii) in 
the following theorem directly from the definition of 
weakly and strongly symplectic forms on Hilbert 
spaces. lB (iii) follows by simple calculation. 

Theorem 16: For a, i3EH~xH~-l: 

(i) The skew-symmetric form wl(a,,B) ={Jja; J3}j,1 is 
strongly symplectic on H~ XH;_l. 

(ii) The skew-symmetric form bl (a;,6)={T j a;.Bt,1 is 
weakly symplectic on H~ XH~-l. 

(iii) The restriction of W I _1/2 to the subspace H~ XH;_1 

is b, .• 

Following Chernoff and Marsden, lB p. 28, Eqs. (14) 
and (15) define Hamiltonian dynamical systems on H; 
XH~_l; Ha; a}i,1 is the energy of aEHrlxH;, r'T;l is 
the Hamitonian, and bl the weak symplectic form, of the 
dynamical system. 
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.Theorem 17: On the real space H;xH;-I, there is an 
umque complex structure operator J' satisfying (i) J'T 
= TjJ; and (ii) WI (a; Jj a) > 0 for a *- O~ Thus we have j j 

J; =Jj •• 

Remarks 2: (a) Let cp, <J; be two smooth solutions of 
Eqs. (1), (2). Let A, B be the corresponding reduced 
solutions. Then b(CP; <jJ)=-bl(A; B), where the left-side 
is the expression (4) and the right side is defined in 
Theorem 16, (ii). Also, bl(A; B) = (AI: B2 )1 0- (A2 : BI)l o. , , 

(b) In the space-time considered, transformation J 
in (iii) of the Introduction will be defined by (Jcp)O = Jocpo 
and (Jcp)l= -Jlcpl. 

(c) From (a) and (b) we obtain b(cp;J<jJ) = {A; Bh 1/2' 

See expression (7). ' 

(d) For j = 1, Theorem 17 is the uniqueness theorem 
for the complex structure of spaces of reduced 
solutions. a 

6. THE LlCHNEROWICZ (1 -1)-CURRENT 

(a) From operators J o, J 1 we now obtain a (1 -0-
current on Vn x 1R, ,G l satisfying the properties required 
in the Introduction. 

The matrix element operators of jU~ = jUt 'J j deter
mine regular (j - j)-currents on Vn X Vn [see Section 
3(b)]. Their definitions are given by relations similar 
to (20). A simple calculation assigns to the operator 
;U~ the following matrix: 

( 

d 1 

- dt' jG t'-t 

d 2 
__ 1 

dt' 2 j Gt'-t 

Here the derivatives are taken in the sense of Proposi
tion 6. 

(b) Let Mj l / 2 be the regular, symmetric (i -j)-current 
on Vn X V n determined by the operator M'/ /2. 

Writing the relations (d/dt)jUl
t = Tj-1V l (.U')* = _ .Ul 

J t' J t J -t' 
and jU!" -t" jU~, -t = - jUt"_t in terms of currents, we 
obtain in particular 

Proposition 18: 

~ d2 

(i) (M/i!J I) jC~'_t + di'2 jG~'_t = 0, 

(ii) (r8 M j ) jC!'_t + (~2 jC~'_t = 0, 

(0") Gl _ M~-l/2 d G 
111 j t'-t - - j * dt' j t'-t 

- _.!!:... G * M- l
/ 2 

- dt' j t'-t j , 

(iv) G - Gl *.!!:... Cl 

j t"-t - j t"-t' dt' j t'-t 
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where * denotes convolution of currents in the sense of 
Volterra-Schwartz 27 and the apostrophe, transposition 
of currents. See also Combet. 31,32. 

Theorem 19: With <I> and <I>J,j being the functions in 
Corollary 9, the expression 

defines a regular element of D(l,l)(V~+l)' and satisfies 
properties (i), (ii), and (iii) of the Introduction. 
Theorem 15 is also a uniqueness theorem for lG I

• 

Relation (25) is satisfied with oG I and IG 1 in place of oG 
and 1 G respectively. 

Proof: Corollaries 8 and 9 hold with JG~'-t in place 
of jG;'~t; IG 1 is then regular. Tjl is a real operator and 
therefore J U! as well. In Proposition 18, (0 and (ii) 
prove that lGl is a solution of field equations (12), (13); 
(iv) is the Lichnerowicz fundamental convolution relation 
(3); (vi) proves that lGl is symmetric (and separately 
symmetric in time and space). Finally from Remarks 
2(c) expression (7) is a scalar product. a 

7. POSITIVE AND NEGATIVE FREQUENCY SPACES 

On the complex space H~ XH;-l of reduced solutions, 
let us consider the operatorsl 

EB=~(I+iJl)' 8=~(I-iJl). 

Then 

Theorem 20: (0 EB and 8 are complementary pro
jectors inH~xH~-r, andEBlUt=lUtEB, 8 l Ut =lUt8. 

(ii) If AEH~xHi-l is real, 

2{EBA: EBAh" = 2{8A; 8Akl ={A;Ah,I' a 

By definition EBA and 8A are the positive and negative 
frequency parts of the real reduced solution A, and the 
closed subspaces 

EEB =EB(H1 xHlo1) E8 -8(HI XHI-l) 
I 1 1 , I - 1 1 , 

are the Hilbert spaces of frequency parts of reduced 
solutions. 

The frequency parts of non-reduced solutions can be 
defined in a similar way. 14 

8. QUANTUM FIELD OPERATORS. CREATION AND 
ANNIHILATION OPERATORS 

For classical fields described by some kindlo,17 of 
nonlinear system of equations, the corresponding 
quantum field operators (see Segal lO,17) are a special 
type of vector fields on the solutions manifold of the 
system of equations. Hence, commutators for these 
operators can be calculated. 

For the linear field of spin 1 and mass m > 0, 
described by reduced solutions, the quantum field opera
tors are those deduced from the general definition of 
Segal, here called reduced quantum field operators. 

The aim of this section is to justify, in this context, 
the postulated commutator (9). For this we need to 
give a definition of quantum field operat~rs cp(x) on the 
left side of expression (9), which are here called nonre
duced quantum field operators. 
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For SimpliCity's sake, we limit ourself to the reduced 
solutions (manifold) space H~ 12 XH~1/2. 

(a) The complex structure operator J l provides the 
space Hi /2 XHil/2 of real reduced solutions, with a 
complex Hilbert structure, as follows 32

, 33: multiplication 
by complex numbers is defined by iA=JlA, AEH~/2 
XHil/2, and the scalar product is defined by 

< A; B)1/2 = {A; Bh,1/2 - i{JIA; Bh'l /2' 

(b) Let J be the algebra of holomorphic functions on 
H~/2XHil/2 with values in a complete, locally convexe, 
Haussdorf space34 H. 

Following Segal, 10 let us consider in] the linear 
operator </irA) defined by 

(IJ;(A)F)C = i(n/2) dcF(A) + W l / 2(A: C) F(C), (31) 

where FE], A, CEH~/2XH;1/2, W l/2 is defined in (i) 
of Theorem 18, fi is the reduced Planck constant, and 
dcF(A) is the value at the point A, of the differential 
mapping of F at the point C. 

Let us introduce some notations 

IJ;I(A) = IJ;(JlA) , 

1J;El:l(A)=~(IJ;+ ilJ;l)A, </i8(A)=~(1J; - ilJ;l)A. 

A simple calculation gives the commutators 

[IJ;(A); ~'(B)]=ifiwl/2(A; B)I, 

[1J;8(A): Ij;EB(B)] = - (fi/2) (A: B)1/2 I , 
(32) 

where I is the identity mapping in]. See also Ref. 31. 

(c) Let A( 0) be a continuous mapping from a compact 
Kin R to space Hi/ 2 XHil/2. For t, t' E K, AU) and A(t') 
are Cauchy data at times t and t' respectively, for two 
(generally differents) reduced· solutions 

Let us consider 32 the following linear operator in]: 

(ij!(A( • »F)C = i(fi/2).he dcF(AU»dt + J
K

wl/2 (A(t); C)F(C)dt. 

(33) 

Let B( • ) be another continuous mapping from a com
pact K' in R to Hi/2 X Hi l/2 . We find the following 
expression for commutators: 

[ij!(A( 0 »: ij!(B( 0 »] = iff J KXK' W l/2(A(t); B(t'))dtdt' • I. (34) 

Now let us suppose A( • ) and B( • ) to be of the follow
ing particular17 type 

K-Hi/2XHil/2, K' -Hi/2XHil/2, 

t - (0; a(t», t' - (0; b(t'» 

and art); b(t') E C~(Vn)' Then set 

(35) 

<I>(a)=ij!(A(·)), <I> (b) = ij!(B(.», 

<I>El:l(a)=~(A('))' <I>8(b)=~(B('»). 
By definition (19), a straightforward calculation on the 
expression (34) gives 
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We call the operators <l>(a), with a inD1(VnxlR), the 
reduced quantum field operators. 

(d) Our purpose is now to interpret the postulated 
commutator (9) in the aforementioned framework of 
Segal. 10 For simplicity's sake, we shall only deal with 
smooth solutions of field equations. 

Let AE C~(Vn)xC~(Vn)cHi/2XHil/2 be a reduced solu
solution, and let cp '" (cpo: cp1), cpo E L cp1, cp1 = (p x P)A be 
the corresponding nonreduced solutions. (see Corollary 
14. ) We give the following: 

Definition: Let us define </J(cp) as being the operator 
(31), determined by the reduced solution (d (fJ d)cpo + cp1: 
i. e. , 

(37) 

Let (cpO( • ); cpI( .» be the nonreduced solutions corre
sponding to the reduced solutions A( • ) of type (35). Set 

where the right side is given by expression (33). By 
relation (25) and the equalities 

1 + (1/ m )Lio(iV1~ /2 + m )_1 = (1/ m )M~ /2, 

(38) 

(2/ m)(M~/2 + m)-I + (1/ m)Lio(M~/2 + m)_2 = (1/m2)1, 

a straightforward calculation on expression (34), with 
operator (38), gives 

[<l>(CPa); <l>(CPb)] 

= iJi (IG - (1/ m 2 )(d0 d) oG; (6b( • );b( • » 

0(6a(' );a( .») 1, (39) 

where the right side is defined by an expression similar 
to (20). Here d is the exterior differential operator on 
Vn xlR. 

If a( • ) and b( 0 ) are canonically determined by two 
elements of D I (V n x JR) with zero temporal components 
in the adapted atlas considered, (6a(· l:a(·» and 
(6b(· );b(·» are in DI(vnxlR). 

The sense of commutator (9) is that of commutator 
(39). 

Commutators for the creation and annihilation opera
tors <l>W(cp,) and <l>8(CPb) can be similarly obtained. 
(See Ref. 26.) 

We call the operators <l> (CPa) the nonreduced quantum 
field operators. 

9. CONCLUSIONS 

The space-times considered in this paper are static, 
Vn x JR, with compact space-section manifolds without 
boundary, V

n
, and such that the trajectories of the 

Killing vector field are geodesics. 

The Klein-Gordon vector equation (1) becomes the 
couple of Eqs. (14), (15) in an adapted atlas where the 
metric element is of the form (10). These equations 
have been solved by the one-parameter groups of uni
tary operators {jUt;j=O, l}on spaces H~xH}_1 generated 
by the scalar i-'T;' and vector i-lTii Hamiltonians. The 
restrictions of these groups on spaces C7(Vn) x C;(Vn) 
determine one-parameter uniform equicontinuous 
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groups of operators. These groups induce one-param
eter uniform equicontinuous groups of operators on 
spaces D;(Vn) xD;(Vn). The propagator of the Klein
Gordon vector equation (1) and its symmetry properties 
have been determined. 

For field equations of the physical field of spin 1 and 
mass In > 0 solution spaces and reduced solution spaces 
have been determined. Canonical complex structures on 
these spaces have been calculated, and we have proved 
that a unique Lichnerowicz current, IGI, on Vn XlR 
simultaneously determines all these structures. By 
means of the IG I current, frequency Hilbert spaces of 
reduced and nonreduced solutions have been constructed. 
Finally, in the context of Segal's WOrk,10,17 we have 
given a definition of nonreduced quantum field operators 
leading to an expression for the commutator of two such 
operators which interprets the expression of the postu
lated commutatorS for the physical field concerned. 
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A variational derivation of the Bach-Lanczos identity a) 

John R. Ray 
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(Received 18 July 1977) 

A discussion of a modified Hilbert variational principle is presented. The Bach-Lanczos identity is then 
derived from this variational principle. 

I. INTRODUCTION 

Recently we presented a modified Hilbert variational 
principle in general relativity. 1 The modified principle 
varies the metric and affine connection independently 
but adds the constraint, via Lagrange multipliers, that 
the affine connection equals the Christoffel symbols 
constructed from the metric. In Ref. 1 the modified 
variational principle was used to explain the origin of 
the, so-called, Palatini variational principle in general 
relativity. We shall review this result in Sec. III of this 
paper since the results are needed in deriving the Bach
Lanczos identity which is contained in Sec. IV. 

Several other workers2
-4 have used the modified 

variational principle to study alternate theories of 
gravity. Reference 2 used the variational principle to 
study nonlinear Lagrangians, Reference 3 used it to 
study scalar-tensor theories while Ref. 4 used it to 
study theories with torsion. Our applications will deal 
only with general relativity. 

II. MODIFIED HILBERT PRINCIPLE 

Consider a Lagrangian L which is a function of the 
metric gij and its first two derivatives 

(2.1) 

The Hilbert variational principle extremizes the action 

l=:::fLdx, (2.2) 

with respect to variations of the metric which yields 

raL al=::: ji-a- agsudx, 
gsu 

where the variational derivative of L is defined by 

~-~- (~) +(~) 
agsu - egsu ogsu,r ,r ogsu,rP ,pr' 

The field equations for gsu are then 

aL __ = _ r:.:g T SU 

agsu ' 

(2.3) 

(2.4) 

(2.5) 

where T SU is the energy- momentum tensor which is ob
tained by varying the matter Lagrangian with respect to 
the metric. We assume the matter Lagrangian does not 
depend on derivatives of the metric. 

For example, if one chooses L = r-g R then there 
obtains 

~ =_V-g (Rsu _1/2gSuR) =_ -V-g T su , (2.6) 
6gs• 

the Einstein equations. 

alDedicated to the memory of my father. 

The modification of the foregoing variational principle 
presented in Ref. 1 is to rewrite the Lagrangian L in 
terms of the metric and the symmetriC affine connec
tion r/k and its first derivative 

(2.7) 

We now carry out independent variations of the metric 
and affine connection but impose the constraint, via 
Lagrange multipliers, that the affine connection equals 
the Christoffel symbols {A}. Hence, the action 

(2.8) 

is obtained. 

The field equations follow by varying gij, rA, 5t/ k 

lnd are 

aL -.- +-V_gAsu=_-V_gTSU 

agsu 

aL r-- su ar p +V-gAp =0, 
su 

rA-{M=o, 
where 

(2.9a) 

(2.9b) 

(2.9c) 

(2.10) 

Note the variations in (2. 9a) are carried out holding 
r /k constant. The field equations for gij are obtained 
by solving (2.9b) and (2. 9c) for the Lagrange multi
pliers in terms of the metric, calculating ASU from 
(2.10) and then substituting AS" and (2.9c) into (2.9a) 
which yields the desired equations. It is important to 
realize that we obtain the same field equations from 
this modified Hilbert principle as from the original 
Hilbert principle. The function of the Lagrange multi
pliers is to decouple the metric and affine connection 
variations. A similar procedure is used in classical 
mechanics if we wish to find the constraint forces 
which are related to the Lagrange multipliers. Even 
though the modified Hilbert variational principle gives 
the same field equations it contains additional informa
tion in the Lagrange multipliers2 and also gives a short
er calculation. 

III. PALATINI VARIATIONAL PRINCIPLE 

The, so- called, Palatini variational principle is 
different than the Hilbert principle discussed in the pre
vious section. It uses the action (2.7) but varies with 
respect to independent variations of the metric and 
affine connection without imposing any constraint. The 
field equations are 

~ = _ ,r--;; T SU 

15gsu g, (3.1a) 
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6L 
Ilr" =0. 

au 
(3.1b) 

For the Lagrangian .J - g R if we substitute (2.9c) into 
(2.9b) we obtain 

6L or" = 0 (identically) 
su 

(3.2) 

and hence 

X;u=o. (3.3) 

Thus, the field equations (2.9a) and (3. la) are the same 
in terms of the metric and affine connection. Now (2.9c) 
is the solution to (3.1b) in this case. Therefore, identi
cal field equations for the metric result from either the 
Hilbert (modified or ordinary) or Palatini variational 
principle for the Lagrangian .J - gR. This is the mathe
matics behind the Palatini variational principle. Final
ly, note that these results hold only for the Lagrangian 
qR and therefore there is not, in general, a 
Palatini variational principle for other Lagrangians. 2 

IV. BACH-LANCZOS IDENTITY 

It has been proven using the ordinary Hilbert varia
tional principle that in four dimensions the most general 
Lagrangian of the form (2.1) whose variational deriva
tive contains no higher than second order derivatives of 
the metric5 is 

L = O'.J - g R - 2>..-./ - g + (3EiJknR·b iJR.bkn 

(4.1) 

where 0, (3, Y, and X are arbitrary constants and EiJkn 

is the permutation symbol. 

It is known from Noether's theory that the variational 
derivative of any L satisfies the Bianchi identities 

.J _ g E SU = ollL (4.2) 
gsu 

(4.3) 

Also it has been proven that the only tensor of the form 

which satisfies (4.3) in four dimensions is5 

ASU =Gsu + XgSu , 

(4.4) 

(4.5) 

where GSu is the Einstein tensor and X is a constant. 
It follows that the equations of motion resulting from 
(4. 1) must be the Einstein equations with cosmological 
constant 

GSU + xgsu = TSu. (4.6) 

Because of parity conservation we shall set {3 = 0 and 
for simplicity X = 0 and study the resulting Lagrangian 

L = 0.J- g R + yv::::-jj (R2 - 4RiJ RiJ + RiJknRiJkn), 

L=O'.J- g R+L i • 
(4.7) 

We now wish to obtain the field equations from (4.7) 
using the modified Hilbert principle. The field equa
tions are (2.9). (2. 9a) yields 
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(4. B) 

or 

_ O'.J-g GSu+ ~ +.J-g Asu=_v::::-jjTsu. (4.9) 
ogsu 

Since the modified Hilbert principle gives the same 
equations of motion as the Hilbert principle, we know 
the field equations in this case are just the 
Einstein equations. Hence from (4.9) we have 

~+.J_gAsu=AGSU.J_g, (4.10) 
ogsu 

where A is a constant. For the first term in (4.10) we 
obtain 

1 ~-t.gsU(R2_4R.RiJ+R. RiJkn) 
y.J- g Ilgsu - .J .Jkn 

(4.11) 

In order to calculate ASU we must calculate X/u using 
(2.9b) and (2.9c). Combining (2.9b) and (2.9c) gives 

6~~i +.J-g Xzu=O, (4.12) 
su 

where we have used the fact that .J - g R gives no con
tribution to the Lagrange multiplier. We then construct 
ASU using (2.10). The final result is 

.!Asu-4Rsm .... R _4RS R"" (4.13) y - nr n' 

where to obtain this form for ASU we must use the 
identities given in the Appendix. Adding (4.11) and 
(4.13), Eq. (4.10) yields 

t~U(4RiJRii _R2 +RiJknRiJkn) 

- (2RS
nR"" + 2RsnurRnr - RRsU _ R~nkRumnk) = (A/y) GSu, 

(4.14) 

In order to evaluate A, we note that under the trans
formation giJ - - gij the left-hand side of (4.14) changes 
sign whereas the right-hand side does not. Therefore, 
A = 0 and (4.14) is precisely the Bach-Lanczos identi
ty.6 As far as we are aware, this is the first proof of 
this identity from a variational point of view. All other 
derivations of this identity use an algebraic method. 7 

Note that since the Hilbert and modified Hilbert princi
ples give the same equations of motion we could derive 
the Bach-Lanczos identity from the ordinary Hilbert 
principle. The necessary calculations are given in Ref. 
B. It has, however, been our purpose to give an appli
cation of the modified Hilbert principle. 

V. CONCLUSIONS 

We have given a detailed discussion of a modified 
Hilbert variational principle and shown in two examples 
how it may be used to arrive at important results. In 
Sec. II we used it to explain the Palatini variational 
principle for the Lagrangian .J - gR. In Sec. IV we used 
it to study the general Lagrangian for the Einstein equa
tions. This general Lagrangian differs from .J - g R by 
terms quadratic in the curvature tensor Li • When we 
apply the modified Hilbert variational principle to this 
Lagrangian and use the uniqueness of the Einstein equa-
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tions, we obtain a variational derivation of the Bach
Lanczos identity. It also follows that the quadratic 
invariant L1 satisfies the Hilbert field equations identi
cally and is therefore a divergence. In what follows be
low we shall mean by the Bach-Lanczos identity either 
the statement that L1 is a divergence or (4.14) with 
A = 0 since they are equivalent. One may now say the 
existence of the Bach-Lanczos identity is due to the 
fact that there is an invariant which satisfies the 
Hilbert field equations identically together with the 
uniqueness of the Einstein equations. Also it should be 
mentioned that the Bach-Lanczos is a generalization of 
the Gauss-Bonnet formula to four-dimensions. 

Our proof of the Bach-Lanczos identity was dependent 
upon two remarkable results concerning the form of the 
general Lagrangian (4.1) and the fact that the Einstein 
equations are unique (4.5).5 Both of these results hold 
only in four dimensions. Thus, it is not clear if this 
method of arriving at identities can be used in other 
theories or generalized to other dimensions. 

As a final pOint we note that the Bach-Lanczos iden
tity has recently attracted attention in discussions as
sociated with the renormalization problems in general 
relativity. The Bach-Lanczos identity implies the one
loop renormalizability of pure gravitation. 9 Here we 
have shown that the Bach-Lanczos identity is implied 
by the uniqueness of classical general relativity together 
with the existence of L1, Hence, the uniqueness of 
classical general relativity implies the Bach-Lanczos 
identity which in turn implies the one-loop renormaliza
bility of quantum gravity. It is interesting (accidental?) 
that classical general relativity implies something about 
quantum gravity. 

APPENDIX 

In this Appendix we shall give the Lagrange multi-
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pliers for the three invariants R2, RijRIJ, and RWIR1Jkl 
which make up L1: 

R2: XI> SII = 2gBUR, I> _ oUI>R's _ OSI>R'" , 

R i jR jj :XI>S":=2RS";I>_ O"I>R·r;r- oSI>RUT;r, 

R R1jkn. X '" - 2R sur 2R liST ilk,., • 'P - - p ,r - p ;r· 

(Al) 

(A2) 

(A3) 

The ASU for each invariant can be constructed for each 
invariant by using (2.10). The ASII so calculated give 
the same field equations given for these invariants in 
Ref. 8. The ASU in (4.13) can then be obtained from these 
these by taking the appropriate linear combination 
(A - 4A + A), To reduce the ASU so obtained to the exact 
form (4.13) one must use the results 

(M) 

(A5) 

(A6) 

which can be derived from the Bianchi identities. 
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The charge conjugation properties of bilinear quantum field theories are examined in considerable detail. 
It is shown that the connection between charge conjugation and statistics is unique. The relation between 
spin and statistics for a large class of these theories and the statistics of unusual fields such as 
Faddeev-Popov ghost fields and Gupta's regularizing fields with negative norm are discussed. 

1. INTRODUCTION 

Recently DeFacio and Hammer1 extended the quantiza
tion formalism of Takahashi and Umezawa2 and Hammer 
and Tucker3 to the interacting case. This formalism is 
interesting because it does not depend upon a Lagrangian 
or canonical formulation and even applies when such 
formulations do not exist. 1 Instead it postulates the ex
istence of field equations and a conserved current, which 
is derivable from them, of the bilinear form, 

0" J" (:}J1' './12) = 0, 

(1) 

where * indicates complex conjugation; a* is a complex 
number. The fields Wj are any two solutions to the dif
ferential equations 

D(aH=j(x) and ~D(-o)=j(x), 

where j(x) is a source term, D(a) is a configuration 
space differential operator, and 

(2) 

?F(x)=b 4 <1'(x)]t, j(x)=[yJ(x)]t, (3) 

Dt(a)Y4=-y:D(-a), y~l=y~. (4) 

The quantity Y4 is the [2(2s+1) x 2(2s +1)]-dimensional 
generalization of the Dirac matrix Y4 when 0 is a field 
constructed from symmetric spinors of like indices but 
otherwise must be chosen to insure the Lorentz co
varience of the conserved current. A small, but im
portant, point to keep in mind is that Y4 and D(a) must 
be put in a form such that Eq. (4) applies since other
wise J" will not have the convenient Hermitian property 

JI(01, <1'2) =Jj (<I'2' <1'1)' 

J6 (01' O2) = Ja ('/!2' <l'J. (5) 

Because J" is conserved and has the bilinear form 
expressed by Eq. (1), all phYSical operators are also 
bilinear. Hence the name bilinear quantum field theory. 

The existence of a free (in, out) limit is also assumed 
with a free conserved current Jt which satisfies 

aJt(1J{, './I~) ={;Z;{.5(aH~ - </{D(- ali/{} 

=0, 

a*Jt(1J{,~) =J{.(aI/I{,~) = Jt (</{, a*~). 

(6) 

(7) 

Thus the free theory is also bilinear. It is worth 
noting at this point that any quantity a, having the 
property shown by the right-hand equality of Eq. (7), is 
a c-number constant since, as seen by Eq. (6), it must 
have commuted with (<JI)t, Y4' and D(a). 

Most field theories are bilinear quantum field the
ories. All cannonical field theories, 1 including quantum 
electrodynamics and the recent gauge theories, 4 as well 
as noncannonical theories such as Klauder's ultralocal 
models1.5 and theories which contain nonnormalizable 
c-number transformations, such as Umezawa's boson 
transformations, 6 are special cases. A study of the 
charge conjugation properties of bilinear quantum field 
theories, a subj ect large ly ignored in our previous 
work,1.3 is therefore of general significance. 

We find that the bas ic postulates of the theory relating 
to antiparticle operators can be replaced by the usual 
q-number charge conjugation relationships 

(ak(P)C 1 = 1/~b! (p), 

(<P(x)C 1 = C<ll(x) =' <pc, 

(8) 

(9) 

where a" , b
k 

are the usual free particle and antiparticle 
destruction operators; 1/c is a complex constant (a phase 
factor); ( ,C are the q-number, c-number charge con-
i ugation operators. The basic postulates along with the 
usual requirements (t =( = (-t, CytC-1 = - Y4 are suf
ficient to show that C* = ct = C-1 

• 

We also show that the assumption of charge conjuga
tion invariance of the basic field equations gives informa
tion on the connection between spin and statistics not 
given in the usual derivations. 2.7_11 Specifically the 
postulates force the fields, which are the solutions to 
one class of field equations, to have anticommutation 
relationships whereas the fields which are solutions to 
a second class of field equations are forced to have 
commutation relationships. The connection between 
spin and statistics is made by assuming local commuta
tion rules in the usual manner. The discussion is in 
some respects the same as that due to Takahashi. 12 

As specific examples, the field equations of several 
authors are discussed .11.13-15 In addition it is shown 
that this unique connection between charge conjugation 
and statistics has special implications for the commuta-
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tion properties of unusual fields such as Fadde'ev
POpOV16 ghosts and Gupta'sl7 regularizing fields. 

The notation used throughout this work will be that a 
general 4-vector A" is written, in terms of real quan
titiesA j (i=1,2,3) and A o =-iA4 , as 

A _{A j ) _ ( OJ)= ( V) 
"-\iAo and a,,- -iao - -ia/at . 

2. BASIC POSTULATES AND ASSUMPTIONS 

We assume the existence of a unitary charge con
jugation, q-number, operator with the following 
properties: 

1. C In> = In>, where In> is the vacuum state; 

(10) 

(11) 

2. C l =C=C; (12) 

3. C a:(p)C1 =1)~b!(P), 

C ak(p)C- l =1)Cbk(P), (13) 

where a
k 

and b
k 

are free particle and antiparticle de
struction operators; 

(14) 

where C is the c-number charge conjugation matrix and 
?/I(x) is the Heisenberg configuration field operator, or, 
in the weak limit sense, the corresponding free field 
operator. 

Because of postulates 1-3, it follows that the n-parti
cle state In, +) is related to the n-antiparticle state 
In, -) by: 

In, +) = (1) ~)n In, -), (15 ) 

In, -)=(1)~)-nln, +); (16) 

2. (m, +In, +)=(1)~)n1)(!!(m, -In,-) 
which requires 

for normalization. 

Postulates 2 and 4 establish 

C* = (;-1. 

(17) 

(18) 

(19) 

The basic postulates needed from the bilinear quantum 
field theory, in addition to those mentioned in the intro
duction, are: 

or 

1. a
k 
(p) In) = 0; 

2. z;/2ak (p):= - w-lim J du" Jt(uk (p ,x), I/J(x», 

ak (p) = - J du" Jt (uk (p, x), !/!I(x» , 

= J dXJ,f(uk(p,x), <tI(x» , 

(20) 

(21) 

(22) 

where dU" (x) is an integration variable over a space
like surface u" (x) which contains the point x, Z~/2 is a 
renormalization constant, and uk(p,x) is any positive 
energy, c-number solution to the equations 

D(a)uk(p,x)=O; (23) 

3. [a
k
(p),a1<q)].=- JdaJt(u,,(p,x),u,(q,x». (24) 
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For physical fields the right-hand side of Eq. (24) is 
positive definite, whereas it is negative definite or zero 
for ghost fields. 16-18 

It will sometimes be convenient to use positive energy, 
plane wave solutions rather than wavepacket solutions 
uk(p,x). We designate those functions as fk(P,x), and 
assume the normalization 

where peE,) is an energy density of states factor. Be
cause u" (p, x) is expandable in terms of fk (p, x), it 
follows from the right-hand side of Eq. (25) that 

J da"Jt(uk(p,x),u,(q,x» = J da"Jt(u,(q,x),uk(p,x». 

(26) 

As shown in the previous studies, 103 these postulates 
lead to the useful results: 

1. [pi (x) ,;P/(y )]. = G(x - y), (27) 

where G(x - y) is the homogeneous Green's function de
fined from the advanced and retarded Green's functions 
as 

or 

G(x) = Ga(x) - Gr(x), 

D(a)Ga,r(x - y) = - 6(x - y); 

2. Any solution, <tI to Eq, (23) satisfies 

1i(x) = - J da,J y)J t(<tI(y), G(y - x), 

where 

C(y - x) =y4Gt (y - x)Y! = G(x - y). 

(28) 

(29) 

(30) 

Central to the discussion is the assumed invariance 
of the field equations (2) to the charge conjugation 
operation. If we define 

C j(x)C l =f(x), 

charge conjugation of the fields in Eq. (2) implies 

D(a)'/Jc = jC(x) , 

which by Eq. (14) becomes 

CD*(a)C-l,p (x) = Clf(x»)t . 

(31) 

(32) 

(33) 

Charge conjugation invariance requires the right-hand 
side to be proportional to j(x). Thus, 

CD*(a)C- l p(x)=-1)Alj(X), (34) 

where 1)Al is a c-number proportionality constant. The 
required invariance is assured if 

CD* (a )C- l = -1)71.1 D(a) (35) 

and 

(36) 

Clearly in this analysis, the factor 1)A arises from 
the structure of the source j(x). Although perhaps more 
unphysical, it would be possible to postulate Eq. (35) 
without Eq. (36), that is, without requiring charge con
i ugation invariance of the interacting theory. Intuitively 
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one expects 1JA to be at most a phase, and as will be 
seen later, it is limited to be ± 1 by the field theory 
postulates. But at this stage, without Eq. (36), this 
phase is undetermined. To see this, let 11A = exp(i li). 
Then Eq. (35) becomes 

CD*(a)C- 1 = - e-i6D(a). 

If we make the change 

D(a) =0> D(a) exp[(i/2)(1i - e)], 

which in no way affects the free field equations, Eq. 
(35) becomes 

CD* (a )C-1 = - e- i9 D(a), 

for arbitrary e. The constraints imposed by Eq. (4) are 
also satisfied if 1'4 is changed according to 

Y4=>"4exp[it(o - e)]. 

The choice for 1)A is therefore arbitrary for the free 
field case. A similar arbitrary shift in phase may be 
for Takahashi's analysis. 12 

However, this ambiguity can be avoided by imposing 
the additional constraint 

(37) 

This fixes the phase of 1'4 and forces ei5 = ei8 thereby 
making 1JA unique, and independent of the source term 
j(x). If j(x) satisfies Eq. (36), then the interacting 
theory is charge configuration invariant. If j(x) does not 
satisfy Eq. (36), only the free field limit has the ap
propriate symmetry. Either way there is only one 
choice for 1JA' 

In the following it will be convenient to define the 
charge conj ugate counterparts to the c-number solutions 
uk(p,x), fk(p,x) as 

and 

~(p,x) = Cu:(p,x) 

J,.c(p, x) = cg( p, x) 

=' gk (p, x). 

Because of Eq. (19), these equations can be used to 
show 

Uk (P,x) = Cv: (P,x), 

J,.(p,x)= Cgz(p,x). 

3. ANALYSIS 

(38) 

(39) 

(40) 

We begin by taking the charge conjugation transforma
tion of Uk (p) as defined in Eqs. (21) and (22). The charge 
conjugation postulates, Eqs. (13) and (14), require 

Z~/211cbk( p) = - w-lim fda", Jt(u" (p, x), CIj/ (x», 

11Cbk(P) = - fda", Jt(uk(p,x), cW(x))t), 

= f dxJt(uk(p,x), CW(x»t). (41) 

Similarily, from Eq. (24) we have 

[bk (p), bi (q) 1. = - fda",Jt(uk (p, x), ul (q, x)). (42) 

Clearly Eqs. (41) and (42) must be made consistant with 
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each other. It is this requirement that establishes 7)A' 

To show this relationship, we need a knowledge of the 
transposition properties of Jt. These can be determined 
from Eq. (6), which, for the integrand of Eq. (40, 
becomes 

il '" Jt (Uk (p, x), C(I/I (x»)t) 

=uk[n(a)c«fI)t]- [ukD(- a)]C«fI)t, 

= 'ijlY4cTDT(a)y!u:- ~Y4CT <D(-a)ytut), 

where T indicates the transpose matrix. After some 
manipulation, Eqs. (4), (19), (35), and (37) give 

Y4CTD T(a)y! = -7)AD (- il)CT . 

This result can be used to rewrite Eq. (43) as 

(43) 

(44) 

(45) 

where Eq. (40) has been used to express Uk in terms of 
the conjugate function vk • 

At this point we establish that CTC* = 1. To see this, 
note that in the above proof that if (1];f)t is replaced by 
vr(q,x), 

a ",Jt(uk (p, x), u, (q,x» = il ",Jt(v, (q,x), 1)A CTC*Vk (p, x}). 

(46) 

If the Hermitian conjugate of both sides is taken and 
the k, l; p, q indices interchanged, we have 

(47) 

Comparison of Eqs. (46) and (47) shows that 1)A CTC* 
obeys the linearity requirement, Eq. (7). Thus CTC* 
is a c-number constant, 

CTC* =k', 

whose transpose is 

CtC=k' . 

Thus k' is real and positive. Furthermore 

deteCt C) = det(C* C) = detk' = 1, 

which for k' real and positive requires k' = 1 and 

Ct =C-1 = C*. (48) 

Because the matrix transposition can introduce no new 
functions into Eq. (6), we may conclude 

Jt(u", C<ll ) = 1JAJ t (I/J, vk), 

Jt(u,,(p,x),u,(q,X»=1)AJt(V,(q,x),vk(p,x». (49) 

This last result, when applied to the plane wave solu
tions, gives 

-1)A fda", J t(gk (p, x), g, (q, x» = p(E,)o (p - q)Ok" (50) 

and, when applied to Eq. (41), gives 

11C bk (p) = - 7)A fda", Jt(I/Jf(X) , Vk (p, x». 

This, along with Eqs. (27) and (29), can be used to 
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show 

[b!(P),b/(q)]. = -11)A 12 J dUlL Jt(vk(p,x),v/(q,x», 

= -1)1 J dUlL Jt(u/(q,x), uk(p,x». (52) 

These equations are obtained directly from the defini
tion of a

k 
(p) and the charge conjugation postulates. They 

must be consistent with the basic quantization postulate, 
Eq. (24), which with the charge conj ugation postulates 
give the commutation rules expressed by Eq. (42). 
Comparison shows 

(53) 

Therefore 1)1 =1)A =± 1, unless the commutators vanish, 
and 

[b/ (q), b: (p) ]nA = -1)A J dU". J t(v/ (q, x), vk (p, x», (54) 

where the indices have been exchanged as allowed by 
the symmetry of Eq. (50). 

This is our primary result. If 1)A = 1)F = 1, the free 
fields obey Fermi statistics. Then, in this theory, the 
free fermion fields must satisfy a differential equation 
with the property 

CD* (a)c- 1 = - D(a). 

The connection is unique, and by the arguments follow
ing Eq. (36), independent of the charge conjugation 
properties of the source term. 

Similarily, if 1)A =1)B = - 1, the free fields obey Bose 
statistics. The free boson fields must then satisfy a 
differential equation with the property 

CD*(a)C· 1 =D(a). 

Again the connection is unique and independent of the 
source term. We may conclude that for physical fields, 
or fields with strictly negative norms, there are two 
classes of differential equations, one for fermions and 
the other for bosons, providing the appropriate field 
equations satisfy Eq. (35). 

The connection between spin and statistics occurs in 
the usual way. 7_11 Because of Eq. (29), we have 

~(p,x) = - J du". (y)Jt<tk (p ,y), G(y - x», 

and 

gk(P, x) = - J du". (y) Jt(gk(P ,y), G(y - x». 

For these equations to be consistent with the normaliza
tion, Eqs. (25) and (50), 

G(y - x) =:0 J dpp·l(Ep)[jk(P,y)h(p,x 
k 

+ 1)Agk (p, y )gk(P, x)], 

= [1jJ(y) ,'ijj(x)]nA • (55) 

This commutator is local only if it vanishes for space
like separations. If this requirement is also imposed, 
then only a subclass of the solutions to each of the two 
classes of free field equation is acceptable. If 1)A = 1, 
this subclass hopefully is the half-integral spin solu
tions, whereas for 1)A = - 1, the subclass hopefully is 
the integral spin solutions. This will be discussed more 
completely in the next section. 
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Some further results, which are straightforward to 
prove are: 

1. If 1/J f (x) is expanded in terms of the plane wave 
solutions, 

Jf(x) =:0 J dpp·l(Ep )[ak(p}Jk(P,x) +1)(jb!(P)gk(P,X)], 
k 

(56) 

where ak(p), b!(p) have been redefined to be 

ak(p) = - J du" JtVk(p,x), 1/J'(x», (57) 

(59) 

[ak (p), ai(q) ]nA = [bk (p), bi(q) lnA = P(Ep)Ok"O(P - q). 

(59) 

2. The charge conj ugation of any operator Q, 1 

Q= - J du" J,,(>]J,q</i), (60) 

where q is the corresponding c-number operator, gives 

QC =J du", J", (¢~" 1/J), 

(61) 

where 

(62) 

In deriving Eq. (61), the transposition of the 
Heisenberg fields introduces an additional factor of 
-1)A not present in the derivation leading to Eq 0 (45). 

For the Hamiltonian and momentum operators, 
q = ioo and q = - \1, respectively 0 Equation (61) then 
yields 

and 

HC = - J du" J" (,p, ioo1') 

=H 

pC = - J du" J", (1/J, (- i\11/J» 

=p 

as required. 

4. RELATIVISTIC EQUATIONS 

The two classes of wave equation for arbitrary spin, 
developed by Hammer, McDonald, and Pursey14 nicely 
illustrate the above discussion. The "linear" equation 
is generated from the Foldy type equation for the 
2(2s + 1) component field, 

(63) 

where f3 is the 2 (2s + 1) generalization of the Dirac I> 
matrix and E = (- \12 + m 2)1/2. The transformation 

(64) 

where 5 is the Lorentz transformation, is used to gen
erate the field equation for </it. If one uses for the 
Lorentz transformation 

S=exp[sO' '(q/q)arctanh(p/E)], (65) 
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where a is the 2(2s + 1) generalization of the Dirac IY 

matrix, q =EP with E = 1 for positive energy solutions 
and € = -1 for negative energy solutions, P = - i\1, 

q = P = (- \12)112, one generates the wave equations of 
Weaver, Hammer, and Good15 for particles of arbitrary 
spin s. 

If one uses the hyperplane formalism of Flemming19 

to describe 5, then one obtains14 

mp[" I Y[" l!J!t = (i)2S€2s+1 ( - p"p" )s+1/2!J!t, 

where 

r[,,1 = Y("I' 

(66) 

(67) 

and Y are the 2(2s + 1) Dirac-like matrices 
tJ. .uz""''' ~2 

studie<l by Bartt, Muzinich, and Williams20 and by 
Weinberg. 13 These equations are the manifestly co
varient form of the Weaver, Hammer, and Good equa
tions. 15 They are particularly simple for half integral 
spins since f2s+1 = 1 and minimal coupling to other fields 
can be used21 since there are no auxiliary conditions to 
be satisfied. Given the equality 

Y[" )PI IL ) Y[vlP[v) = (p"p,,)2s, 

it is straightforward to show 

(PuP,J2S(P ILPIL +m2)l}Jt=0. 

Then if'; is seen to be a solution of either 

[p"p" +m2Nt=0 

or 

(68) 

(69) 

(70) 

PILP"J,t=o, (71) 

so that I}Jt describes both a massive and massless 
particle. For the massive particle part Eq. (66) re
duces to the Weinberg equations, 13 

h" 117[" I - (i)2Sf2S+lm 2S Jib; = 0, (72) 

which has Eq. (70) as an auxiliary condition. These 
equations have been shownll

•
13 to have nonlocal com

mutation rules for integral spin because of the E factor. 
Thus, Eqs. (66) or (72) can be thought of as equations 
which admit a subclass of solutions that correspond to 
half-integral spins. The Y[". I matrices have the prop
erties (3 = f(4) and 

r[lL IPt,L/ r[41 = f[41 Y[" IP[" I' 

and, for Eq. (66) to be charge conjugation invariant 
(s half-integral), 

These properties can be used to show that 

Y4 "'Y[41' 

D(a) = m YllL IPI" 1- (i)2S( - p"p,j+l/2], 

Dt (a )Y[41 = - Y(4ID( - 0), 

CF Y(4)Cj,' = - f(4)' 

CFD* (O)C:;,l = - D(a), 

(73) 

(74) 

for s half-integraL. Thus 7JA = 7J F = 1 and the fields are 
Fermion fields. 
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The second class of equations is generated by the 
transformation, Eq. (64), on a "second order" Foldy 
type equationl1 

(75) 

which, for {3 = 1, is the Klein- Gordon equation. If the 
hyperplane formalism is used to describe 5, one 
obtains14 

[(- i)2sE2'Y["IP[,,) - (- P"p"Js-l(2m2 + p"p"Jl<Va=o. 
(76) 

This equation is particularly simple for the integral 
spin case since f2s = 1. These equations also have no 
auxiliary conditions and may be used with minimal 
coupling. 17 As before, Eq. (68) can be used to show that, 
for spin greater than 1, <Va contains both massive and 
massless solutions. The massive case reduces to 
Weinberg's equation13 

[(_i)2sf2sY[ILIP["I-m25l<JI8=0, 

[p"p" +m 2 ]4,£ =0. (77) 

These equations, Eqs. (76) and (77), have also been 
shownll

•13 to exhibit nonlocal commutation rules when 
5 is half-integral because of the E factor. Thus the 
acceptable solutions for this class are the subset of 
integral 5 solutions. 

The charge conjugation properties for this case are 
(s integral) 

eB yt" IP1~ ICil = r[" IP[" I' 

C B (iY[41)* c;/ = - iyw . 
These properties can be used to show 

Y4 '" iY[41 , 

D(o) = [(- i)2Sy[ u IP[IL I - (- p"p" )s-l (2m 2 + p"p,,) 1 
=D(-o), 

Dt(a)rq = - I,!D(- 0), 

(78) 

(79) 

for 5 integral. The acceptable solutions are therefore 
boson fields, 7JA = 7JB = - 1. The choice for CB used by 
Nelson and Good is 

(80) 

where Ys is the 2(25 + 1) generalization of the Dirac Ys 
matrix. 

The fields !J!t and I}J~ are closely related to symmetric 
spinoI' fields of dotted indices and as such are solutions 
of the Dirac-Pauli-Fierz equations. 22 The proofs will 
therefore apply also to these equations. 

5. UNUSUAL FIELDS 

We have shown for phYSical bilinear quantum field 
theories that there is a unique relationship between the 
free field equations and the statistics of the quantized 
fields. This is interesting because it emphasizes the 
caution that must be exercised when setting up a field 
theory. It would, for example, be totally inappropriate 
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to postulate that a Fermion field satisfy the Klein
Gordon equation in the interaction free limit. It is clear 
that interactions should be added only to those field 
equations that satisfy Eqs. (4), (35), and (37), if the 
statistics are to be included in the appropriate manner. 
There are, however, some exceptions, namely those 
cases for which Eq. (35) is not satisfied or when the 
field has a zero norm. 

Schrodinger fields are one of the exceptions to the 
present study because nonrelativistic wave-equations 
are not charge conjugation invariant, The statistics of 
these fields are only fixed in the sense that they satisfy 
appropriate relativistic, charge conj ugation invariant 
wave equations whose nonrelativistic limit destroys the 
charge coni ugation invariance. However, the phonon 
field, the quanta of elastic excitations of a lattice, 
which is a nonrelativistic phenomenon, is very dif
ferent. The equation satisfied by the phonon field is a 
Klein-Gordon-like equation. 23 Since they have a non
zero norm, they must be bosons. 

The other exceptions are those fields with vanishing 
norms. It has recently been shown that Goldstone 
bosons1 8 and the gauge fixing field B(x) of Nakanishi23 

fall into this category. It is possible24
•

25 to describe 
these fields with negative norms without altering the 
accompanying physical fields. Thus these fields must 
be bosons. 

The Fadde'ev-Popov ghost fields 16 satisfy a mass
less Klein-Gordon equation, but are interpreted as 
fermions because of their signature, det-1(7)), in the 
path-integral formulation. They are considered as anti
commuting c-numbers 

and therefore they present no contradiction to the re
sults of this paper. However, our work does show that 
charge conjugation invariance requires that any such 
q-number ghost field must have a zero norm. Such a 
field theory will be the subject of a future investigation. 

Lastly, the Gupta regularizing fields 17 must have a 
negative norm to be useful. Since they satisfy the same 
free field equations as their physical field counter
parts, they must have the same statistics. Thus, 
Gupta's method is consistent with the present study. 
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Theory of vibrations of coated, thermopiezoelectric laminae 
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This study presents a theory for dynamic problems of coated laminae in which there is coupling between 
mechanical and electrical as well as thermal fields. The laminae is coated completely with perfectly 
conducting electrodes on both its faces. and it may comprise any number of bonded layers. each with a 
distinct but uniform thickness, curvature and electromechanical properties. First, a generalized variational 
theorem is derived so as to describe the complete set of the fundamental equations of 
thermopiezoelectricity. Next, by the use of this theorem, a system of two-dimensional, approximate 
governing equations of the coated laminae is constructed for the case when the mechanical displacement, 
electric potential, and temperature fields vary linearly across the laminae thickness. The effects of elastic 
stiffnesses of, and the interactions between, layers of the laminae and its electrodes are all taken into 
account. Also, the uniqueness of the governing equations is examined, and a theorem which includes the 
conditions sufficient for the uniqueness is given. 

1. INTRODUCTION 

Observations of elastic strain caused by applying an 
electrical field as well as mechanical stress, and of 
electrical polarization produced by impressing mechani
cal stress instead of an electrical field have been long 
attributed to certain classes of crystalline solids. 1-4 
The latter is called the direct piezoelectric effect dis
covered by the Curie brothers, 5,6 and the former the 
converse (also reciprocal or inverse) piezoelectric 
effect predicted theoretically by Lippmann7 as a ther
modynamic consequence of the direct effect and verified 
by the Curies. 6, 8 The piezoelectric crystalline solids 
are always anisotropic; of the 32 crystal classes, 21 
lack a center of symmetry, and with the exception of 
one class (the cubic class 432), all of these are piezo
electric, 9 Recently, the observation has also been 
established of the piezoelectric effects in certain 
synthetic materials10 (for instance, piezoelectric 
ceramicsll) and a number of biological substances12•13 

(the so-called piezoelectric textures such as WOOd14 

and bone15). The discovery and manufacturing of 
synthetic piezoelectric materials, and, in particular, 
of piezoelectric ceramics made it possible to produce 
a virtually unlimited variety of advantageous shapes for 
piezoelectric devices. Piezoelectric materials are so 
extensively used in electro- and hydro-acoustics, com
munications, and measurement techniques that a whole 
branch of industry is devoted to the development of 
piezoelectric devices. 16-19 As a result, it became, in 
fact, desirable to investigate, both theoretically and 
experimentally, piezoelectric structures of any 
geometric shape. 

Remarkable interest in dynamic problems of piezo
electric structures seemed to begin with Mindlin's 
classical paper20 on vibrations of elastic plates. Follow
ing Cauchy21 and POisson,22 and using the integral 
method of Kirchhoff,23 Mindlin24 introduced a systematic 
method of approximation for deducing one- and two
dimensional equations for rods and plates from the 
three-dimensional theory of elastodynamics. Then, 
he and Tiersten25 applied the method to analyze cer-

aJpresent address.: Yildiz Posta Caddesi, No:2, Omay Apt., 
D.l, Besiktas, Istanbul, Turkey. 

tain vibrations of piezoelectric crystal plates. From 
this onward, Mindlin26- 28 and his associates investigated 
extensively dispersion of waves in, and vibrational 
modes and frequencies of, a bounded crystal plate. 
These works have been elaborated by Tiersten29 in a 
notable monograph and by Lee and Haines30 in a com
prehensive survey article with an up to date biblio
graphy. Also, the works of Holland and Eer Nisse31- 33 

who, in recent years, fruitfully exploited a variational 
technique in dealing with complicated geometric struc
tures, and those of Bleustein,34 Paul, 35 Kagawa and 
Yamabuchi,36 Schmidt37 and Keuning38 are mentioned on 
vibrations of piezoelectric crystal plates. Besides the 
dynamic problems, we cite the papers by Paul39 and 
Vekovishcheva40,41 for bending of a rectangUlar piezo
electric plate. Along the two-dimensional problems of 
piezoelectricity, worth mentioning is also the work of 
Rizzo and Nowinski, 42 who presented, following 
Muskhelishvili43 and Lekhnitskii,44 a method of solution 
for plane piezoelectric problems as a counterpart of 
the complex variable technique of elasticity. And men
tion is further made of the paper of Kudriavtsev, Par
ton and Rakitin45 on a crack growth problem in piezo
electric medium. 

Investigations concerning the analysis of piezoelec
tric shells have been directed, in general, toward solu
tions of specific problems. Toupin46 derived the piezo
electric relations and equations of equilibrium for a 
polarized, elastic spherical shell. Stephenson47 re
ported in detail the radial vibrations of polarized, 
hollow cylinders; though his analYSis can be called 
uncoupled, his results were in good agreement with 
those of experiments. Drumheller and Kalnins48 
presented a theory for vibrations of piezoelectric shells 
of revolution and free vibration solutions for a hollow 
ceramic cylinder. Also, Haskins and Walsh 49 Paul 50 

51 2 ' , Martin, and Dianov and Kuz'menk05 studied polarized 
cylinders, as did Adelman, Stavsky, and Segal. 53,54 
Rec ently, Lazutkin55 dealt with the vibrations of a 
ceramic sphere, he and his associates 56-58 with those 
of polarized piezoelectriC ceramic rings, and Viktorov59 

with surface waves on cylindrical crystal surfaces, In 
addition, the paper which includes high frequency vibra
tions of piezoelectric shells in the current open litera-
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ture, was due to Dokmeci60 ,61 who presented a linear 
theory of piezoelectric crystal finite surfaces and 
theorems of uniqueness in this theory as well. 

A layered type of piezoelectric structures is of a new 
design feature and demand in piezoelectric devices 
operating by the inverse effect and primarily devised 
for application in control engineering, 17,18 Greenspan 
and Wilmotte62 and Newe1l63 proposed one use for this 
type of structure as did Fry and Dunn64 and Sittig65 who 
also presented a state-of-the-art article66 to get a 
better insight on the subject, Schmidt and Voltmer67 

dealt with piezoelectric elastic surface waves in a 
layered media. Recently, Fahmy and Adler68,69 de
scribed a Thomson-Haskell transfer matrix formalism 
for studying acoustic surface wave propagation in a 
planar, multilayer structure. Cheng and Sun70 consid
ered wave propagation and thickness vibrations in two
layered piezoelectric plates. And more recently, 
Pauley and Dong 71 presented a finite element analysis 
for predicting dispersive characteristics in a laminated 
piezoelectric plate under plane strain conditions. How
ever, the works tended to be limited to planar, layered 
structures and to disregard the effects of the elastic 
stiffnesses and inertia of electrodes and the mutual 
coupling of layers. 

To describe continuum problems, variational formu
lations have been supplied as an alternative for differ
ential formulations which are fundamental and at hand. 
The former, if possible, 72 may be useful in obtaining 
approximate solutions, and it may suggest fruitful 
analogies and generalizations. 73-75 Hence, the foregOing 
works mostly relied on a variational principle. Varia
tional principles for linear piezoelectricity have been 
primarily derived by Mindlin,24 Tiersten and Mindlin, 25 
Eer Nisse,76 Holland and Eer Nisse, 31,77 and then by 
Tiersten29 who unified the earlier works by a modifica
tion of Hamilton's principle, and Vekovishcheva. 78 By 
the use of Lagrange multipliers and following Tiersten,79 
Dokmeci80 presented variational principles which gen
erate all the basic equations of linear piezoelectricity. 
Recently, Mindlin28 discussed a variational principle 
for thermopiezoelectricity, which is analogous to 
Biot's 81 variational principle for the thermoelastic case. 
Yet his work is in need of further study to produce the 
complete set of the basic equations of linear 
thermopiezoelectricity. 

The purpose of this paper is (i) to derive a variational 
theorem which describes all the basic equations of the 
classical, linear theory of thermopiezoelectricity, by 
the use of the theorem; (ii) to construct a theory for the 
dynamic problems of coated laminae which accounts for 
coupling of mechanical, electrical, and thermal fields 
and includes the effect of elastic stiffnesses and inertia 
of, and all the interactions between, layers and elec
trodes of the laminae; and then (iii) to present a the
orem of uniqueness in the theory, which enumerates 
the sufficient conditions of the uniqueness. 

The remainder of the section introduces the notation 
to be used in the subsequent development. The next 
section contains, for ease of quick reference, the 
principal results of the classical, linear three-dimen
sional theory of thermopiezoelectricity. In Sec. 3, a 
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description of the laminae geometry is presented. The 
laminae is of a finite, regular region82 with no singu
larities of any type, and it is completely coated with 
perfectly conducting electrodes on both its lower and 
upper faces. And it may have a construction compris
ing any number of bonded piezoelectric layers, each 
with a distinct but uniform thickness, curvature and 
electromechanical properties. Also recorded is the 
relations between space and surface tensors that are 
needed in the sequel. In Sec. 4, the result of Mindlin28,83 
is extended and a generalized variational theorem is 
formulated. The theorem generates the divergence, 
gradient and constitutive equations, and natural bound
ary and initial conditions for the mechanical, electrical, 
and thermal fields of linear thermopiezoelectricity. 
Section 5 deals with the kinematics and all the continuity 
conditions between layers and electrodes of the laminae 
and Sec. 6 with the definitions of mechanical stress, 
load, acceleration, traction, body force, heat flux, 
entropy resultants and gross electric displacements for 
the laminae, The distributions of mechanical strain, 
electric field, and heat flux are introduced in Sec, 7. 
The constitutive equations corresponding to the resul
tants are given in Sec. 8. In Sec. 9, by the use of the 
variational theorem together with a chosen field of 
mechanical displacement, electric potential, and tem
perature increment, the macroscopic field equations 
and the natural boundary and initial conditions of the 
coated, thermopiezoelectric laminae are constructed in 
a consistent and systematic manner within the frame
work of three-dimensional theory of linear thermo
piezoelectricity. The field is linearized with respect to 
the thickness coordinates of layers, and it may ac
commodate all the types of vibrations of the 
laminae. 28, 48, 61, 84 This approach may be considered in 
the same spirit as those of Mindlin28 and Tiersten. 29 

In Sec. 10, a theorem of uniqueness is established for 
the initial mixed- boundary value problems defined by 
the governing equations of the laminae. The proof of 
the theorem is given by means of an argument similar 
to that used by Weiner. 85 Also, the sufficient conditions 
to assure the uniqueness are enumerated. A brief dis
cussion of the results, special cases of interest, and 
extensions to other types of piezoelectric structures 
are presented in the last section, 

Notation 

In the paper, standard tensor notation86,87 is freely 
used in a Euclidean 3-space 2:, The gl system in the 
space 2: is identified with a fixed, right- handed system 
of geodesic normal coordinates. Latin indices (sub
scripts or superscripts), except for rn and r, have the 
range 1,2,3, and Greek indices 1,2. The former stands 
for space tensors, while the latter for surface tensors 
in the space 2:. Einstein's summation convention is im
plied for all repeated Latin and Greek indices, unless 
they are enclosed with parentheses, The index m (or r) 
within parentheses represents the rnth constituent from 
the lower face of the laminae, and it takes the values 
1,2, ... ,N. Accordingly, 1 (or a prime) and N (or a 
double prime) are assigned to the lower and upper elec
trodes of the laminae and 2, 3, ... , N - 1 to the layers of 
the laminae. A comma stands for partial differentiation 
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with respect to the indicated space coordinate and a 
superposed dot for time differentiationo A semicolon and 
a colon are used to designate covariant differentiation 
with respect to the indicated coordinate, using the space 
and surface metrics, respectively. Also, an asterisk 
denotes prescribed quantities and an overbar denotes the 
field quantities referred to the base vectors of con
stituent midsurface. Further, the symbol B(t) refers to 
the region B at time t in the space E, BXT refers to 
the Cartesian product of the region B and the time in
terval T= [to, tl), where t l > to may be infinity, and Cmn 
refers to the functions with derivatives of order up to 
and including (m) and (n) with respect to space co
ordinates and time. 

2. THREE-DIMENSIONAL LINEAR FUNDAMENTAL 
EQUATIONS OF THERMOPIEZOELECTRICITY 

In the three-dimensional Euclidean space E, let B 
stand for an arbitrary, simply connected, finite and 
bounded region of space82 occupied by the thermo
piezoelectric medium at t= to' The region is referred 
to by a fixed, right-handed system of geodesic normal 86 

coordinates 8i in this space. The boundary surface of 
B is denoted by aB and its closure (L eo, B U aB) by E, 
and the outward unit vector normal to aB by n, Also, 
the complementary regular subsurfaces of aB are in
dicated by (S., St), (So, S~), and (S8, Sh), that is, S. U St 
=~B, sunSt=~, and so on. Further, let EX[to,tl) 
= BXT represent the domain of definitions for the func
tions of (81, t). 

NOW, we state the three-dimensional, linear funda
mental equations of thermopiezoelectricity83: 

Divergence equations: 

TiJ;l+fJ=pb J, EijkTJk=O in BXT, 

DI;/=O in EXT, 

hi; I = - eoil in EXT, 

with the definitions 

(2,1) 

(2.2) 

(2.3) 

Tli = symmetric, spatial (contravariant) components 
of the stress tensor, 

f = body force vector per unit VOlume, 

u = mechanical displacement vector, 

b = ii = acceleration vector, 

p = mass density, 

EIJk = components of the alternating tensor, 

D = electric displacement vector, 

h = heat flux vector, 

T/ = entropy density 

eo = constant, positive, reference temperature. 

Gradient equations: 

sIJ=i(u/;J+uJ;/) in EXT, 

Ej=-rp,1 in BXT, 

hi = - Kiie,J in BXT, 

where 
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(2,4) 

(2.5) 

(2.6) 

Sjj = components of the symmetric strain tensor, 

E =quasistatic electric field vector, 

rp = electric potential, 

e = temperature increment from the reference 
temperature, 

Kii "= components of symmetric, positive semidefinite 
conductivity tensor. 

Constitutive equations: 

where 

iJG 
T/=- -ali 

G,,= G(SIJ' E I , 8) = U - EID i -1)8 

= electric Gibbs functionl6 , 

U = potential energy density 

in BXT, (2.7) 

A quadratic form of the thermodynamic potential G is 
given as follows: 

G = iC iikl S/iSkl - Cli EIE J - pCveii le 2 

- ClikE/Sik - AleEI - Alisl,e, 

and, in view of Eqs, (2,7), it yields the linear con
stitutive equations of thermopiezoelectricity in the form: 

TiJ = C/ikISkl - CklJEk - AIJe 

Di,,= ClikSik + CliE J + Ale 

T/= AiJS/j + AIEl + exe 

in BXT. (2.9a) 

Here, Clikl are the elastic constants, Cilk the piezo
electric strain constants, Cli the dielectric permittivity, 
AIJ the thermal stress constants, A' the pyroelectric 
constants, and ex the material constant (ex = pCveiil, 
where Cv is the specific heat per unit volume), Of these 
material constants, CWI refer to free constants (since 
C ilkl describe the stress-strain relations when the 
electric and temperature fields are absent), while the 
remaining refer to clamped constants, 88 Further, we 
note that 

Clikl = CJlk! = Ckl/J, Clik = Cik1, 

CiJ=CJI, Ali=Ail, 

Boundary conditions: 

(2. 9b) 

T*i - nl Tli = 0 on S7T, ui - it l = 0 on S,)(T, (2.10) 

a* - niDI = 0 on S"XT, rp* - rp = 0 on S~XT, (2,11) 

e* - e = 0 on SaXT, v* - nih' = 0 on S,l(T, (2.12) 

Here, 

Ti = stress vector = n l Tli, 

a = surface charge, 

v = normal component of the heat flux (across the 
surface), 

and St, S., S,,' S<I>' S(;, and Sh are the surface portions of 
aB where the tractions, displacements, surface charge, 
electric potential, temperature, and heat flux are 
prescribed, respectively. 
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Initial conditions; 

u(8 i ,io)-v*(8i )=0, u(8i ,tO)-W*(8i )=0 

¢(8i ,/o)-<l>*(8i )=0, 8(8i,to)-1JI*(8 i )=0 
in B (to). 

(2.13) 

Equations (201) represent the local balance of 
momenta (Cauchy's first and second laws of motion), 
Eqs. (2.2) and (2. 5) the charge equation of electro
statics and the electric field-electric potential rela
tions (Maxwell's equations of the quasistatic 89 electric 
field, where the electric charge density, the conduction 
current and the rate of change of magnetic induction 
are neglected for nonconductors at frequencies far 
below optical frequencies, that is, polarizable but not 
magnetizable dielectrics), Eq. (2.3) represents the heat 
conduction equation, Eq. (2.4) the strain-mechanical 
displacement relations, Eqs. (2.6) Fourier's law of 
heat conduction (in which the conductivity tensor is 
symmetric, since a strong magnetic field or Coriolis 
forces are absent; this is due to Onsager's principle), 
and Eqso (2.9) represent the linear constitutive equa
tions. These equations completely describe the linear 
theory of thermopiezoelectricity, and the uniqueness of 
their solutions has been assured by the boundary condi
tions (2.10)-(2.12) and the initial conditions (2.13) as 
shown by Mindlin. 28 

Variational theorem: By the use of the principle of 
conservation of energy, a variational theorem due to 
Mindlin28 may have the form 

J' [(Tii .+{i-pbJ)6u.-Di .. 6!JJ-(ry+hi'j801)681dV B ; l . J,t. , 

- JaB [(n; Tii - T~)6Uj - (niDi - o*)o¢ 

- (Il ih
i -11*)801081 dS= ° (2.14) 

which evidently generates the stress equations of mo
tion (2.1), the charge equation of electrostatics (2.2), 
the equation of heat conduction (2.3), and the natural 
boundary conditions (2.10)- (2.12). 

Continuity conditions: Since multilayer structures of 
piezoelectr'icity are of interest, we shall also use the 
conditions on the interfaces of constituents of the 
laminae, The so-called continuity conditions are ex
pressed by 

T(m) +T(m+ll=o, l'(m) +l,(m+i) =0, 

o(m) + o(m+l) = 0, U (m) -u (m+i) = 0, (2.15) 

8 (m) _ 8 (m+i) = 0, ¢ (m) _ ¢ (m+i) = 0, on S~T. 

These relations state the continuity of displacements, 
temperature and electric potential on, and tractions, 
surface charge, and heat flux across, the bonding sur
face Sb = Sm, m+l between the mth and (111 + 1 )th 
constituent. 

Further, we record the kinetic energy density k., 

1<.= tpli i ll i , 

the Biot generalized free energy density B, 

B = B(Sii' D;, 1)) = U - 8 01) = (; + EiDi + 1)8 

with 
'J aB aB 8- aB 

T' = OSiJ' Ei = - iJDl' - (1) , 
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(2.17) 

(2.18) 

and the dissipation function F, 

F= tKii8.18.j801, 

and recall that the individual k., B, and F are positive 
definite, by definition, and initially zero. 

3. DESCRIPTION OF THE LAMINAE GEOMETRY 

The coated, thermopiezoelectric laminae treated 
herein is composed of N constituents: two perfectly 
conducting, lower and upper face electrodes and (N - 2) 
piezoelectric layers between them. Each constituent 
may possess distinct but uniform thickness 2hm , curva
ture, and electromechanical properties. The laminae 
occupies a regular, finite region of space, V + 5, with 
its entire boundary surface 5 and overall thickness 2H. 
And it is referred to by the 81 fixed, right- handed sys
tem of geodesic normal coordinates in the space:=: so 
that the equations 

83=_hj, 83=2H-ht. 1(81,e2)=0 (3.1) 

define the lower and upper faces, 51t and 5ut, and edge 
boundary surface, 5., of the laminae. The edge bound
ary surface is taken as a right cylindrical surface 
whose generators lie along the normal to S If and 5 uf' 

and it intersects them along closed, smooth, and non
intersecting Jordan curves C. The bonding surface be
tween the mth and (m + l)th constituent is denoted by 
AI l and the edge boundary surface and midsurface m, m+ , 

of the mth constituent by 5~ and A m' Also, nand 1/ are 
used to designate the outward unit vectors normal to the 
faces and to the edge boundary surface, respectivelyo 

The 8i -normal coordinate system is located on the 
midsurface of the lower electrodes, AI' e3 is chosen 
positively upward and e3 = ° is taken as a reference 
surface A which coincides with the midsurface A 1. The 
e'" coordinate curves form a system of curvilinear 
coordinates on this surface. Further, we introduce a 
set of local coordinates e~ situated on the midsurface 
II m of the JIIth constituent. Thus, we have 

e~=e"', e!=e3-zm , m=I,2, .. 0,N. (3.2) 

Here, Z m is the distance between the reference surface 
and the midsurface of the mth constituent. Hence, the 
parametric equations 

e~ "" 0, e3 
- Z m = ° (3.3a) 

and 

e~ - Yt m = 0, e~+1 + IIm+l = 0, 

e3 
- (zm + hm) = 0, e3 

- (Zm+l - hm+l ) = ° 
with 

m 

zm = 0 (2 - 01, - 0m,)h, (3.3c) 
r.l 

clearly define the midsurface A m and the bonding surface 
Am, m+lo 

With reference to the el-system of normal co
ordinates,86 the position vector R of a generic point P 
in the laminae space V takes the form 

R(e i ) = r(8"') + e3a3(e") (3.4a) 

with 
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a",· as = 0, as' a3 = 1. (3.4b) 

Here, r represents the position vector of the projection 
of P on, a", = R, ",(8S, 0) the covariant base vectors of, 
and a3 the unit vector normal to, the reference surface 
A (83 = 0). Thus, the base vectors, and metric and con
jugate tensors of the space V are defined by 

g" = a", + 83as, '" = J.J.~alb 

g'" = (J.J. -I);a/l, gS = g3 = a3 = as 

and 

g",3=0, g33=1, 

where 

J.J.,;=0,;- 0;8s, j.J.~(J.J.-I)~=O';, 

(J.J.-I),; = [15'; + eS(b; - b~15,;)]1 J.J.';I-l, 

and those of the reference surface A are 

a"'/l=a",' a/l=g",s(lJ'1, 0), 

a",/l=g"'8(1J'1,0), a ",aaa/l = 0'; 

(3.5b) 

(3.6) 

(3.7) 

in which a"'8' b"'6' and c"/l= b"ab~ stand for the first, 
second, and third fundamental forms of A, respectively. 

Consider a vector field P in the space E. The field 
can be referred to either by the base vectors (gj, gil or 
those (aQ , a3; a"', a 3), and it may be written 

P = plgi = Pigl = P ",a'" + Psa3 = P"'a", + p3as• (3.8) 

The shifted components (p;, pi) of P are associated with 
the components (Pi' pi) by the relations: 

P =IIVP p"=(II_I)",pv. P"'=II"'P" 
Q' fw"'Q' '" /"""", """11' 

p",=(J.J.-I)~pv, p 3=p3=PS =[>3. 
(3.9) 

In addition, we record the relations 

P"';/l= J.J.':.(P":/l- 0.,/l[>3), P''':/l= (/l-I)~(pv:8- 0~p3), 

P",;3= J.J.~P",3' P 3;", =Ps,,,, + b':"P,,, 

pa;3 = (wl)~pv, 3, P~ a = p3, '" + b",aP, 

P s _p _p _p-3 _P-
; 3 - 3; 3 - 3, 3 - , 3 - 3, 3 

(3.10) 

for later convenience. Here, a semicolon and a colon 
are used to designate covariant differentiation with re
spect to the indicated coordinate by the use of space 
and surface metrics, respectively. 

Further, the elements of volume dV, of surface dS 
on S, of area dA on A and of line ds along C are of the 
forms: 

dV= vgdel d82 de3 =dSd83 = J.J. dAd83 

n" dS= J.J.v",dsde3 

with 

J.J.= iJ.J.,;1 =(g/a)I/2=1_ 283H+ (83)2K, 

a= la"'/ll, g= Igil I. 

(3.11) 

(3.12) 

Here, H = tb~ and K = I b'" 61 are the mean and Gaussian 
curvature of the reference surface. In the foregoing 
relations, Jl; and its inverse (Jl-I ); are of particular 
importance. They play the role of shifters in the space 
of normal coordinates, and they do exist when I e3

1 
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< I R rn1n I, where Rm1n denotes the least principal radius 
of curvature. This sufficient condition is evidently 
satisfied by the fundamental assumption 

2H < IRmin 1 (3.13) 

which allows the laminae to be treated as a two
dimensional continuum. 

4. VARIATIONAL THEOREMS FOR LINEAR 
THERMOPIEZOELECTRICITY 

In the variational theorem (2. 14) given for the thermo
piezoelectric region of space, B + aB, with its bound
ary surface aB, the admissible states AM= [Jlh c{), e] are 
required to meet the mechanical displacement-strain 
relations (2.4), the electric field-electric potential 
relations (2.5), Fourier's law of heat conduction (2. 6), 
the constitutive equations (2.9), the boundary conditions 
of displacements, elastic potential and temperature, 
(2.10)- (2.12), and the initial conditions (2.13) as con
straints. However, to use variational theorems in 
which the admissible states satisfy either no constraints 
or as few constraints as possible is, in general, 
desirable in applications. Hence, the constraints put 
aside in theorem (2.14) can be removed, for instance, 
through Friedrichs's transformation described in the 
book of Courant and Hilbert. 90 De Veubeke91,92 illustrat
ed this technique of removing constraints in the classi
cal theory of elasticity, as Tiersten29,"l~ systematically 
did in the linear theory of piezoelectricity. Due to its 
familiarity and relative simplicity the technique was of 
wide use in the literature. 93 Another is the method of 
the "mirror equation" or the "adjoint equation method" 
of Morse and Feschbach, 73 used extensively in continu
um phYSics. In removing variational constraints, we 
further mention the "quasi-variational method" of 
Biot,81 the "restricted variational methods" of Rosen, 94 
Glandsdorf and Prigogine, 95 and recently the Gurtin 
method of "convolution. 96,97" 

To begin with, we integrate equation (2.14) from 
t = to to t = tl1 and then define the functional J, 

J=Jt~. 

Here, the first variations of ~~ are given by 

OJH = I Tdt 18 (Til;; + /i - pbi)oufdV, 

OJg = I Tdt{jSt (T*f - nj TiJ)oul dS 

+ 1 (Uj - uf)oTI dS}, 
Su 

(4.1a) 

(4,lb) 

OJH = IT dt 18 - D'; l0c{) dV, (4.1c) 

OJn=lTdt {fs (njD'-o*)oc{)dS+ 1 (c{)-c{)*)oodS}, 
a s~ 

and 

OJ~l = IT dt 18 - (Ji + 8ii1hi;i)08 dV, 

15J~~ = fTdtUSh 8i/(nih
j 

- v*)156dS 

+1 ni(8-8*)15h'dS} 
S8 

for each tE T=[to, tl). Since the variations of MM 

(4.1d) 

= [ou;, oc{), oe] in B, and those of ~ui> oc{), 08, TI, 00, 

and ohh in this order, on Su, S'I" So, St, Sa, and Sh' 
are arbitrary and independent, we have the field equa
tions (2. 1)- (2. 3) and the natural boundary conditions 
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(2.10)- (2.12), as appropriate Euler equations, for the 
case when oJ = O. 

Next, following the methodology of Tiersten79 and 
De Veubeke, 92 the variational theorem (4.1) is suitably 
modified in order to include the rest of the fundamental 
equations of linear thermopiezoelectricity. Thus, by the 
use of the dislocation potentials and the Lagrange mul
tipliers for each subsidiary condition, we readily re
move all the constraints as in a recent paper by 
Dokmeci. 80 Hence, we conclude a generalized varia
tional theorem as follows. 

Theorem: Let B + aB denote a regular, finite, thermo
piezoelectric region of space in ::::, with its entire 
boundary surface aB (SuUSt=SaUS0=ShUS9=aB and 
5u n 5t = Sa n 5(/l = 58 n 5 h =,0) and its closure B, and de
fine a functional I(A D ) whose first variation is given by 

OI = oJ1~ + OIH 

with 

AD = [ul E Ct2 , 5il E Coo, Til E Cto ; DI E Cto , 

(4.2a) 

E j Eo: Coo, ¢ E Cto ; hi E Cto , e E Cto , 7] E Cotl in EXT, 

(4.2b) 

and 

and 

and 

OIli = frdt i[TIi -~ (:~J + :~,)]o5IJdV, 
OIg = frdt fB [51J - -hul;J +uJ; i)]oTIJ dV, 

OIg= fB {p[ul(e, to) - w*l(e)]OUI(e, to) 

+ p[ul(e, to) - v*l(e)]OUI(e, to)}dV, 

OI~}= 1'rdtfs -(7]+ ~~)07]dV, 
OIi~=frdtfB- (hi + KIJe,J)ohl dV, 

{j/3~ = fB [e (e, to) - >J1* (e) ]oe( e, to) dV. 

(4.2c) 

(4.2d) 

(4.2e) 

(4.2f) 

(4.2g) 

(4.2h) 

(4.2i) 

(4.2j) 

(4.2k) 

Then, of all the admissible states AD, only those which 
admit the functional I have zero first variation, if and 
only if, they satisfy the divergence equations [the stress 
equations of motion, (2.1), the charge equation of elec
trostatics, (2.2), and the heat conduction equation 
(2.3)], the gradient equations [the mechanical displace
ment-strain relations, (2.4), the electric field-elec
tric potential relations, (2. 5), and Fourier's law of heat 
conduction, (2.6)], the constitutive equations of stress, 
electric displacement and entropy, (2.7), the natural 
boundary conditions, (2.10)- (2.12), and the initial con
ditions (2.13) as appropriate Euler equations. 

Further, in view of Eqs. (2.9), (4.2c), (4.2f) and 
(4.2i), we get the linearized form of OIU>t as 
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OIl} = f rdt fB [Tii - (C iikI 5kl - CklJEk - Alie)]o5IJ dV, 

OIn=frdtfB[DI- (CIJk5Jk +CiJE,+ Aie)]oEldV, (4.3) 

OI~i = frdt fB [7] - (AIJSIJ + AiEl + O!e)]o7]dV, 

which lead to the linear constitutive equations of 
thermopiezoelectricity. 

The variational theorem OI(AD) = 0 evidently gen
erates, by the use of the fundamental lemma of the 
calculus of variations, the complete set of the basic 
equations of thermopiezoelectricity, and it contains 
certain earlier variational theorems 29, 80 of piezoelec
tricity as well as Mindlin's theorem,28 as special cases. 

5. DISPLACEMENT, POTENTIAL, AND 
TEMPERATURE FIELDS. CONTINUITY 
CONDITIONS 

Due to the foregoing suitable regularity and smooth
ness, and basic assumption (3.13), and absence of any 
kind of singularities for the laminae region in the space 
::::, the laminae is considered to be a two- dimensional 
continuum, and all the field quantities together with 
their derivatives, are assumed to exist, and be single
valued and continuous functions in VXT, where V is the 
closure of the laminae region. Among the fields, those 
of displacements, electric potential, and temperature 
are chosen as a basis for the systematic derivation of 
tWO-dimensional, approximate theory of the coated, 
thermopiezoelectric laminae. And then, in accordance 
with Eq. (3.13), they are represented by series 
expansions. 

A. Displacement field 

Referring to the displacement vector urn of a con
stituent by the base vectors of the midsurface A, we 
have 

in the notation of Eq. (3.8), with its components rep
resented by98, 99 

R 

ul (8, t) = '0 Pr(A)ut)(e", t) (5.2a) 
,:1 

with 

A.= 8~/2H, (5.2b) 

where P r are the Legendre polynomials defined by 

P o(A)=I, P 1(A)=A, 

Pr(A) = (1/2'r! )ar(A2 - It/dAr (no sum over r and A). 

(5.2c) 

In Eq. (5.2), the integer R is called the order of ap
proximation, and R = 1 is the closest to the claSSical 
theory of shells. 84 Thus, only the zeroth and first order 
terms are retained in the series expansion (5.2), and 
the displacement field linearized with respect to the 
thickness coordinate is used in the analYSiS, namely 

u;,(e, t) = 0';'(6", t) + 83(3':(6", f), 

u3'(e, t) = 0'3'(6", t) + 83133'(8", t) 

with 
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aj=u:O)m_ Z (m)ui 1lm , f3i m)=ui1lm
o (5.3b) 

Here, a .. characterizes the extensional motions (or the 
stretching), 03 and [3", the flexural motions (or the bend
ing), and f3 3 the thickness stretching of the laminaeo By 
the use of this representation, we automatically 
abrogate the Kirchhoff- Love hypothesis of classical 
shells in which P3=0 and p .. =- (03, .. +b~ov), that is, on
ly 0i are chosen independently, and its contradictions. 
Hence, the effects of transverse shear and transverse 
normal strains, the rotatory inertia and the coupling 
of adherent constituents are all taken into account. 
Further, we note that Eqso (5.3) were shown to account 
for the coupled vibrations of piezoelectric shells (see, 
eo go, Refs o 61 and 48, where P3 = ° is assumed) and 
single and layered plates. 26,29,70 

B. Electric potential and temperature fields 

The electric potential and temperature fields of a 
constituent are represented by a truncated form of the 
Legendre polynomials of order r, (5.2c), as 

¢m(B, t) = Km(B"', t) + e3?;m(8"', t) (504) 

and 

(509b) 

¢" = KN-I + (z N_I + hN_I) ?;N-I on AN_I, NXT (5 0 9c) 

at the interfaces of the lower electrode and the second 
constituent (i. eo, first layer) and that of the upper 
electrode and the (N - l)th constituent [io eo, (N - 2)th 
layer]. In Eqso (509), apparently, ?;I =?;N = 0, since the 
electrodes are perfectly conducting, and ¢'=¢t, ¢" 
= ¢N, and ¢I = - '-PNo We choose the independent functions 
of electric potential, 

?;mEc IO , m=2,3,00.,N-2 (50 10) 

and then solve Eqso (50 9) for the dependent functions to 
obtain 

K2='-P'- (Z2-h2)S2, 

m 

Km=tp'+2:; zrm?;r, m=2,3,.oo,N-2, 
r=1 

N-2 
KN-I = - Z N_tlhN_I¢" + (1 + Z N_/hN_I) "0 hr?;r, 

r=2 

in terms of the (N - 3) independent functions of Eq. 

(5.11) 

(5.5) (5010)0 

which are linearized with respect to the thickness 
coordinate in consistence with the displacement field 
(5.3). 

C. Continuity conditions 

The constituents of the laminae are well attached one 
to each other, and relative deformations at interfaces 
are prevented. Hence, the continuity of displacements, 
(2.15), is imposed at interfaces, To this end, using 
this equation and Eqo (5.3), the continuity is expressed 
by 

am + (z m + hm){3(m) = a m+1 + (z m+1 - hm+I){3(m+l) 

on Am,m+IXT, m=1,2, ••• ,N-1. (5 0 6) 

This represents 3 (N - 1) constraintso Because of the 
constraints, the number of independent displacement 
functions, 6N, in Eqo (503) is now reduced to 3(N+1). 
And they are suitably chosen as 

a l ECI2 and (Bm E cI2 , 1I1=1,2, •• 0,N. (5.7) 

Equation (5.6) is now solved for the rest of the dis
placement functions, 

m 

a m =al +6 zrm{3r, m=2,3, ••• ,N, 
r=1 

with 

in terms of the independent displacement functions 
(5.7)0 

(5,8a) 

(5. 8b) 

In a similar manner, upon substituting Eqso (504) 
into Eqo (2.15), we express the continuity of electric 
potential in the form 

Km + (zm + hm)?;("j) = Km+1 + (Zm+1 - hm+1)?;(m+l) 

on Am,m+1XT, m=2,3,00o,N-2 

at the interfaces of layers, and 

115 J. Math. Phys., Vol. 19, No.1, January 1978 

(5 0 9a) 

As before, from Eqs, (2015) and (505), we have 

7'" + (zm + hm)y(m) = T(rn+!> + (Zm+l - hm+l )y(m+1> 

on Am,m+IXT, m=1,2, •• 0,N-1 (5.12) 

for the continuity of temperature at the interfaces of 
constituents. Solving this equation for the dependent 
functions chosen, we get 

m 

7"'=71+6 zrmyr, m=2,3,.oo,N 
r=1 

in terms of the independent functions of temperature: 

~ EO CIO and ym E. CIO , 111 = 1, 2, 0 .. , N, (5. 13b) 

the number of which is now equal to (N + 1) instead of 
2N in Eqo (5.5). 

In clOSing, we note that the expansions for the fields 
of mechanical displacement, electric potential, and 
temperature, (5 03)- (5.5), and the gradient equations, 
(2.4)- (2. 6), obviously imply a distribution of mechani
cal strain and heat flux, 

R 

{SlJ' hi} = 2:; (83r{rSij, rhi} (5.14) 
roO 

for each constituent, and that of electric field, 
R 

E; == 6 (e3
)' rEi (5 0 15) 

roO 

for each layero The mechanical strain, electric field, 
and heat flux of order r, rSi} (r== 0,1,2) and rhi and 
rEi (r= 0,1), are functions of eOi and I, only, Their 
explicit forms are obtained in Sec o 70 

6. MECHANICAL, ELECTRICAL, AND THERMAL 
RESULTANTS 

Already in Sec o 5, all the field quantities are con
sidered not to vary widely across the laminae thick
ness, and hence the linearization of mechanical dis-
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placement, electric potential, and temperature fields is 
introduced with respect to the thickness coordinate. 
Accordingly, various field quantities needed in the 
subsequent analysis are now averaged through the 
thickness of each constituent, and they are introduced 
below. Thus, we define the two-dimensional stress 
resultants: 

[N"'B, M"'B,K"'B] = Jz /l[1, e3, (e3)2]T"'Bde 3, 

(Q"',R"')=Jz/l(l, e3)T"'3de3, 

N33 =J /lr 3de3 N"'B=N"'B_ bBflf"'v z' v , 

/J1 ",B = M"'Il_ b~"'v, 

body f orc e resultants: 

[JI,C;I,L 1]=Jz /l[l, e3, (e3)2]f1de3, 

F = JI - b~ C;B6~, Cl =C;I- b;L B6~, 

gross displacements: 

[AI ,B i , el] = Jz /l[1, e3, (e3)2]u i de 3, 

acc eleration resultants: 

(6.3) 

(6.4) 

which, using Eqs. (3.12) and (5.3), are written ex
plicitlyas 

AI =p(/100i + /l1~i), B1=p(/l1al + /l2~j), 

where 

/In = In - 2In+1H + In+2K, (6.5b) 
In= [(z + h)n+1_ (z - h)n+111(n + 1), n=0,1,2,"', 

trac tion resultants: 

(ql/pl) = (+/ - ){(/ln3)[T3
1 - (z +/ - h)b~ T3"6~]) 183,.+ /-h 

(6.6) 

and 

[NI ,In I ,KI] = Jz /1[1, e3, (e3)2]TI de3, 

tJI =N I
- b~B6~, iW =/n l

- b~KB6~, 

load resultants: 

and 

P=q-p, S=(z+h)q-(z-h)p 

N N 

e'=6 N", R'=M'+h'0 N r
, 

,..1 ,.-2 
N 

R"'=M"'+ ~ Z",,.N", m=2,3, ••• ,N-1, 
,,"m+1 

R"=M" - (z" - h")N", 

gross electric displacements: 

(Cl ,f) i) = Jz J.L (1, 93)D1 d e3, 

surface charge resultants: 

e = (/ln3D3) lo3.#+h', d = - (/ln3D3 ) 183.z_h 

.=(z+h)e, d:=(z-h)d, 

edge-surface charge resultants: 

(A, 'Jr):= J z /la(l, 83) de3 
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(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

and 
N-1 

T2:= 'Jr2 - (h~hN_1)'Jr N-1 + ~ X 2,.1\,., 
r.2 
N-1 

T .. = 'Jr m - (h"./h N-1)~ N-l + 6 x m,.1\r (6.13) 
r_", 

T N _2='Jr N_2- (hN_2/hN_l)'JrN_l- (ZN_2- h N_2)A N_2 

+ (1 +zN_t!hN_l)hN_2AN_l 

heat flux resultants: 

(H I ,Ki)=Jz ll(1,e3jhfde3, (6.14) 

entropy resultants: 

( p, n = Jz /1 (1, e3)71 d e3
, 

surface heat flux resultants: 

k = (Iln3h3) 183=z+h', Z = - (/1n3h3) 183.z_h' 

,{= (z + h)k, ~= (z - h)Z, 

(k*, l*) = (IlV*) 183_(z+h, z-h), 

(6.15) 

(6.16) 

edge-surface heat flux resultants, of functions of ea and 
t, only: 

and 
N N 

N=:0 H r
, /n'=K'+h':0 H r

, 
,..1 T:l2 

/n"=K"- (z"-h")H", 
N 

/J1"'=K'" + :0 z",rHr, m=1,2, ••• ,N, 
r=2 

(6. 17) 

(6.18) 

where Z is used to designate the interval [z - h, z + h]. 

In view of the definitions in Eqs. (6.6), (6.11), and 
(6.16), the continuity of tractions, surface charges, and 
heat fluxes, Eq. (2.15), is expressed by 

q"'_qm+l=o, e"'_dm+1=O, km_zm+l=o on A """'+!' 

(6.19) 

The resultants of stress, heat flux, and entropy and 
the gross electric displacements are measured per 
unit length of coordinate curves on the reference sur
face, A, the resultants of body force, acceleration, and 
surface load, charge and heat flux per unit area of A, 
and those of edge-load, and edge-surface charge and 
heat flux per unit length of the Jordan curve C of A . 
Moreover, these resultants are referred to the ref
erence surface; they can, of course, be referred to the 
midsurface, A m, of each constituent. That is, the in
terval Z = (z - h, z + h 1 is replaced by the interval i 
= [- h, + h]. The new resultants are defined by 

(N"'B, M"B,K"'B] = Jz /1[1, e3, (e3)2]T"Bde3, 

(Q", T"') = fz /1 (1, e3) T"'3 de3, (6.20) 

N 33 = Jz Il T33 de3 

and such. They are expressed in terms of those which 
refer to the reference surface, A, in the form 

N"'B=N"Il, M"B=,'v1"'B_ z N"'B, 

K"'B=K"'B_ 2zM"B+ Z 2N"'B, Q"'=Q", 

T" = T"- zQ", N33 = N33 , 
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Ci=C, iY=D'-zCi , 

fi' =H', Ki =1<.' - zH i
, 

p=p, T=T-zP 

(6.21) 

in which an overtilde represents the resultants which 
refer toAm. 

7. STRAIN, ELECTRIC FIELD, AND HEAT FLUX 
DISTR IBUTIONS 

To obtain the distributions of strain, electric field, 
and heat flux in terms of the independent functions of 
mechanical displacement, electric potential, and tem
perature, we write the variational integral OIg of Eq. 
(4.2) for all the constituents of coated laminae and we 
also consider Eqs, (5.14) and (5,15). Then integrating 
with respect to the thickness coordinate and using Eqs, 
(6.1), (6.10), and (6.14), we obtain 

N 

OIg = fA 0 [(OS"Il- e"ll)oN"Il+ (1S"Il- E"Il)oM"1l 
r.1 

+ (2S"Il- Y"Il)OK"Il+ (OS,,3- e"a)oQ" 

+ (1S"a - E,,3)oR CII + (OS33 - e33)ON33rr) dA (7,la) 

and 
N 

OI~~=- fA 0 [(oE,,-e,,)oC"+ (OE3-e3)~C3 
r.1 

(7.1b) 
N 

o.G~ = - fA 0 [(oh i - gi)oH' + (1hi - kl)oKi ] (r) dA, 
r.1 

where 

e av = ~(Qa:v + Qv:a - 2bavQ3), 

Eav = ~(- b;QI.:v - b~QI.:a + 2Cav Q3 + f3a:v + f3v:a - 2bavf3 3) 

and 

Yav = ~(- b;f3/.:v - b~f3I.:. + 2cav(33), 

e a3 = ~(O'3,a + b~Qv + f3a), 

Ea3 = ~f33, ,,, 

e33=f33, Ya3=E33=Y33=0, 

e"=-K,,,,, E"=-!;;,,,, e3=!;;, E3=0, 

g l_-(K'''7 +KI3y) kl __ Ki"y 
- ,0: ,- ,Q-

(7.2) 

(7.3) 

Now, setting o~~ equal to zero and considering Eqs, 
(5.7), (5.10), and (5.13), the distributions of strain, 
electric field, and heat flux are found to be 

with 
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e~v = t(Qa : v + O' v:a - 2bav Q3)', 

e~:) = ~{(Qo:v + Qv:o - 2bav( 3)' 

+ t z rm (f3a:v + f3v:a - 2bavf33) (rJ , 
r.1 J 

E~v = ~(- b~QI.:v - b~Ql:a + 2cav Q3 
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(7.4) 

and 

E~~) = H (- b!O'I.:V - b!QI.:a + 2Cav(3)' 

+ (f3o:v + f3v:a - 2bav(33) (m) 

+ t zrm(- b~f3I.:v - b~f3I.:a + 2cav(33)(r)], 
r.1 

y~v = ~ (- b~f3I.:v - b~j3I.:. + 2c av(33)' , 

y~:) = t(- b~f3l:V - b~f3I.:o + 2cov(33) (m! 
e~3 = ~(Q3,O + b~Qv + f3a)', 

e (m) = 1.[(0' + bV Q + f3 )' + ",(m) 
0'3 2 3, C1 a "" a tJa 

m 

+ 0 zrm(f33,o + b~!3v)(r)J, 
r·1 

"f3' (m) 1.f3(m) 
Ea3 =="2 3,0" €c3 == 2 3, a , 

e~3 = f3~, e~3) = f3~m), 
(Ya3=E33=jl33)(m) =0, m=1,2, ••• ,N, 

, (2) ( h ) ,.(2) e,,=O, e" = Z2- 2 b,'" 
m 

e~m)=-~Zrm!;;,(';}, m=2,.,.,N-2, 
r.1 

N-2 
e(N-1l=_ (1+z N_t!h N_1) 0 hr!;;,(';} , e"=O, 

r.2 

E~=O, E~m)=-!;;,('{;>, m=2,,,.,N-2, 

N 
(N-1> 11h "h ,.(r) II - ° E" = N-1,0 (r)b,'" E,,- , 

T.2 

e~=O, e~m)=!;;(m), m=2, •• "N-2, 

e~N-1)=1IhN_1(¢II- ~ h(r)!;;(T»), e;;=O, 
r=2 

and 
gli=_ (K i "7,,,+Ki3y)', K"=- (K'''y, ",)', 

g(mli = _ K(mll" (7' + t Zrmy(r~ _ (K I3 y)(m), 
r.t ) , Q: 

k(mll=_ (Ki"y, ,,)(m), m=2, 3, ... , N 

(7.5) 

(7.6) 

(7.7) 

for the vanishing of the coefficients of arbitrary and 
independent variations of the stress and heat flux resul
tants and the gross electric displacements. 

8. MACROSCOPIC CONSTITUTIVE RELATIONS 

This section deals with the derivation of macroscopic 
constitutive relations of coated laminae by means of the 
variational volume integral oIll of Eq. (4.3). The 
derived constitutive relations involve the stress, heat 
flux, and entropy resultants, and gross electric dis
placement, defined in Sec, 6, and the distributions in
troduced in Sec. 7, In what follows, we write the varia
tional volume integral for all the constituents of coated 
laminae, and then carry out integrations with respect to 
the thickness coordinate. Thus, following some arrange
ment of terms, we arrive at the variational equation 

N 

Oil} = fA '6 (N"'Il_ ~Il)oea<e + (M"Il_ M~Il)OE"1l 
T=1 

+ (R" - R~)oE"3 + (K"Il_ ~1l)OY"1l 

+ (Q" - Q~)Oe"3 + (N33 - N~3)oe33](T) dA, (8. la) 
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and 

N 

oIg = j~ L ue - C)oei + (ly - 1)~)OEi](rl dA, 
r=j 

N 

6I~1=j~6 [(P-Pe)on+(T-Te)om](rldA, (8.1b) 
r=j 

N 

6I32 = _ J 6 l(Hi - Hi) 6" + (J(i - K'.)ol?](rl dA 32 A chi C I , 
r=1 

whose Euler equations are the linear constitutive rela
tions of the form 

N a8 =N":8, /\laB=Ivl~8, J(a8=1~8, Qa =Q~, 

R a =R~, N 33 =N~3, Hi =H~, ~ =~, (8.2) 

(i =C, 1)i =1)~, P = Pc, T = Te. 

Here, on account of Eqs. (2.3) and (5,14), we con
sidered a distribution of entropy, 1)=n+e3m, and 
defined 

X~8=CaBkl(lloekl + IljEkl + 1l2 Ykl) 

- C kCi8 (lloek + IljEk) - Xa8(Il OT+ IljY), 

M~0=caBkl(lljekl + 1l2Ekl + 1l3Ykl) 

- C kCt8(llje k + 1l2Ek) - Xa8(ll j T+ 1l2Y), 

1~8=CCi8kl(1l2ekl + 1l3Ekl + 1l4Ykl) 

+ Cka8(1l2ek + 1l3Ek) - XCt8(1l2T+ 1l3Y), (8,3) 

Q~ =CCi3kl(lloekl + IljEkl + 1l2 Ykl) 

- Cka3 (lloek + IljYk) - XCt3 (ll oT+ IljY), 

R~ =Cc<3kl(lljekl + 1l2Ekl + 1l3Ykl) 

- Ckc<3(lljek + 1l2Yk) - XCi3 (ll j T+ 1l2 Y), 

N~3 =C 33kl (lloekl + IljEkl + 1l2Ykl) 

- Ck33 (IlOek + IljEk) - X33 (ll oT+ IljY), 

on AXT for the stress resultants, 

e =Cijk(lloejk + IljEjk + 1l2Yjk) 

+ C ij (Iloe j + IljEj ) + Xi (lloT + IljY), 

1)i = Ciik(lljejk + 1l2Ejk + 1l3Yjk) 

+Cij(llje j + 1l2Ej) +Xi(lljT+ 1l2Y ) 

on AXT for the gross electric displacements, and 

P = Xii (IlOeij + IljEij + 1l2Yij) 

+ Xi(lloei + IljEi) + C1(ll oT+ IljY), 

T = xij (Iljeij + 1l2Eij + 1l3Yi) + Xi (Iljei + 1l2EJ 

(8.4) 

+C1(ll jT+1l2 Y), (8.5) 

Hi = Iloi + Iljk i , ~ = Iljgi + 1l21?i, 

on AXT for the entropy and heat flux resultants in the 
case of homogeneous piezoelectric material of con
stituents, If the material of constituents is hetero
genous, we introduce the laminae-elastic constants, 
-dielectric permittivity, -thermal stress constants, 
and -pyroelectric constants of the form 

(Ciikl,ciik,cij,XiJ,Xi,C1)R 

- j' /I (e3)R(CiJkl C iJk C ij Xij Xi 0') de 3 
- zt-'" "" , (8.6) 
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which reduce to 

(C iJkl , C ii\ C ii , Xij , Ai, 0') 

= Il R(C ijkl , C ijk, C i j, Xii , Xi, 0') (8.7) 

when the material is homogeneous. Thus, to obtain the 
constitutive relations of heterogenous anisotropic 
material of laminae, we simply replace Il RCijkl by 
CiJ.kl and so on, in the foregoing macroscopic constitu
tive relations, 

9. LINEAR THEORY OF THE LAMINAE 

Now, we have arrived at the main topic of this study, 
that is, the derivation of the governing equations of the 
coated laminae of N constituents on the basis of three
dimensional, linear theory of thermopiezoelectricity. 
The derivation rests entirely on (i) the fields of dis
placements, electric potential and temperature, chosen 
a priori; (ii) representing the fields by series expan
sions in the thickness coordinate; and (iii) employing an 
averaging procedure of variational type, The first of 
which is the important choice as a basis for the deriva
tion. The second and, in particular, the linearization 
in the series expansions are almost compulsory, and 
together with the third make the derivation comprehen
sive and tractable, In what follows, by the use of the 
generalized variational theorem of Sec. 4, we first 
establish the macroscopic divergence equations of the 
laminae and then the associated natural boundary and 
initial conditions, 

A. Macroscopic stress equations of motion 

To begin with, the volume integral oJl} of Eq. (4,2) 
is written in the form 

(9,1) 

with 

IlOJ1 =[(IlIl~T8Ct):8-1l1l~(1l-1)~b~T3Ct -llb~T"'3 

+ 1l(1l~ T 3Ct ),3 + 1l1l~(jCt - pbCi )](6C1v + e3
0,B v) 

+ [(IlTCi3 ):Ci + IlIl~bv8T8Ci _1l(W1)~b~T33 

+ Il T 33 ,3](0Cl'3 + e30f33) 

for each constituent. Here, we made use of Eqs. 
(3.9)-(3.11), (5.3), and the identities60 of the form 

Illl~ T8Ci 
;8 = (Illl~ T 8Ci ), 8 - Illl~ (w1 )~b~T3Ct - Il b~ T et 

3, 

IlTCi\Ci = (IlTet3 ),Ct + IlIl~bv8TBet -1l(W1)~b~ T 33 , (9,3) 

Il~ T3Ct ;3 = (Il~ T 3Ci ), 3' 

Equation (9,2) is now simplified through the relation 
which follows from Eqs, (3,6) and (3.12), namely 

(9.4) 

and then it is integrated with respect to e3 across the 
laminae thickness, with the result 

IV 

oJl} = fTdt fA dA 6 [(v + p) 0 oa + (W + s) 0 oj3]r, (9.5) 
r=l 

with 

M. Cengiz Dokmeci 118 



                                                                                                                                    

v" = (NS
" - b~MeGl e - b~Q'" + Ii" - A V

, 

V3 = Q"':a + b",eN"'8 - C"'JlM",e + F3 - A 3, 

WV = (Mev _ b':,.KJla):e- q + C" _ BV
, 

WI =R"':a - N 33 + b",eM",e - cOI.eK"e + C3 
_ B 3, 

(9.6) 

for each constituent, where the resultants of stress, 
load, body force, and acceleration introduced in Sec. 
6 are considered. Next, setting the volume integral 
0"11 equal to zero, for the arbitrary and independent 
variations of the displacement functions chosen in Eq. 
(5.7), we have the 3 (N + 1) macroscopic stress equa
tions of motion for the laminae as follows: 

N 

oa 1 
: 6 Y y + Y' = ° 

N 

ofJI : W' + h' 6 Y y + y' = ° 
y=2 

N 

OfJm :wm + 6 ZmyYY + ym = ° 
r=m 

O(JN :W" - (Z" - hl)Y" +y" =0 

Here, the effective loads 

Y' =q" - p', y' =h'(p' +q"), 

ym = 2hmq", y" = 2h" q" 

on AXT. (9.7a) 

(9.7b) 

and Zmy (* zrm) by Eq. (5.8b) are used, and also, the 
continuity of tractions, Eq. (6.19), is taken into con
sideration in defining the effective surface loads and 
couples. 

B. Macroscopic charge equations of electrostatics 

Likewise, we evaluate the second volume integral 
oJH of Eq. (4.2), namely 

N_I 

OJH = - fTdt fA dA 6 fz 1l0J{ d0 3 

7=2 
with 

(9.8a) 

1l0Jz = [(11 DOl. ): '" + (IlD3), 3] (OK + 0301;) (9.8b) 

for each layer. Here, we used Eqs. (3.9)- (3.11), (5.4), 
and the identityso: 

(9.9) 

which is written in a compact form through Eq. (9. 4). 
We perform integrations with respect to e3 in Eq. (9.8), 
and introduce the gross electric displacements of Eq. 
(6. 10), to obtain 

N 

MH=- fTdtfAdA~ [(C":,,+e-d)oK 
ral 

+(D"':,,-C3 +. -d)ol;]' (9.10) 

with 6<p' = 6<p II = 0. By virtue of the arbitrary and inde
pendent variations of the electric potential functions, 
1;'" (11'1 = 2, 3, .• , ,N - 2), of Eq. (5.10), we set the 
volume integral MH equal to zero, to arrive at the 
macroscopic charge equations of electrostatics in the 
form 

01;2: Y (2)":,,+C(2) 

N_1 

+ 0 X2rC(r)",:,,=0, on AXT, 
r.2 

ol;m:y (m)":,, + c(m) 
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N-l 
+ 0 X",rC(r)",:" =0 onAXT, 

r.", 

OI;(N-2) : l' (N-2)",:" + C(N-2) - (z N-2 - h N•2)C(}/·2)" '''' 

+ (1 +zN.JhN_1)h N_2C(N.1l""" = 0, on AXT, 

where 

1'''' =[) '" - h/hN.l[)~_1> C = -cs + h/hN_1CLt 

and 

(9.11) 

X",r = [2 - O",y + (- 1 + Z N_tlh N_l)o N.l, r ]hm - 0mrZ",. (9.13) 

In these equations, the continuity of surface charge, Eq. 
(6.19), across interfaces of layers is taken into accounL 

C. Macroscopic equations of heat conduction 

Similarly, we consider the volume integral M~l of 
Eq. (4.2), given by the form 

N 

M~l=- fTdtfAdA 0 JloJ3d03 

ral 
(9. 14a) 

with 

11M3 = {e-1
[ (Ilh"):" + (llh3), 3] + Jj}(o 7 + e30Y) (9. 14b) 

for each constituent. Here, Eqs. (3.9)-(3.11), (5.5), 
and (9. 9) are used. Then, the integration of Eq. (9.14) 
with respect to e3 yields 

N 

eoM~l=- fTdtfA dA 0 [(H":,,+eoP+k-l)67 
'01 

(9.15) 

As before, this equation gives the macroscopic equations 
of heat conduction: 

N N 

07': 0 H(r)"':",+eo 0 pr+x,=o, 
rat r=1 

[ 

N N • ] 
+h' 0 H(r)";",+e o 0 pr +X'=O, 

y~2 ra2 

oy'" : (K"': '" _H3)'" + eo!m 
N N 

+ 0 ZmrH(r)",:", +eo '0 Zmrpr + X"'= 0, 
ram 

oy": (K"':" - H3)" +eoT" - (z" - hOI) 

x (H":", +90 P)" + X" =0, on AXT 

with the effective heat fluxes: 

X'=k"-l", 

X'=h'(k'+l"), X"'=2hmk", X":=2h"k" 

(9. 16) 

(9.17) 

when we set Eq. (9.15) equal to zero for the uncon
strained variations of the temperature functions, 7' and 
y'" (11'1:= 1, 2, ••. ,N). Herein, the continuity of heat 
fluxes across interfaces of constituents, Eq. (6.19), is 
included. 

D. Mechanical boundary conditions 

We now turn to the boundary conditions associated 
with the divergence equations for the coated laminae of 
N constituents. Paralleling the derivation of the macro
scopic divergence equations above, we evaluate the 
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variational surface integrals of Eq. (4.2), introduce 
the definitions of resultants in Sec. 6, and then obtain 
the natural boundary conditions for the free and inde
pendent variations of the field quantities. The displace
ments and the temperatures are considered to be pre
scribed on only part of the edge boundary surface of 
each constituent, while the tractions and the heat fluxes 
are specified on the remaining part of edge boundary 
surface and on the faces of the laminae. The electric 
potential is applied to the faces and the surface charges 
are given on the edge boundaryo To this end, consider 
the surface integral OJg of Eqo (402), of the form 

N 

OJg=JT dt jc ds '0 Jzll(OJ[ - oJ;)de3 
r.1 

+ J dt J MtdA 
T 5 t 

with 

and 

5f =5lf U 5uf, 5t=5r U 5.t, 

5 u = 5. n 5 et = 5 n 5 t, 

IlOJt = 1l[(71-IIIlTtlo)Il~(oav+ e30i3v) 

+ (T~ - lIaJ'03)(oa3 + e30(33)], 

IlOJu= Jl{Il~[U: - (ov + 83j3)]6ra 

+ [U$ - (Cia + e3e3)11iT3}, 

OIt = Il[ (T*' - n3 T31) - e3(T*o - n3T3a)b~o!] 

x (oa j + e3o{3j)' 

(90 18a) 

(9. 18b) 

(9.18c) 

After integration with respect to 83
, this equation leadS 

to the natural boundary conditions of tractions: 

N N 
n'Ol J; N(rlllo< - 0 0'3 _ II J; Q(rl", = 0 
<*-VB:~ -' ......... * 01:.---1 , 

rat r~1 

R. ~Ol - 1I//W8Ot + h' t N(rlIlOt) = 0, 
~ ,..2 

R.~3-1I",(R.'0I.+h' t Q(rl")=O, 
r·2 

R. ~mlOl_ 118(1}) (mlllOi. + E Zm,.N(TlBOl) = 01 (9.19) 

N ) along CXT, 
R. ~ml3 _ II", (R(mlOl + ~ zmrQ(rl Ol = 0 

r.m 

R. ~'" - II IlLIf] ,,1l0I. - (z" - h")N" 8"1 = 0, 

/~~3-1I01.[R""'- (z"-h")Q"Oll=o, 

and 
p*' - p' = 0, on 5IfXT, 

q*"_ q"=O,on5urX T , 

(9020a) 

and those of displacements: 

l along CXT 0 (9020b) 

m=1,2,000,N~ 
0*'-0'=0 

{3~ml _ (3(ml = 0, 

E. Electrical boundary conditions 

Substituting Eqo (50 4) into the surface integral 
6~~ of Eqo (4.2), of the form 

N 

OJ~~ = J dt § ds'0 11 OJ; de3 + J dt J Il (6l~ + OI~) dA 
T C r.1 T Sf 

(9. 21a) 
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with 

5",=5r, 5a=5. (9 0 21b) 

and 

J.l6Ja = Jl(II",D" - a*)(6K + e36t), 01", = (cp* - cp), 

(9. 21c) 

and carrying out integrations as in Eqo (9018), we ob
tain the natural boundary conditions of surface charge: 

T~ - II 01 (D (2l" - h2/h N_ID (N-lla 

N_I ) + /, X c(rlOi. =0 !......J 2,. , 
r.2 

""m_ (D(mlOt_h /h D(N_!l" '* II",~ mI N_l 

N-t ) 
+ 'E xmrC(rl'" = 0 along CXT 

r·m 
(9 0 22) 

T(N-2l_ 11 [D(N-2l"_h /h D(N-1l", * '" N-2 N_! 

- (z N-2 - h N_2)C (N-2lOl. + (1 + z N_tlh N_1)h N-2 C (N-I lOlJ = 0, 

and those of electric potential: 

cp' = CPo coswt on 5lfXT , 

cp"=-CPocoswt on5urXT, 
(9023) 

where Eqso (3.9)- (3.12), (5010), and the recurrence 
relations (5011) are taken into considerationo Equation 
(9.23) clearly implies that an alternative potential 
difference (CPo is a constant and w the circular frequen
cy) is applied to the perfectly conducting electrodeso If 
the electrodes are shorted, these equations are then 
replaced by cp'=cp"=O on SrXTo 

F. Thermal boundary conditions 

As in the derivation of the mechanical boundary con
ditions above, the evaluation of the variational surface 
integral Mn of Eqo (4.2) written as 

N 

M~~=f dt1 ds~ /J.(M;+M{)de3 

T r=1 

+ J riff Olh dA 
T Sf 

with 

5h=Sf u 5eh,5e=5en Seh' 
and 

/J.oJe= lIa(8 - 8*)ohB
, 

0 oll61h = Il(n,h' - v*)(6T+ 8361'), 

8 ollMh= 11 (vBh
8 - V*)(6T+ 61361'), 

(9. 24a) 

(90 24b) 

(90 24c) 

yields the natural boundary conditions of heat flux: 

N 

N*'-II" ~ H(T)"=O along CXT, 
T.l 

1YI*'-II,,(K''''+h,t H(Y)")=O along CXT, 
r=2 

N (90 25a) 
1YI*(ml_II",(K(ml"'+E.Zm,.H(rl"')=O along CXT, 

fri *" - II ",[K"01 - (z" - h")H" "] = 0 along eXT, 
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and 

l*'-l'=O, on5l!XT, 

k*"-k"=O, on 5urXT, 

and those of temperature: 

r*' - r' = 0, ')I~m) - ')I(m) = 0, 

m = 1,2, ... , N, along eXT. 

G. Initial conditions 

(9,25b) 

(9.26) 

All that remains now is the specifications of initial 
conditions corresponding to the fields of mechanical 
displacement, electric potential, and temperature. To 
this end, we evaluate the variational integral 6J1~ of Eq. 
(4.2), and, as before, we readily get the natural initial 
conditions of mechanical displacement: 

a'(B",to)-v*'(B")=o, a'(eO,to)-w*'(B")=O, 

j3m(eO, to) - lI*m(Oo) = 0, ~m(eO, to) - A*m(oo) = 0, 

m=1,2, .•• ,N onA(to), 

those of electric potential: 

(9,27) 

?;m(eO,to)- ?;*m(B") = 0, m=2,3,.,.,N-2 onA(to), 

(9.28) 

and those of temperature: 

r' (8° t ) - r*' ( 8") = ° } 
,0 m:=1,2, ... ,N onA(to). 

')1"'(8°, to) - ')I*m(8°) = ° (9.29) 

Here, (v*', W*', lI*m, A*m), ?;*m, and (r*', y*m) denote 
respectively the specified values of mechanical dis
placements, electric potential, and temperature func
tions at t = to. 

Thus far, we developed a complete system of two
dimensional, approximate equations of the coated 
laminae within the scope of three-dimensional theory 
of thermopiezoelectricity. The system of the mechani
cal displacement, electric potential, and temperature 
fields, (5.3)- (5,5), the distributions of strain, electric 
field, and heat flux, (7.5)- (7.7), the macroscopic con
stitutive equations of stress and entropy resultants, and 
gross electric displacements, (8.3)- (8.5), the macrO
scopic stress equations of motion, charge equations of 
electrostatics, and equations of heat conduction, (9.7)
(9.16), the natural boundary conditions of tractions, 
mechanical displacements, surface charge and heat 
flux resultants, electric potential and temperature, 
(9. 19)- (9. 26), and the natural initial conditions of 
mechanical displacements, electric potential, and tem
perature, (9.27)- (9.29), constitutes a theory for the 
coated, thermopiezoelectric laminae of N constituents. 
The theory accommodates vibrations of single and 
layered shells (plates) accounting for coupling of 
mechanical, electrical, and thermal fields, 

10. THEOREM OF UNIQUENESS 

In this section, sufficient initial and boundary condi
tions are establiShed in order to assure uniqueness in 
solutions of the linear governing equations of coated, 
thermopiezoelectric laminae of N constituents. The 
classical energy argument and standard Green's identi-
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ties are used to enumerate the sufficient conditions, 
The argument relies on the positive definiteness of 
kinetic and potential energies, Its advantage lies in its 
easy extensions and applicability to one- and two
dimensional, initial mixed- boundary value problems, 
Kirchhoffl00 used the energy argument at establishing 
uniqueness in elastostatics, so did Neumann101 in elasto
dynamics. Weiner 85 extended Neumann's result, strict
ly analogous to Kirchhoff's, to the thermoelastic case, 
A theorem of uniqueness of Neumann's type is given 
below for the linear governing equations of coated 
laminae. 

To begin with, we consider two possible sets of solu
tions to the linear governing equations, namely 

A ~"') = [0';, {3j; ell' Elj, Yll;N"'B,/i1 ",B, Q"', R Oi
, N33

; K, ?;; e I, Ej; 

C1,/y; r,y;HI,Ki;p, T1("') 

and denote the difference of these solutions by 

An =A12
) - AbO. 

(10.1) 

(10.2) 

By virtue of the linearity of divergence and gradient 
equations, and constitutive relations of laminae, it is 
clear that the difference set of functions, An, satisfies 
the homogeneous governing equations corresponding to 
zero body force resultants. Thus, we form the follow
ing homogeneous expression from Eqs. (9,7), (9.13), 
and (9.16), for the difference set of solutions 

r= fT (r,lf- r E- r T) dt= ° 
with 

(10,3a) 

r =f {[t (N"" - b"QB_A")(r) + y'"JDi' 
.If .4. r~ :B B " 

+ t zmy(N°"':a - bgQB - A a)(r)J~~m) 
y_m 

+ t [(R"':", - N33 + b",olh "'0 - B3 + !is) (m) 

",=1 

+t Zmy(Q",:",+b",oN",o_A3)(r)J~jm)}dA (10.3b) 
Y·m 

and 

+ ~ X C<Y)'" ]r<m)+r }dA LJ mr :1) Sib' 
rom 

r T"" f.4. {[&1 (H"':" + 8 0 p)<r) +X'J r' (10.3c) 

+t [(K"':",-H3)(m)+8
0
T(m) 

m.1 

+ t (Zm.H"':a + 8 0 p)(r) + x(m)]y(m)}8ii1 dA, 
rom 

where r4> is the part ariSing from the unprescribed 
potentials of (9. 10), 
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A. Kinetic energy 

Let k. be the kinetic energy density, K. the kinetic 
energy per unit area of the reference surface, K. the 
laminae- kinetic energy density, and n. the total kinetic 
energy of laminae. Thus, we write, using Eq, (2.16), 
the rate of kinetic energy density for the difference solu
tion, 

• I' 
k. = pb u j (10.4) 

and 

N 

K.=fz llk .d83
, K.=0K~r), n.=J~K.dA. 

r.l 
(10.5) 

By inserting Eq. (5. 3) into the above and using Eq. 
(6.4), one finds 

K -Aj~ +Wa 
.- Vj 1-'1 (10.6) 

and, in view of Eqs. (5.8), the rate of laminae-kinetic 
energy density in the form 

(10.7) 

B. Dissipation function 

We define the dissipation function density F, per unit 
area of the reference surface, A, by 

(10.8) 

the laminae-dissipation function density J, and the total 
dissipation function of laminae D., by 

N 

'" (r) J' 7,= 0 F, , D.,= A JfdA. 
r=1 

(10.9) 

By the use of Eqs. (2.6), (2,19), (5,5), and (6,14), we 
obtain the dissipation function density and that of 
laminae as 

(10.10) 

and 

J,=- 8 r/{T:'" t H(r)", + t(K(m)",+ t ZmrH(r)"')y,(~) 
y=-l m:al Y=m 

+ ~I (H3y)(r)} (10.11) 

for the difference set of solutions. Here, Eq. (5.13) is 
considered. 

C. Biot's generalized free energy 

Similarly, we define Biot's generalized free energy 
density B. per unit area of the reference surface, A, 
the laminae- Biot' s energy density B. and the total Biot's 
generalized free energy of laminae D.B by 

N 

B.=Jz IlBrl83
, B.=0 B !r), D.B=JAB.dA. (10.12) 

r=1 

The rate of Biot's generalized free energy density 
follows readily from Eqs. (2.17) and (2.18) in the form 

, TljS' E" • B = jj + ,D' +87], (10.13) 

Hence, we have the rate of energy density B., 

A.=(B,~ +13{ +BTl' (10. 14a) 
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with 

and 

N 

(Bm,B{,BT)=0 (BM,BE,BT)(r) 
r.l 

. . . f Ij' 'j' 3 
(BM,BE,B T)= zll(T Sjj,EiD ,87])d8 

and the rate of total Biot's energy of laminae, 

nB=(~M+6E+~Tl' 

with 

(~M' ~E' ~T) = fA (B,~ ,Be ,BT ) dA. 

(10. 14b) 

(10. 14c) 

(10. 15a) 

(10. 15b) 

With the aid of the stress, heat flux, and entropy re
sultants, and gross electric displacements of Sec. 6, 
and the distributions of strain and electric field of Sec. 
7, one obtains the rates of densities of the reference 
surface in the form 

B M =Nav av:a +/Yiav~v:a - bav(NaVa3 + /y;.v~3) 

+ Q·(C,3,. + b~av + ~.) + W(33,. + N33~3' 

BE = - (("'K ,,,,+D "1:.,,+(31:), 

BT=/jT+ Ty. 
(10.16) 

And, upon use of Eqs. (5.8), (5.11), and (5.13), those 
of laminae take the form 

• N N 
13,/11= (a.: v- b.vC,3)' 6 N(r)v. + 6 (N33~3)(r) 

II r=l r=l 

x ~ Z Q(r)o] + (a + bVo ) 1: Q(r). L..J mr 3, a (II v ~ , 
r;;m r.l 

(10,17) 

for the difference set of solutions, 

D. Sufficient conditions 

We now turn to the homogeneous equation, (10,3), 
stated for the difference set of solutions, After using 
Green's integral identities, a comparison of this equa
tion with the laminae- kinetic energy, - dissipation func
tion and -Biot's generalized free energy densities, Eqs. 
(10.7), (10,11), and (10.17), leads to 

r M = - J~ (f<. + 8m) riA + jA J MA dA + jc J Mc ds , 

rE=JAB[dA+ fA J EA dA + JcJEcds, (10.18) 

rT=fA(Br+J,)dA+ JAJTAdA+jCJTCriS. 

Here, we introduced the integrands of line and area 
integrals of the form 
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(10. 19a) 

and 

(10. 19b) 

N 

J TA = (k" -l')7' + 2k""6 (hy)(m), 
m=1 

which evidently vanish due to the homogeneous 
mechanical, electrical, and thermal boundary condi
tions, Eqs. (9.19)- (9.26), and initial conditions, Eqs. 
(9.27)-(9.29), for the difference set of solutions. Thus, 
inserting all the results above, and then integrating by 
parts and assembling them in Eq. (10.3), we finally 
arrive at the equation 

r = - a.(t1) - a B(t1) + a.(to) + a B(tO) - f T a, dt = O. 

(10.20a) 

Since as already stated, the kinetic energy and dissipa
tion f~nction, and Biot's generalized free energy density 
are positive definite, by definition, and initially zero; 
so that the total kinetic energy, dissipation function and 
Biot's generalized free energy, n., aB , and n" cal
culated by integration from the difference set of solu
tions for the laminae, have the same properties in the 
absence of discontinuities and singularities of any type. 
Consequently, guided by the usual arguments based on 
the positive definiteness of these quantities, it follows 
from Eq. (10.20a) that 

(10.20b) 

which implies a trivial solution for the difference set of 
solutions, AD' for the case when the line and area in
tegrands in Eq. (10.19) vanish, and hence it assures the 
uniqueness of solutions of the linear governing equations 
of coated laminae. We then conclude the following the
orem of uniqueness. 

Theorem: Given a regular region of finite laminae 
space B + oB, with its entire boundary surface oB 
(St U Su = Sa U S<b = Sh U S9 = oB and St n Su = Sa n S<b = Sh n SB 
=~) in the Euclidean 3-space E, then there exists at 
most one set of single-valued solutions, AD' namely 

123 

AD=[Oii and f3iECI2;ejJ,€iJ and YiJECOO; 

N<x5,/ti""B, Q"", R'" and N33 E C 10 ; K and tE C 10; 
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el and €; E Coo; C I and Di E C 10 ; 7 and Y E C 10 ; 

Hi and KI E C 10 ; and P and T E Cod (10.21) 

which satisfies the macroscopic divergence and gradient 
equations, (9.7)-(9.16) and (9.19)-(9.26), distributions 
of strain, electric field, and heat flux, (7.3)-(7.5), and 
linear constitutive relations (8.3)- (8.5), of coated, 
thermopiezoelectric laminae of N constituents, provided 
that the kinetic and Biot's generalized free energies, 
and the dissipation function are positive definite, and the 
following are specified: 

(i) one member of each of the products in the in
tegrands J MA , J EA , and J TA at each point of the ref
erence surface, A, 

(ii) one member of each of the products in the in
tegrands J,\/c, J EC ' and J TC at each point on the Jordan 
curve, C, and 

(iii) the initial values of independent mechanical dis
placement electric potential and temperature functions, 
th t . "',';", a(m) ,!J<m) (111 -1 2 ,~T\ t(m) a IS, "" , w ,t-' ,P - , , ••• , :V}, 

(nl -23 N-l) and T' andy(m) (nl=I,2, ... ,1\l) - "tOO' , 
on the reference surface. 

11. CONCLUDING REMARKS 
Presented herein is a two-dimensional theory for 

dynamic problems of coated laminae of N constituents, 
accounting for coupling of mechanical, electrical, and 
thermal fields within the scope of three-dimensional 
theory of thermopiezoelectricity. A generalized varia
tional theorem is formulated so as to describe all the 
three-dimensional fundamental equations of thermo
piezoelectricity as appropriate Euler equations. Then, 
the theory is systematically derived by means of the 
variational theorem together with a linearized chosen 
field of mechanical displacements, electric potential, 
and temperature. In the derivation, the classical 
Kirchhoff-Love hypotheses on mechanical displace
ments of shells are abrogated in each constituent of the 
laminae. Hence, the transverse contractions and shear 
deformations and the translational and rotational inertia 
of as well as all the dynamic interactions among, con
stituents are included in the formulation. The continuity 
of tractions, mechanical displacements, electric charge 
and potential, heat fluxes, and temperature is main
tained in accordance with perfectly bonding constituents 
of the laminae. Further, the results are established 
in an invariant form, and hence applicable to an arbi
trarily shaped laminae using a particular coordinate 
system most suitable for its geometrical configuration, 
and they accommodate the extenSional, thickness, and 
flexural type of motions of coated laminae. 

The only alternative variational formulation to the 
theory of thermopiezoelectricity was due to Mindlin. 28 

His theorem is suitably modified to establish the gen
eralized variational theorem of Sec. 4, which has the 
advantage of yielding the constitutive relations, gradient 
equations as well as initial conditions, in addition to the 
divergence equations and boundary conditions of 
laminae. A direct method of integration in lieu of the 
variational theorem may be used in the derivation, but 
it is not suitable for the laminated type of structure as 
already noted in Ref. 102. Moreover, the equivalence 
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of OI(AD) = 0 to the initial-mixed boundary value prob
lems of the theory of thermopiezoelectricity is shown 
in Sec. 4. Though it is not necessary herein, the ex
plicit form of I is not given, Thus, Mindlin's as well as 
the present variational theorem can be considered 
quasitype. A variational theorem with I instead of 51 can 
be derived by transforming the initial-mixed boundary 
value problem into an equivalent boundary value prob
lem through Laplace transformation, which includes 
the initial conditions implicitly, and then constructing 
the theorem for the equivalent problem; this will be 
reported elsewhere. 

By means of the classical energy arguments, a the
orem of uniqueness is rigorously proved for the 
governing equations of the linear theory presented. The 
theorem enumerates the mechanical, electrical and 
thermal boundary and initial conditions sufficient for 
uniqueness in solutions of the linear governing equa
tions of coated, thermopiezoelectric laminae. The en
ergy arguments l03 are by no means the only way of 
establishing the conditions sufficient for uniqueness. It 
is worth remarking that the methods involving reflection 
principle, logarithmic convexity arguments, and Holm
gren's theorem can be also used to examine uniqueness 
in solutions of initial-mixed boundary value problems, 
Though they were illustrated for three-dimensional 
elastodynamics, they can, of course, be used for one
and two-dimensional cases as well. 104 

The results describe the dynamic behavior of both 
uncoated and coated, thermopiezoelectric laminae of N 
constituents, and contain those of certain earlier studies 
as special cases, We begin by noting that when only one 
layer is considered, that is, N = 3, a theory of coated, 
thermopiezoelectric shell is established, and also 
dropping out the effects of electrodes and temperature, 
it recovers the higher order theory of piezoelectric 
crystal surfaces, due to the author, 60 up to the first 
order, In the absence of curvature effects, our 
results reduce to those of coated, thermopiezoelectric 
crystal multilayer plates, in which bg = 0 and Il; is 
then equal to the Kronecker delta. By conSidering again 
only one layer, the results can be specialized to yield 
those of Mindlin, 28 but including the effect of elastic 
stiffness and inertia of electrodes. In addition, if the 
terms involving the upper and lower electrodes are 
discarded, the results do agree completely with those 
of Mindlin. 28 Further, we note that neglecting the elec
trical effect, an effective stiffness theoryl05 of laminat
ed composite shells (plates) is obtained. Also, omitting 
the thermal effect, this theory of composite shells re
covers the one due to the author. 106 

Although piezoelectricity is basically a linear electro
mechanical phenomena, nonlinear effects in piezoelec
tric substances have also been demonstrated experimen
tally. 107 To construct a nonlinear theory of the coated, 
thermopiezoelectric laminae is beyond the scope of 
this paper, and it is left for a future study, 

The type of thermal boundary c0nditions in Eq, (2,12) 
is prescribed in the analysis, However, various types 
of boundary conditions ariSing from thermal interactions 
with the exterior of laminae region may be prescribed 
as welL A type of considerable interest is the radiation 
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condition, namely 

(11. 1) 

in lieu of Eq, (2,12), Here, C r denotes a positive con
stant and C. the value of C r at the edge of laminae, and 
it takes the values between zero (1. e" adiabatic bound
ary) and infinity (i, e" 8 = 0, isothermal boundary), 
Now replacing v* by Cr8* in the variational theorem 
(4,1), the thermal boundary conditions of coated 
laminae, corresponding to Eq, (11.1), are obtained 
through Eqs. (4,1), (5,5), (5,13), and (6.16), in the 
form 

and 

k" - crt T" + (2H - h')y"]* = 0 on 5 urX T , 

N 

V",6 (C;IH"')(r)-T~=O, 
r.t 

N 

(11. 2) 

(vO;C;IK"')<m) + v","0 zmr(C;IH"')(r)-T~m)=o, (11,3a) 
r=m 

v"C;I[K" - (z - h)H"'l" - T~ = 0, along eXT 

with 

+ f, Z II <r»)(2 - 6 )h y(r) 
!-.1 mrt"O Ir r (11,3b) 
rom 

+ ..f!,. (2hmll l(r) + f, (r») (r) t....J r- I..-J Zm+l.rllo Y , 
r=m+1 r=m+1 

N 

T" =[Ill- (z - h)llol"T' + 6 {[Ill- (z - h)f.lol"zrm 
r=1 

which lead to the uniqueness of solutions, as before. 

Further, the fields chosen in Eqs, (5.3)-(5.5) can 
be expanded into a series of simple thickness modes 
instead of the thickness coordinate as a starting point, 
And then, a set of two-dimensional, approximate 
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governing equations, immensely more tractable than a 
three-dimensional one, can be constructed by means 
of the present method of analysis as in the case of 
purely elastic plates. 108 The present method is employed 
to establish the governing equations of the type of 
laminae composed of N distinct elastic constituents and 
coated completely with electrodes on both its faces. 
Using the governing equations, a number of specific 

t . I t h' 109, 110 problems solved by recen numerIca ec mques 
will be topics of future study. Finally, it is concluded 
that the method of analysis can be fruitfully extended 
to be useful in the analysis of a composite layered 
structure of one piezoelectric and another magneto
elastic media,l11 and, in addition, of multilayer struc
tures comprising any number and layered arrangements 
of electrodes and piezoelectric constituents, which have 
valuable acceptance in multistage transducers for both 
sonar and delay line applications. 
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The theory of fluctuations for systems near equilibrium has given rise to two developments which 
generalize the theory in two distinct ways. One of these developments is focused on the theory of 
fluctuations far from equilibrium where the dynamics is nonlinear. The other development· has focused on 
extending the class of fluctuating forces to include forces with non-delta function correlations. The near 
equilibrium theory corresponds with the theory of stationary, Gaussian, Markov processes; the nonlinear, 
far from equilibrium theory corresponds to the theory of nonstationary, Gaussian, Markov processes; and 
the non-delta function, force correlation theory corresponds to the theory of stationary, Gaussian, non
Markovian processes in one form, and to the theory of nonstationary. Gaussian, non-Markovian 
processes in another form. The common feature found in all these theories is Gaussianness. 

I. INTRODUCTION 

Over an extended period of time, Langevin's1 theory 
of Brownian motion has developed into a remarkably 
general theory for nonequilibrium processes. The early 
work of Uhlenbeck and Ornstein, 2 which applied 
Langevin's theory to the harmonic oscillator, provided 
the basis upon which Onsager and Machlup3 were able 
to establish a stochastic foundation for irreversible 
thermodynamics. Subsequently, Landau and Lifshitz 
suggested how to extend this theory even further when 
they presented equations for hydrodynamic4 fluctuations 
and for electromagnetic5 fluctuations. These sugges
tions gave rise to a general formulation, 6 which Fox 
and Uhlenbeck7 showed was equivalent to the theory of 
stationar'y, Gaussian, Markov processes. 

Although the theory is quite general, it is not uni
versal, and is limited in two distant physical ways. 
First of all, the applications mentioned above, as well 
as all others, are confined to systems which are dyna
mically close to full equilibrium. This implies that the 
equations are linear. Secondly, on the time scale de
termined by. the relaxation time for the system, the 
correlation 'time for the fluctuating forces is negligibly 
short, as is manifested mathematically by a fluctuating 
force autocorrelation formula involving a delta function 
of the time variables. The general situation is exhi
bited by the equations for a stationary, Gaussian, 
Markov process. 7 

d -
dt a(t) = - Aa(t) - Sa(t) + F(t), (1) 

with 

(2) 

in which a(t) is a vector valued, N-component process, 
A is an NXN antisymmetric matrix, S is an NXN sym
metric matrix with nonnegative eigenvalues, F(t) is a 
vector valued, N-component fluctuating force, and 
< ... ) denotes stochastic averaging. Q is an NXN sym
metric matrix of correlations. Near equilibrium, the 
entropy of the system is given by the quadratic form, 3,7 

5(t) =50 -1at (t)Ea(t), (3) 

in which E is the NXN, symmetric entropy matrix. A 

fluctuation-dissipation relation exists and is expressed 
by 

(4) 

In Eqs. (1)-(4), t denotes the matrix adjoint. The en
tire statistical description of these processes is given 
by the solution to an associated Fokker-Planck 
equation. 7 

The limitations of the theory have prompted two de
velopments which are aimed at extending the domain 
of applicability. The first development concerns esta
blishment of a theory of fluctuations for systems far 
from equilibrium in which case the dynamics become 
nonlinear. van Kampen8 initiated this development using 
a master equation basis which has recently been clari
fied by Kubo et al. 9 In addition, an equivalent, Langevin
like, fluctuating force theory has been proposed by 
Keizer, 10 Nitzan et al. , 11 Akcasu, 12 and Portnow and 
Kitahara. 13 The second development concerns the linear, 
near equilibrium theory in the case in which the fluctu
ating force autocorrelation formula involves an extended 
time dependence which can not properly be represented 
by a delta function. Zwanzig's14 projection operator 
method is the key to this development, although it was 
Mori15 who first achieved a general formulation. An 
alternative basis for these "generalized Langevin" 
equations involving" contraction of the description,,16 
has been presented by Hauge and Martin- LOf. 17 Their 
theory explicitly uses Gaussian forces whereas the 
Mori theory usually leaves the characterization of the 
higher than second-order moments uspecified. Here 
the forces will be taken as Gaussian in the Mori theory 
as welL 

What emerges as common among these two develop
ments and the original theory is Gaussianness. Because 
1977 is the 200th anniversary of Gauss' birth, it seems 
especially appropriate to present a unified treatment 
of these Gaussian theories. 

II. FLUCTUATIONS FAR FROM EQUILIBRIUM 

The description of fluctuations far from equilibrium 
is based upon taking the "thermodynamic limit" of a 
master equation description of the underlying microsco
pic process. In both van Kampen's8 pioneering work 
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and Kubo's more recent extention, this limit is the limit 
of a large" system- size" parameter. Regardless of how 
one expresses it, the result is that in the limit of a very 
large system, the master equation description goes 
over into a Fokker-Planck equation description. The 
resulting Fokker-Planck equation represents a non
stationary, Gaussian, Markov process. 

For the special case of a system of chemical reactions 
obeying the McQuarrie18 master equation, Kurtz19 has 
proved, with all the rigor one would like, that the limit 
of a very large volume yields a Fokker-Planck equa
tion. In a general setting, this result is not so well 
established, and Fox and Kac20 have recently explored 
another special case in which delicate questions regard
ing initial distributions and scaling have been broached. 
In any case, the resulting Fokker-Planck equation has 
the form 

a 0 a 3 
- P(n t) = - - . (H(t)nP(n t)) + -. y(t) . - P(n t) 
ot' on ' on on" 

(5) 

in which n is an N-component vector valued process, 
H(t) is an NXN matrix, and y(t) is an NXN matrix. 
This Fokker-Planck equation describes the time evo
lution of the distribution function for the deviations 
around the deterministic solution, n(t). The equations 
which determine ii(t) are also deduced from the large 
system-size limit of the underlying master equation 
and are generally nonlinear: 

d~ ii(t) = K[n:(t)], (6) 

in which K is a vector valued functional of ii(t). The 
matrix elements of H(t), which appears in (5), are de
termined from K[ii(t) 1 by 

(7) 

The derivation of (5) from the underlying master equa
tion also shows that y(t) is a functional of ii(t). There
fore, both H(t) and y(t) acquire their time dependence 
indirectly, through n:(t), the deterministic solution to 
(6). In this kind of theory, the deterministic solution 
carries the fluctuations" on its back", so to speak, and 
there is no feedback on the deterministic solution by 
the fluctuations. Therefore, there is no pOSsibility of 
"renormalization,,21 of dissipative parameters in the 
deterministic equation (6) by fluctuations which are de
termined from (5). 

Even though van Kampen22 has repeatedly expressed 
the view that there does not exist an equivalent fluctu
ating force formulation of this theory, Nitzanll et al. 
and Portnow and Kitahara13 have each shown that a 
Langevin-like formulation for fluctuations near steady 
states which are far from equilibrium is possible, and 
Akcasu12 and Keizer lO have independently presented the
ories of Langevin-like structure for the entire non
equilibrium domain. Each theory can be represented by 
an equation like 

! n(t) = H(t)n(t) + g(t), (8) 

128 J. Math. Phys., Vol. 19, No.1, January 1978 

with g(t) and N-component, Gaussian fluctuating force 
satsifying 

(g(t)=O and (g(t)g'(s)=2y(t)o(t-s). (9) 

The solution to (8) may be expressed in terms of the 
time-ordered exponential, which is denoted by 
r exp( fot ds ... } 

n(t) = r exp{fot ds H(s)} n(O) 

+ fot r exP(f H(s') ds'}g(s) ds 

and this result has average value 

(n(t» = r exP(fot H(s) ds} n(O) 

(10) 

(11) 

which agrees with what would be obtained from (5). 
Similarly, if ~-1(t) denotes the covariance matrix which 
is defined by 

(12) 

then (8) implies 

!£~-1(t) = H(t)~-l(t) + ~-l(t)Ht(t) + y(t) + yt(t) (13) 
dt 

which also agrees with what would be obtained from (5). 
Because the process is GaUSSian, (11) and (12), or (11) 
and (13) completely determine the process and are 
clearly equivalent with (5). 

From (9) it follows that y = yt. Consequently, at equi
librium or at a steady state where (d/dt)~-l(t) =0, we 
get a fluctuation-dissipation relation from (13): 

2Y=H~-I+~-IHt (14) 

in which y, H, and ~_I assume their equilibrium, or 
steady state, values. Thus, there is a parallel to (4) 
even at steady states. 23 

III. GENERALIZED LANGEVIN EQUATIONS 

The description of fluctuations near equilibrium with 
fluctuating forces which have a non-delta function cor
relation can be given in a form closely resembling the 
formulation of Moril5 and the representation used by 
Hauge and Martin- LOf. 17 The differences are merely 
a matter of notational convention. As pointed out in the 
introduction, Gaussian fluctuating forces are assumed. 

The equations take the form 

d
d a(t) = Oa(t) -J t cpU - s)a(s) ds + f(t) 
t 0 

(15) 

with f(t) satisfying 

(f(t)=o and a(t)ft(s)=cp(lt-sl){a(Olat(Ol} (16) 

in which {a(O)at(O)} denotes an equilibrium average of 
the initial a values. The a variables are defined such 
that {a(oJ} = O. The matrix 0 represents nondissipative 
coupling and satisfies the identity24 

(17) 
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The matrix kernel, ¢(t - s), is the memory kernel 
which makes the process non-Markovian. Following 
Uhlenbeck and Ornstein, 2 we will use both ( ... ) and 
{ ... } averages in the following analysis. This will lead 
to the consequence that the equations describe a station
ary, Gaussian, non-Markovian process. 

The solution to (15) is 

a(t) = M(t)a(O) + lot M(t - sli(s) ds, (18) 

in which M(t) is defined through its Laplace transform, 
M(z), by 

(19) 

where cP(z) is the Laplace transform of ¢(Itl)' From 
(16) and (18) it follows that 

{(a(t)} = 0 (2a) 

and that the autocorrelation matrix is, for t 2: S 

{(a(t)at(s»} = M(t}{a(O)at (a)}Mt (s) 

+ lot dt' 10' ds' M(t - t')¢{ I f' - s'l) 

x{a(a)at (aJ) Mt (s - s'). (21) 

In the Appendix, we prove that 

lot dt' los ds' M(t - t')¢ (I t' - s' I ~a(a)a t(a)}Mt (s - s') 

=i (M( I t - s I ~a(a)at(a)} +{a(a)at(a)}Mt (I t - s I) 

- M{t~a(a)at(a)}Mt(s). (22) 

Together, (21) and (22) imply the stationary result 

{(a(t)at (s i)} 

=HM(t - s~a(a)at(a)} +{a(a)at(a)}Mt(t - s). (23) 

From (18) and (19), we have M(a) = 1, so that (23) im
plies for t = s that 

(24) 

which exhibits stationarity another way. 

APPENDIX: PROOF OF (23) 

The proof utilizes the double Laplace transform 

It should be emphasized that it is also possible to 
analyze the equations (15) and (16) without performing 
the second, { ... }-averaging, while computing the auto
correlation matrix. The results then correspond with 
a nonstationary, Gaussian, non-Markovian process. 

Clearly, (16) parallels (4) and (14) as the fluctuation
diSSipation relation. The parallel is most easily seen if 
it is noted that {a(a)at (aJ) is the natural analog of E-1 in 
(4) and of ~_l in (14), and if Eqs. (17) and (A4) are used. 

IV. DISCUSSION OF RESULTS 

The common feature found in all the fluctuation the
ories discussed here has been Gaussianness. For the 
two Markovian theories, all of the statistics can be de
termined by the Fokker-Planck equations or equivalent
ly by their solutions, the conditional two time probability 
distribution. The non-Markovian theories are also de
termined completely by a two-time correlation matrix 
because these theories are Gaussian. 25 Therefore, as 
far as being able to totally determine the process is 
concerned, Gaussianness appears to be more general 
than Markovianness. Moreover, even a non-Markovian 
case is still fully described by a single, two-time cor
relation matrix. 25 In view of this circumstance, it seems 
appropriate to enquire whether or not it is possible to 
build a foundation for stochastic processes based upon 
Gaussian fluctuations while relinquishing the desire for 
Markoviannessc This would enable one to avoid the tech
nical inconsistencies of delta correlated, Markovian 
equations which prompted Doob26 to recast the Langevin 
equation, and which has since lead to the Ito and 
Stratonovich calculi. 27 In a subsequent paper we will 
show how Gaussian, non-Markovian stochastic processes 
may be formulated with the ordinary Riemann integral, 
without the" stochastic" integral, 27,28 and in close paral
lel with the equations of microscopic dynamics with 
which physics is usually presented. 
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10 ~ dt exp(- zt) 10 ~ ds exp(- z' s) lot dt' fo' ds' M(t - t')¢( It' - s'l ~a(a)at (O)}Mt{s - s') 

= 10 ~ dt' fo "" ds' ft,"" dt J.,~ ds exp[- z(t - t') 1 M{t - t') exp{- zt')¢( I t' - s' I ~a(a)at(a)} exp(- z IS') exp[ - z'{s - s') ]Mt (s - s') 

= 10 ~ dt' 10"" ds' 10"" d-r 10 "" da exp(- z-r)M{-r) exp(- zt')¢( I t' - s' I ~a(O)at(OJ} exp(- z' s') exp(- z' a)M(a) 

= M(z) fo ~ dt' fo "" ds' exp(- zt')¢( It' - s' I ~a(O)at(a)} exp(- z's')Mt(z'). (At) 

Now, 

10 "" dt' 10 "" ds' exp(- zt')¢( It' - s' I ){a(O)at (O)} exp(- z's') = 10 "" dt' 10'''' ds' exp[ - z(t' - s') J¢( I t' - s' I){a(a)at (O)}exp[ - (z + z')s'J 

=:: fa"" ds' i;da exp(- za)¢( I al ){a(a)at(O)} exp[- (z + z')s') 
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= 10 ~ ds'(cj;(z) + i~da exp(- za)¢( I al )){a(o)at(o)} exp[ - (z + z')s'] 

¢(z){a(o)at(o)} f" ,( 1 d , ,) fO 
= z+z' ° ds z+z' dS,exp[-(z+z)s] _s'daexp(-za)¢(lal){a(o)at(o)} 

<i(z){~(o~at(o)} +_+1 , {" ds' exp[ _ (z + z')s' exp(zs')¢(s'){a(O)at(O)} = f(z) + f(z') {a(O)at(O)}. 
z z z z J o z+z 

From (16) it follows that 

<£(t)ft(s)/ = <f(s)it (0) = ¢( Is - t I ){a(O)at (O)} = <f(tlit(s». 

Therefore, 

¢( I t - s I ){a(o)at (O)} ={a(O)at (O)}¢t (I t - s I). 

Using (A2) and (A4), the last line of (A1) can be written 

M(z) ;:" dt'!o "ds' exp(- zt')¢( It' - s' I ){a(O)at(O)} exp(- z's')Mt(z') 

= M(z) ¢(z){a(O)a
t 

(O)} +}a(o)at(o)}cj;t (z') Mt(z') 
z+z 

and (A2) can be rewritten 

~ [" dt' /" ds' exp(- zt')(¢( I t' - s'l ){a(O)at(O)} +{a(O)at (O)}¢t (I t' - s' I») exp(- z's') 

cj;(z){a(o)at(O)} +{a.(O)at(O)}¢t(z') 
z +z' 

From (20) and its adjoint we get 

M(z)cj;(z) = 1- M(z)(zl- S1) and ¢t(z')lVlt(z') = 1- (z'l- S1t )Mt (z'). 

Using (A7) in (A5) gives 

M(z) j" dt' !O" ds' exp(- zt')¢( I t' - s' I ){a(O)at(O)} exp(- z' s')Mt(z') 

M(z ){a(O)a t(O)} +{a(O)a
t 
(O)}M

t 
(z') M(z \f a(O)at (O)}Mt (z '), 

z + z' fL 

in which (17) has been used. From (A6) it is seen that this is the same as the double Laplace transform of 

which completes the proof of (23). 
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It is clear a priori that equal Gaussian functions, spread over a lattice, can be transformed into Wannier 
functions. The transformation is carried out here analytically in one dimension, with the help of the 
theory of theta functions. The results confirm and illustrate the properties commonly assigned to these 

functions, with one startling exception. 

1. INTRODUCTION 

In the last few years it has been realized that Wannier 
functions can simplify the calculation of some properties 
of solids, and correspondingly, a beginning has been 
made in their calculation. 1-5 This article represents a 
contribution to this endeavor. In my study of diamagnetic 
properties of electrons I realized accidentally that a set 
of Gaussian functions, distributed over a regular lattice, 
can be transformed analytically into Wannier functions. 
The occasion arises therefore to exhibit them both 
analytically and numerically in this particular case. 
The analytical procedure furnishes proofs for things 
that have usually been inferred numerically, and the 
curves generally confirm the observations made by 
others. One striking departure shows up; it will be 
discussed in the text. 

2. CONSTRUCTION OF THE WANNIER FUNCTIONS 

Gaussian functions in three dimensions are the pro
duct of one-dimensional Gaussians. They have therefore 
the great advantage that if one orthonormalizes them in 
one dimension orthonormalization in three dimensions 
is automatic. Therefore, only the one-dimensional pro 
problem will be discussed below, namely how to trans
form into Wannier functions a set of Gaussians lying on 
a straight line a fixed distance apart. The problem so 
formulated contains one variable parameter, namely the 
ratio of the lattice spacing to the Gaussian spreado The 
end results and the exhibited curves will be functions of 
that parameter. 

The procedure we shall use is the one oulined at the 
time Wannier functions were invented. 6 We construct 
Bloch functions out of the Gaussians in the form of 
Fourier series in k, normalize the Bloch functions, and 
then Fourier invert back to obtain the Wannier functions. 
This procedure brings in a square root, the square 
root of the norm. Both the Bloch function and the norm 
happen to be theta functions. The rich treasure of inter
nal and mutual relationships for these functions makes 
an analytic procedure possible. The notation and 
formulas for theta functions employed here are the ones 
of Whittaker and Watson. 7 

We adopt 1 as the interval of periodicity and treat the 
Gaussians as having a variable spread ¢. Therefore, 
our starting functions read 

<p (x - n) = exp[ - t1T¢(X - n)2], (1) 

where n runs over the set of integers. The Bloch 
functions derived therefrom then read 
a)This work was supported in part by the National Science 

Foundation. 

.~ 

b(x,k)=L; exp[21Tikn-h¢(x-n)2]. 
n=....oo 

Here the "Dutch" k, equal to the reciprocal wave
length, has been employed for convenience. 

(2) 

In the notation of Whittaker and Watson, 7 expression 
(2) equals 

b(x,k)=exp[ -h¢X2]-33[1Tk -hi¢x, exp(-1T¢/2)], 

The Jacobi transformation can therefore be applied to it, 
yielding the alternate form 

.'" b(x, k) = (21 ¢)'/2 L; exp[21Ti(n + k)x - (21T 1 ¢)(n + k )2]. (3) 
n=-oo 

It is seen that the passage from (2) to (3) gets us 
without difficulty from the one common representation 
of Bloch functions to the other. 

The prescription for forming Wannier functions 6 now 
demands that the Bloch functions above be normalized 
over the primitive cell; this is here the unit interval. 
The normalization is immediate on the form (3), 

NORM = fJb(X,kWdX=(2/¢)nf;.expt ~ (n+k)2).(4) 

The norm is again a theta function. 3 Its alternate form 
reads 

NORM = ¢_'/2 I: exp[21Tikn - h¢n2]. (5) 
n=_oo 

To follow the procedure further, the reciprocal of the 
square root of this expression has to be found. We pass 
for this purpose to Jacobi's expression of the function 
-33 as an infinite product. 7 We find with the abbreviation 

q= - exp[ - h¢], (6) 

The curly bracket can be further split, yielding 

NORM = ¢-'/2vO, (1 - q2V ){1 -lv-' exp(21Tik)} 

x{1-lv -'exp(-21Tik)}. (8) 

The two curly brackets in (8) are conjugate complex, 
that is each has an absolute value which is the square 
root of the absolute value of the curly bracket in (7). 
The square root of the norm therefore equals 

We now take advantage of the freedom which we have in 
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the formation of Wannier functions. The Bloch functions 
must be normalized, but are allowed to contain an 
arbitrary phase factor depending periodically on k. 
Different phase assignments yield different, but equally 
valid Wannier functions. We use this freedom to adopt 
(9a) without absolute bars as the definition of the norm: 

(NORM)'/2= ¢-1/40 (1_q2V)1/2 
v=l 

x [1 _lv-1 exp( - 2rrik )]. (9b) 

We now need the reciprocal of this which means 
essentially the reciprocal R of the last set of factors 
in (9b), 

R = fi (1 + q2v+l exp( - 2rrik) + q4v+2 exp( - 4rrik) 
v=o 

+ q6v+3 exp( - 6rrik) + ... ). (lOa) 

The product R should be available as a Fourier series 
in k; this means ordering it with respect to powers of 
exp(-2rrik), 

R = 1 + C 1 exp( - 2rrik) + C2 exp( - 4rrik) 

+ C3 exp(- 6rrik) + .... (lOb) 

Each coefficient C
n 

is a sum of terms consisting of n 
factors. Each factor is an odd power of q; the same 
factor may occur repeatedly, but no combination of 
powers occurs more than once. C

n 
is the sum of all 

possible such combinations. 

lowe to Milton WannierB the evaluation of this coeffi
cient. One starts out with the observation that the 
powers in each term may be assumed ordered, starting 
with the smallest. Thus if we are to find the coefficient 
C4 of exp( - 8rrik) we write down the expression 

(lOc) 

with the restrictions 

(lOd) 

We liberate ourselves from the restriction (lOd) by the 
substitutions 

n,=m1 , 

(lOb) then takes the form 

C
4 

=q46666q2(m4+2m3+3m2+4ml) 

m1 "'2 "'3 "'4 

= q46 q2m46 q4m36 q6m26 qBml • 
m4 m3 m2 ml 

The summation indices mj range over all nonnegative 
integers and do so independently of each other. We can 
therefore sum over each index separately and obtain 

C
4
=q4(1_ q2)-1(1_ q4)-1(1_ q6)-1(1_qB)-1 (10e) 

and so on for the other Cn's. Inserting this into (lOb) we 
end up with 

(lOr) 
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Substitution of (lOr) into (9) thus yields the reciprocal 
of the square root of the norm 

(NORM)-1/2 = ¢'/4 i1 (1 _ q2V)_1 /2 
v>l 

X {1 + t q" exp( - 2rrillk )/n (1 _ q2" )}. (11) 
V=l ~=1 

By the procedure outlined the Wannier function 
centered at the origin equals 

1 

a(x)= fo (NORM)-'/2 b(x ,k) dk (12) 

and all other Wannier functions are obtained from this 
one by simple displacement. If we take (NORM)-1/2 in 
the form (11) and the Bloch function in the form (2), then 
the two factors are both in the form of Fourier series 
in k. The integral is therefore trivial and yields, with 
(6) 

+ t[ - exp(- trr¢W exp[ - h¢(x - )..IYJI ,,-I 
fr {1 - exp(- %rr¢p)}}. (13) 

p,1 

3. DISCUSSION AND FUTURE OUTLOOK 

Equation (13) fulfills the promise made at the beginning 
of the paper, namely to exhibit Wannier functions 
explicitly in a special case. The formula does this by 
yielding an explicit expression for the coefficient with 
which a given Gaussian partiCipates in a Wannier func
tion. If the one parameter of the problem, ¢' /2, the 
ratio of the lattice spacing to the Gaussian spread, is 
known the expressions will be numbers. The infinite 

TABLE 1. Table of I(h) [Eq. (15) J versus h for q, = 2: proof that 
we deal with a Wannier function. 

h I(h) 

0.0 1.000000 

0.1 0.979600 
0.2 0.920281 
0.3 0.827436 
0.4 0.709240 
0.5 0.575600 
0,6 0.436937 
0.7 0.303026 
0.8 0.182035 
0.9 0.079891 
1.0 0.000000 
1.2 - O. 091353 
1.4 -0.106788 
1.6 - O. 077548 
1.8 -0.034898 
2.0 0.000000 
2.2 0.018571 
2.4 0.021938 
2.6 0.016019 
2.8 0.007230 
3.0 0.000000 
3.2 - O. 003857 
3,4 - O. 004558 
3.6 - O. 003329 
3.8 -0.001503 
4.0 0,000000 
4,5 0.000852 
5,0 0.000000 
5.5 - O. 000177 
6,0 0,000000 
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product in (13) is ,')~(O), and has, like other theta 
functions, a second form 7 
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FIG. 1. The Wannier function going with 
Gaussians for successively smaller tb. 
In the picture the Gaussians were kept 
the same (essentially undistinguishable 
from the first graph). and the crystal
line period was reduced by a factor ~ 
from one graph to the next. The period 
is out! ined by vertical bars each time. 
and the vertical double line indicates 
the origin. It is seen that the Gaussian 
gets gradually chewed up except at its 
left edge. and that an exponentially 
damped oscillation becomes the pre
dominant feature. The unsymmetric 
structure of the function is discussed 
in the text. 

The product is thus not only convergent, but can be 
made rapidly convergent under all circumstances. 
Calculation of the finite product can also be accelerated 
by (14) if 1> is small and the number of terms in the pro
ducts large. 

Equation (13) also gives a good deal of qualitative 
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insight into the function a (x). We deal with an entire 
function because it is a sum of Gaussians with exponen
tially decreasing coefficients. It is square integrable, 
and the distribution represented by it has moments of 
all orders. The appearance of the function is illustrated 
in Fig. 1 for rp = 8, 2, t, i. For convenience of illustra
tion the basic Gaussian, is kept constant in the picture 
(essentially indistinguishable from the first curve), and 
the lattice period is reduced by a factor t from one 
picture to the next. We see that this amounts to a 
gradual chopping up of the basic Gaussian, and a pro
gressively more dominant oscillating tail; the period of 
the oscillation is twice the lattice period. The damping 
of the oscillation diminishes on either type of scale as 
rp becomes smaller and the root mean square value of 
x increases, By a numerical accident the mean value 
of x remains very close to zero throughout; only the 
last graph shows a small negative value. That the 
functions constructed are indeed Wannier functions is 
shown in Table I for the case rp = 2, The Table shows 
1(11) versus 11 where l(h) is defined as 

l(h) = r" aCr) a(x + 11) dx. 
-~ 

(15) 

The integral equals 1 for 11 = 0 and equals 0 for all other 
integer values of h as it is supposed to. 

One predominant characteristic of Wannier functions 
which shows up here has already been exhibited in 
Ref. 1. Wannier functions tail away from the center in 
the form of damped oscillations. The oscillation is 
antiperiodic in the lattice period (this poses some in 
interesting questions for f. c. c. lattices). The damping 
is exponential; this important feature, which might be 
inferred from the graphs is proved here explicitly by the 
factor [- exp(- t11t,D)]" in the sum (13); the finite product 
that acts in the opposite direction only delays this con
vergence because it finally approaches the value of the 
corresponding infinite product which is fixed. 

We must now say something about the obviously sur
prising feature of the function, namely that it is asym
metric in x, Gaussian for negative x, and oscillating for 
positive x. This is not at all in agreement with the 
qualitative picture most of us have had regarding this 
function. One generally thinks of it as a function (or a 
set of functions) which reproduces the point symmetry 
of the lattice. This picture is violated in the curves of 
Fig. 1. We may wish to dismiss this feature as an 
artifact of the calculation, arising from the way the 
norm was calculated. This is of course true, but the 
functions computed converge more strongly in the 
direction in which they behave abnormally, as they 
preserve there the convergence of the original 
Gaussians. Now it is clear that if one had kept the norm 
real the function would have decayed in both directions in 
the form of a damped oscillation; it would therefore have 
been less concentrated than the one shown. It seems 
therefore in this case that the function with the correct 
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symmetry property and the function with the least 
spread are not the same function. One should also men
tion that this feature is not necessarily limited to this 
example where it arises from a property of the theta 
functions. One might take the norm in other cases, find 
all its complex roots in k, and suppress all the roots 
on one side of the real axis to extract the square root, 
This would create a different set of Wannier functions, 
not yet investigated. 

I may conclude this with the remark that I think it 
highly likely that Wannier functions can also be con
structed for higher harmonic oscillator states; this is 
usually the case for properties discovered for the 
ground state. 9 

In the present context this calculation is nothing 
more than an illustration which should perhaps have 
been given forty years ag0 6

; the excuse may be offered 
that it was not so clear then that exponential convergence 
would become such a crucial debating point. 

The context in which the author became aware of 
these properties is the theory of electronic dia
magnetism. For some years now, a group of us have 
been trying to elucidate this subject by starting with 
free electrons in a magnetic field, and letting these 
electrons be acted upon by a crystalline lattice potential. 
Gaussian functions are unperturbed eigenfunctions in 
such a problem, and the use of Wannier-like basis 
functions has been discussed by several authors. It 
seems highly likely that one can generalize the preceding 
calculation to construct such functions from Gaussians. 
What is missing in the present calculation is the inclu
sion of the Peierls phase. 10 It has been mentioned 
elsewhere ll that the eigenstates have a nesting property 
which makes the same difference equation appear in the 
Onsager method and in a method using Landau functions, 
Only the exponent of certain exponentials is replaced by 
112 times its reCiprocaL Equivalences of this type arise 
quite commonly in the theory of theta functions. There 
is therefore some real hope that the calculation pre
sented here can be extended to magnetism, and that 
when this is done the status on the Onsager hypothesis 
will be clarified. 
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In this paper we give a derivation of the virial expansion and some of its generalizations. Our derivation is 
based on the generating functional which defines a representation of the density operator p(x) in a 
nonrelativistic local current algebra. The virial expansion results from solving a functional differential 
equation for this quantity. We exploit the well-known analogy between quantum field theory and classical 
statistical mechanics to explore the use of the virial expansion in Euclidean quantum field theory. 
Specifically, we show that the vi rial expansion can be used to derive Feynman's rules and to provide a 
perturbation expansion about a static ultralocal model. The latter is worked out in detail in the case of a 
free neutral scalar model, and outlined in the case of a 11.4>4 model. 

I. INTRODUCTION 

The virial expansion plays an important role in sta
tistical mechanics, and it has, of course, been derived 
by several different methods. In this paper, we give a 
derivation of the vi rial expansion for correlation func
tions by a method which lends itself naturally to appli
cations in Euclidean quantum field theory, and we dis
cuss, in a very preliminary way, some of those appli
cations. In this derivation, a key role is played by the 
generating functional L(j) for the density correlations 
R M(X1, ••• ,x,,), defined by 

L (f) = t 1, f dX1 ••• fdx" 
M=O 11. 

x rl {exp[if(Xj)]- 1}Rn(Xb ... ,x"J. (1. 1) 
j =1 

Exactly the same quantity is employed when one uses 
local currents to describe nonrelativistic quantum mech
anics in the N /V limit, 1,2 and L(j) is also closely re
lated to the generating functional introduced by 
Bogoliubov3 and to the familiar partition function of 
statistical mechanics. 

The particular importance of the generating functional 
(1. 1) follows from the fact that it can be used to define 
a representation of the density operator p(x) on a 
Hilbert space1

,4 (via the GNS construction) and also to 
determine a measure which defines a state on the C*
algebra consisting, essentially, of the bounded func
tions of the density operator. 5 The main facts about 
generating functionals which we use in this paper are 
summarized briefly in Sec. II. 

The density correlation functions for a system of par
ticles interacting via a two-body potential U(x) satisfy 
the BBGKY hierarchy of coupled equations 

V x1R n(X1, ••• ,xn ) 

= - i3 t VX1 U(X1 - X)Rn(Xb •.. ,xM ) 

j=2 

a)Work supported by the Energy Research and Development 
Adm inistration. 

where f3 = (l/kT). T~se are eq)1ivalent to a single func-
tional equation2 for L(j): / 

! 

[V _ 'V'"( )]1. 6L(j) 
1 jX i 6f(x) 

f 3 1 6 1 6 
= -13 d:v VU(x - y): i 6f(x) i 6f(y) : L(j). 

In Sec. III, we show that Eq. (1. 3) has the formal 
solution 

L(j) =Z(j)/Z(O), 

where 

(1. 3) 

(1. 4) 

ZI .... - [-~ff 3 3 (-) .1._6 1._0 'J (j) V J - exp 2 d xd Y U x y. i 6f(x) i 6f(y)' Lo 

and LoVJ is the generating functional for a free gas 
(U = 0 or T = 00) in the thermodynamic limit. For spin
less bosons, this is given by6,7 

(1. 5) 

where Po is the average density of the system. Equation 
(1. 4) can be thought of as expressing the effect of the 
interaction as a perturbation about the representation 
of the thermodynamiC limit of the free theory. Similar 
formal solutions to functional equations have been used 
for many years in quantum field theory. 8 

In Sec. IV we show that a formal expansion for L(j) 
in powers of f3 can be developed by expanding the ex
ponential in Eq. (1. 4) and using graphical techniques. 
The series can be resummed in powers of Po with the in
teraction entering only through the quantity [exp(-I3U) 
- 1]. This leads to the fugacity expansion for the cor
relation functions when Po is identified with the activity 
of the interacting system. A further resummation can 
be performed which results in an expansion for the cor
relation functions in powers of the average density of 
the interacting system, p. This is the virial expansion. 
The last resummation is similar to a charge renormali
zation in quantum field theory, and it can be shown to 
result in a representation of the density operator which 
is inequivalent to the free representation. It should be 
noted, however, that for a suitable class of potentials 
the virial expansion has been shown to have a nonzero 
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radius of convergence, 9,10 while the Feynman series is 
believed to be asymptotic. At the end of Sec. IV, we 
compare our derivation of the vidal expansion to others 
that have been given previously. 

In Sec. V, we sketch generalizations of the virial ex
pansion which are applicable when one works with ex
ternal potentials, many-body potentials, or potentials 
which can usefully be decomposed into two parts (e. g. , 
potentials with short range and long range pieces). 

Numerous authors have discussed the close analogy 
between classical statistical mechanics and Euclidean 
quantum field theory. 11 In particular, the application of 
the expansions used in statistical mechanics to quantum 
field theory has been the subject of several important 
papers. Symanzik, 12 for example, has exploited this 
analogy to motivate a resummation of the Feynman 
series into the loop expansion. More recently Glimm, 
Jaffe, and Spencer13 have studied the particle struc
ture of the P(¢)2 model in a rigorous manner by using 
expansions similar to the high temperature expansions 
of classical statistical mechanics. In Sec. VI of this 
paper, we consider the example of an interacting scalar 
field and explore ways in which the virial expansion can 
be applied in Euclidean quantum field theory. 

In Euclidean space, the generating functional for an 
interacting scalar field is formally given by14 

LIj) = Z(t)/Z(O), 

where 

ZIj) = J n exp[ - iqx(x, (- V'2 + m 2)y)qJ 
x"ER4 

(1. 6) 

and p(qx) is a polynomial in qx whose form specifies 
the interaction. The formal expansion of (1. 6), treating 
p(qJ as a perturbation on the Gaussian term, yields 
the familiar Feynman series for the n-point functions. 
In Sec. VIA, we show that the functional (1. 6) can be 
rearranged in such a way that the Feynman series re
sults directly when the virial expansion of Sec. IV is 
applied to L(j). 

An alternative approach to the study of Eq. (1. 6) has 
been advocated by Klauder, 15 who suggests starting with 
the static ultralocal model, treating the off-diagonal 
terms of the Gaussian factor in Eq. (1. 6) as perturba
tions. In the static ultralocal model all space-time 
points decouple, leading to a generating functional of 
the form16 

LsuL(f):= exp(J dnx J {exp[ikj(x)] - 1} c(k) dk), (1. 7) 

where c(l?) is a suitable distribution. In Sec. VIB, we 
show that the generating functional (1. 7) has the same 
form as one which would be associated, in classical sta
tistical mechanics, with a five-dimensional system 
(four Euclidean dimensions and a fictitious fifth dimen
sion corresponding to the variable k) in an external po
tential, with average density Po(x, k) = c(k). Moreover, 
the off-diagonal terms in the Gaussian factor in L(fJ 
couple space-time points together in the same manner 
as does a two-body potential in statistical mechanics. 
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Thus the generating functional (1. 6) has a form to which 
the vidal expansion can be applied. However, in this 
case the "potential" (x, (- V'2 + m 2 )y) is quite singular and 
must be regularized. One way that this can be done is 
by working on a space-time lattice, but then it is neces
sary to show the convergence of the theory as the lat
tice spacing goes to zero. 

A simple example where all this can be worked out 
explicitly is that of the free neutral scalar field, treated 
in Sec. VIC. In this section we show, starting on a lat
tice, that the free neutral scalar theory can be obtained 
by applying the vi rial expansion to the free static ultra
local theory. We also show that in this case a resum
mation of the series must be performed before letting 
the lattice spacing go to zero. 

For canonical theories with polynomial interactions, 
the formal procedure of obtaining a static ultralocal 
generating functional by neglecting the off-diagonal 
terms in Eq. (1. 6) leads to the trivial result LsUL(fJ 
= 1. In Sec. VID we indicate how this result might be 
circumvented by working on a lattice and using the gen
eralization of the vi rial expansion given in Sec. VB. 
Finally, we note that this complication does not arise 
in the noncanonical theories of the kind recently con
sidered by Klauder, 17 in which the static ultralocal gen
erating functional has the form: 

LSUL(f) = exp(J d"1 ~k {exp[ikj(x) 1 - 1} 

x exp(- im21?2) exp[ - P(k) 1) . 
The vidal expansion can be applied directly to (1. 8) 
once the kernel has been regularized. 

In closing, we stress that our investigation of the 

(1. 8) 

vi rial expansion in field theory is at a very preliminary 
stage. We have as yet no results on the possible con
vergence of the formal virial expansion in the case of 
interacting theories, nor have we investigated the re
summations that may have to be carried out in order to 
effect such convergence. 

II. PRELIMINARIES 

In later sections we will utilize the facts about gen
erating functionals which are summarized below. We 
will be conSidering systems of identical spinless par
ticles interacting via a two-body potential U. 

A. Correlation functions 

The nth correlation function Rn(Xb ••• ,x,,) is the pro
bability density for finding n particles at the points 
xl> ... , x". For a canonical ensemble of N particles in 
a volume V they are defined as follows: 

where UN is the potential for N particles, 

N 

UN:=i z::: U(Xi-Xj), 
i~j =1 
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ZN is the partition function, 

ZN = <~ d3X1'" Jv ~XN exp(- (3U N ), 

and {3 = (kT)"l. 

(2.3) 

In the grand canonical ensemble the correlation func
tions are given by 

Rn(Xb ..• ,xn) = :s-l.0 (zN IN! )ZNR:;' )(Xb ... , xn), 
N"n 

(2.4) 

where :s is the grand canonical partition function, 
., 

:s =.0 (zn In! )Zn, (2.5) 
n=O 

z is the activity, 

z = \-3 exp[(3 Il), (2.6) 

Il is the chemical potential [exp«(3 Il) is often referred 
to as the fugacity), and \ is the thermal wavelength 

(2.7) 

B. The density operator p (x) 

Correlation functions are also used in nonrelativistic 
quantum mechanics. For N particles in a volume V, 
the ground state correlation functions are defined as 
in Eq. (2. 1), but with exp( - (3U N) replaced by 1 n 12, 
where n is the ground state wavefunction. The corre
lation functions can also be interpreted as the n-point 
functions of the number density operator p(x) 
= 1f/ (x) </J(X) , 

(2.8) 

where: : stands for normal ordering. 2 Under equal
time commutation, p(x) and the particle flux density 
operator J(x) form a local current algebra which can 
be used to formulate nonrelativistic quantum mechanics 
in terms of local observables. 18,2,19 For a system with 
N particles, the local currents can be represented on 
the usual quantum mechanical Hilbert space of square 
integrable functions. 20,21 

C. The generating functional L (f) 

In the thermodynamic limit, one can no longer repre
sent the local currents using wavefunctions, just as in 
statistical mechanics one can no longer write the 
Boltzmann distribution function as exp[ - (3U N (Xl, ... , xN )]. 

Instead, a representation of the density operator can 
be defined by means of the generating functional 

(2.9) 

where f is an element of a space of test functions, often 
taken to be Schwartz' space 5 . 

The generating functional (2. 9) is a continuous func
tional having the following properties: 

(i) L(f) =L(-/J*, 

(ii) L(O) = 1, 

(iii) I L(f) I ~ 1, 
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(iv) L(f) is positive functional, i.e., 'i~.j=1CiCjL(fk-f) 
2:0,V ciE<I:, fiE5 andn=I,2,···. 

It can be shown22 that L(f) is the Fourier transform 
of a positive measure on 5', the real continuous dual 
of 5, 

L(f) = J ,dll(F) exp[i(F,/J). (2.10) 
S 

Finally, we note that the generating functional can be 
expressed in terms of the correlation functions as 
follows: 

L(f)=t~ r~X1" '/~Xn ,,=on. J ( 

x rl {exp[if(xj ) J- I}Rn (X1, ..• , Xn). (2.11) 
j=l 

One can think of Eq. (2.11) as combining the correla
tion functions together to give a representation of the 
density operator4 on the Hilbert space H =L; (5'). Alter
natively, one can think of the generating functional as 
determining a measure, dll(F), which defines a state 
on the C*-algebra which describes the statistical mech
anical system. 5 

A different generating functional, defined as 

LB (f) =25 ~fd3X1" ./cfxn n=on. 
n 

X n f(x)(p)""nRn(Xl, .•. , x,.), (2.12) 
i=l 

where p = R1 = the average density, was introduced by 
Bogoliubov in his important study of statistical mecha
nics. 3 In terms of the density operator, Eq. (2. 12) is 
equivalent to 

LB (f) = (n, : exp[p(f IP)) : n). 

This functional does not have the properties listed above 
and, consequently, it neither defines a representation 
of the density operator nor a state on a C*-algebra. 

A functional of physical interest which is closely re
lated to L(f) is the partition function, considered as a 
functional of an external potential ¢(x). This is defined 
as in Eqs. (2.3) and (2.5), but with 

N N 

UN =i .0 U(x l - X}) +.0 ¢(X l ). 
i~j =1 i=1 

The generating functional L(f) is then related to the 
partition functional :S(¢) by 

L(f)= :s(¢ = - iw1j)1:S(0). 

D. Cluster functions 

We will find it convenient later to use the Ursell 
cluster functions T n(X1, ... , Xn). These are given in 
terms of the correlation functions by 

m 

Tn(Xll ... ,x,.) =.0 (- 1),n+1(m - I)! n RG (x" E G), 
G j=1 j 

(2.13) 

where G is a partition of (1, 2, ... ,n) into distinct sub
sets (Gll G2, ••• ,Gm ). The inverse relation is 

m 

Rn(Xb ... , x,,) =.0 f1 T G (xk E G j). 
G j=1 } 

(2.14) 
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The generating functional can be expressed in terms of 
the cluster functions. One finds 

L(f) = exp(£ -\-frfX1 •• ·fd3x n n=1 n. 

x j~l {exp[if(x;ll- 1rT n(X1' ••• , Xn»). (2.15) 

Thus, the cluster functions are particularly useful when 
dealing with lnL(f). They correspond to the truncated 
n-point functions used in field theory. 

E. Functional equation for L (f) 

A coupled set of equations for the correlation func
tions can be obtained by taking the gradient of Rn in Eq. 
(2.1) or Eq. (2.4). This gives the BBGKY hierarchy of 
equations: 

n 

= - (3 ~ ~Xl U(X1 - x j )Rn(X1, .•• , Xn) 
j=2 

- f3 I d3x n+1 ~ Xl U(Xl - Xn+1)R n+1 (Xl, ••. , Xn+l)' (2.16) 

Since this set of equations holds for all N and V, we as
sume they are true in the thermodynamic limit as well. 
The BBGKY hierarchy is equivalent to the following 
functional eq uation2 ,23 for L (f): 

(2.17) 

where by normal ordering of the functional derivatives 
we mean 

The prescription for normal ordering the functional 
derivatives follows from that used to normal order pro
ducts of the density operator. For a more detailed dis
cussion, see Ref. 2. 

Equation (2.17) has many solutions. For example, it 
is easy to check that if the test functions are restricted 
to have support in a volume V, then the generating func
tional for the canonical ensemble 

N 

X f1 exp[ij(x)]exp(-f3U N )/Z(N», (2.18) 
j =1 

and that for the grand canonical ensemble 

'" Lz(f)=~ (zn In! )ZVV )L(N )(f)/::;: (2.19) 
n=O 

satisfy Eq. (2. 17). 

Here we are interested in solutions of Eq. (2.17) 
which are valid in the thermodynamic limit. To study 
these, we must specify a suitable space of test functions 
and appropriate boundary conditions. The space of test 
functions can be taken to be either Schwartz' space of 
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infinitely differentiable functions of fast decrease or 
the space of infinitely differentiable functions of com
pact support. In Ref. 7, boundary conditions were iden
tified which uniquely determined the solution to Eq. 
(2. 17) in the free case, U = O. We do not have a precise 
analog of this result for the interacting case, but we 
note that, on physical grounds, we would expect the 
boundary conditions to include the following: 

(i) translation invariance 

L(f) = L (fa) , 

where falx) == fix - a); 

(ii) cluster decomposition property, 

lim[L(f + fil. a) - L(f)L~~)l =0; 
A-~ 

000 1 oL(f) I - . 
(nt) -:- "i( ) = p, the average denSIty. 

1 U X f=1I 

In Sec. III, we shall develope a formal solution to 
Eq. (2.17) which is valid in the thermodynamic limit 
and which satisfies the three conditions listed above. 

III. FORMAL SOLUTION OF THE FUNCTIONAL 
EQUATION FOR L(f) 

We can use the analogy with quantum mechanics to 
motivate the form of the solution to Eq. (2. 17). Let ito 
be the free ground state and suppose the interacting 
ground state it has the form 

Then, from Eq. (2.9), one finds 

L(f) = (ito, exp[ - tf3 I I d3xd3yU(x - y) : p(x)p(y) : 1 

x exp[ip(f) lito)/(it, it) 

= z (j)/Z (0) (3.2) 

where 

z(t) = exp [- tf3 I I d3 xd3"U(x - y) 

x 0 1 0 1 0 oJ (f) . i of (x) i of(y)' Lo 

and Lo(f) = (ito, exp[ip(f) lito) is the generating functional 
for the free theory. In the thermodynamic limit, this 
is given by6,7 

(3.3) 

Next, we show formally that the expression for L{f) 
given in Eq. (3.2) satisfies the functional equation 
(2.17). We begin by computing the left-hand side of 
Eq. (2.17) 

[~x - iVf(x)lf O;X) {exp [- ~f3 f fi xd3
yU(x_ y) 

x:f o~x)ToJ(y) :JLo(f)} 

[ 1 ff3 3 ( ) 1 0 1 0 .J 
= exp [zJ3 d xd yU x - y . i bf(x) i t(y) . 
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x[Vx- iVf(X)]T 15~(~ +~(Vx - iVf(x)] 

xT15f~x)' exp (-ti3 f f Jlxd
3
yU(x-y) 

1 6 1 6 )J 
x: i 15f(x) i 15f(y): Lo(j). (3.4) 

The first term on the right- hand side of Eq. (3.4) 
vanishes since the free generating functional satisfies 

(3.5) 

The second term can be Simplified by using the identity 

[A, expB] = [A, B] expB, 

valid if [[A, B], B] = O. This gives 

[[Vx - iVf(xllT 15~X)' exp (-ti3 j jJl xd
3
yU(x_ y) 

x.1_15 1_6 .)J 
. i 15f(x)i 15f(y) . 

[

3 1 6 1 6 . 
= - i3 d yVxU(x- y) : i 15f(x) i 15f(y) . 

x exp (- tf3 f f d3 xd3yU(x_ y) 

1 6 1 6 ) 
x : i 15f(x) i 15f(y): • 

Thus, Eq. (3.4) reduces to Eq. (2.17) when L(j) is 
given by Eq. (3.2). 

Similar techniques have been used for many years in 
quantum field theory. 8 F or example, in the case of a 
neutral scalar field with a Act} interaction one can use 
the equations of motion to show that the generating 
functional 

(3.6) 

satisfies the functional equation 

Z 115L(j). . (1 6 )3 . 
(0 + m )i 15j(x) = J(x)L(j) - A i 15j(x) L(j), (3.7) 

which has the formal solution 

. Z(j) [ i f (1 6 )4J Z O(j) 
L(j) = Z(O) = exp - 4 A ~x i 15j(x) Z(O)' (3.8) 

Here Z o(j) is the generating functional for the free the
ory, given by: 

Zo(j) = exp(~ f ctkj(k)[kZ + m Z 
- iEj_lj(k) . (3.9) 

Expanding Z(j) in powers of A leads to the Feynman 
perturbation series. We show in the next section that 
expanding L(j) leads to the virial expansion. In Sec. 
VIA, we will show that in Euclidean space the Feynman 
perturbation series can be obtained directly from the 
virial expansion. 

IV. THE VIRIAL EXPANSION 

A. Graphical expansion of Eq. (3.2) 

In this section we obtain the virial expansion for 
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L(j), Eq. (3.2), by developing a diagrammatic expan
sion for 

Z(j) = exp [ - ti3 f f d3xJlyU(x - y) 

x .1_6_ l_15 _.J L (j) 
. i 15f(X) i 15f(y) . 0 , 

(4.1) 

where 

(4.2) 

By expanding the exponential in Eq. (4.1) in powers 
of f3 and performing the functional derivatives the re
sulting series can be written in a concise form using 
graphs24

-
z6 as follows: 

Z(j) =[~ (l/N!).0 W(GN )] L o(/), 
N=2 GN 

(4.3) 

where L.GN is the sum over all allowed graphs with N 
labeled and directed lines and W( GN ) is the weight as
Signed to each graph. The allowed graphs may be con
nected or disconnected, with any number of lines be
tween pairs of distinct vertices, but have no isolated 
vertices. The weight assigned to a graph G with N di
rected and labeled lines is given by 

N 

x f1[-f3U(XZI-XZ2)]' (4.4) 
Z =1 

where the vertices have been arbitrarily numbered 
1,2, ... , m and 1 stands for a directed line connecting 
the vertex II to lz. Thus, we associate the factor 
Po exp[tf(x)] and an integral with each vertex and a fac
tor - i3U(Xl- xz) with a line. Graphs with a line connect
ing one vertex to itself do not occur due to the normal 
ordering of the functional derivatives in Eq. (4.1). For 
a graph with a given structure the weight is independent 
of the labels on the lines and the directions if one con
siders central potentials, U(x) = U( Ixl), as we shall do 
here. The labels and directions on the lines are neces
sary, however, in order to obtain the correct counting 
factors. The labels take account of the different ways 
in which the functional derivatives can act when the ex
ponential in Eq. (4. 1) is expanded, while the directions 
serve to distinguish between the two functional deriva
tives in the exponent. 

For physical potentials that are repulsive and sin
gular at the origin (e. g., hard core potentials) the 
weights associated with the graphs, as given above, are 
ill-defined. This difficulty can be overcome if one per
forms a partial summation of the series for Z(j) so that 
the quantity [exp(- i3U) - 1], which is not singular at the 
origin, enters rather than (- f3 U). We define a simple 
graph as a connected or disconnected graph with at most 
one line between any pair of vertices. A partial summa
tion can now be performed over all graphs that can be 
obtained from a given simple graph by replacing any 
single line by multiple lines between the same pair of 
vertices. At the same time, we switch from graphs with 
labeled and directed lines to those with labeled vertices. 
The result, derived in Appendix A, is given by Eq. (4.3) 
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where now GN is a simple graph with N labeled vertices 
none of which are isolated and the weight assigned to a 
graph is 

(4.5) 

In Eq. (4.5), the vertices are labeled 1,2, . 0 • ,N and 1 
stands for a line. Thus, the effect of the partial sum
mation is to restrict the allowed graphs to simple 
graphs and to associate the factor [exp(- (3U) - 1] rather 
~han (- (3U) with a line. The factor Po exp[ij(x)] and an 
mtegral are still associated with each vertex. 

In order to properly normalize the generating func
tional, we will need to express Z(f) as a product. To 
do this, we use a standard theorem in graph theory 
which is stated precisely in Appendix B. Applying the 
theorem to Z(f), we obtain 

Z(f) = exp[t (lIN\)~ W(GN )], (4 0 6) 
N =1 GN 

where GN is a connected simple graph with N labeled 
vertices and W(GN ) is given by Eq. (4.5). Here we de
fine exp[W(G 1)1=L o(f). 

To obtain the cluster functions, we need the generat
ing functional in the form given by Eq. (2.15). Thus we 
need to express Z!j) in terms of the quantity {exp[ij(x)] 
- I}. The weight assigned to a graph depends on j 
through the factor exp[ij(x)] associated with each vertex. 
We expand these factors as follows: 
N N 
nexp[ij(x.,)]= n ({exp[ij(x.,)]-l}+l) 

q=1 q=1 

=.0 n {exp[ij(xj )]-l}, (4.7) 
G lEG 

where G is a subset of {I, 2, ... , N}. 

We can incorporate this expansion into Z!j) by intro
ducing graphs with two types of vertices: a h vertex 
associated with the factor Po{ exp[ij(x)] - I} and a Y2 ver
tex associated with the factor Po. For each labeled 
graph with N vertices in the expansion of Z(f) we sub
stitute 2N new graphs obtained by adding to every ver
tex an additional label of either Yl or Y2' The old graphs 
with the same structure get counted (1/ N\ ) x (the number 
of different ways to label the vertices). The number of 
new graphs with the same structure and having nYI ver
tices and (N - n)Y2 vertices is thus N\ 1111 (N - n)!. To 
obtain the correct counting factor, we need to label the 
Y1 vertices and the Y2 vertices independently. Thus a 
new graph with nYI vertices and (N - n)Y2 vertices en
ters the expansion with the counting factor 

(l/nl) x (l/(N - n)l) 

x (the number of different ways to label the 'Yl 

vertices) 

x (the number of different ways to label the 'Y2 

vertices), 

In terms of these new graphs we can write 
~ 

Z!j) = exp .0 (l/nl).0 (l/m!).0 W(Gn,m) , (4.8) 
n=O m=O G n,m 
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,,:,here Gn •m is a simple connected graph with n'Yl ver
tIces labeled 1, 2, ... , 11 and 111 'Y2 vertices labeled 
J1 + 1, ... , n + 111 and 

W(Gn,m) = r d3Xl'" J d 3xn+mp"o+m n{exp[ij(x.,)] - 1~ 
q =1 

(4.9) 

The generating functional L(f) is obtained by normaliz
ing Z!j): 

L!j) = Z(f)iZ(O) 

= exp[zS (1 ill! ) t (l/1II! ).0 W(Gn,m)]. 
n=1 m=O G n,m 

(4.10) 

By comparing Eqs. (4.9)-(4.10) with Eq. (2.15), the 
cluster functions are seen to be given by 

where 

-
W(Gn •m ) =plrm r ~Xn+1'" J ~xn+mn{exp[- (3U(xz1 

z 

(4.11) 

-xz2)1-1~. (4.12) 

Equation (4.11) is the usual fugacity expansion for 
the cluster functions when Po is identified with the ac
tivity z of the interacting system, Eq. (2.6). The aver
age density p = Tl of the interacting system is not the 
same as the average density Po of the free system which 
we perturbed about. However, a further partial sum
mation can be performed to obtain an expansion for the 
cluster functions in terms of 75. This is known as the 
virial expansion, and the result of the partial summa
tion is that L!j) is given by Eq. (4.10) but with the al
lowed graphs now further restricted to be I-irreducible 
and with the weight aSSigned to a graph given by Eq. 
(4.9) with Po replaced by P. 27 A graph is I-irreducible 
if it has no articulation vertices. A vertex is an arti
culation vertex if upon its removal the graph splits into 
disconnected pieces one of which contains no Yl ver
tices. This procedure is similar to charge renormaliza
tion in quantum field theory since we now associate the 
factor 75 with a vertex instead of PD. Furthermore, by 
using the representation theory of the local nonrela
tivistic current algebra referred to in Sec. HB, it can 
be shown1 that, as a consequence of translation invari
ance and the cluster decomposition property, the rep
resentation of the density operator for the interacting 
system determined by the generating functional L(t) 
is unitarily ineqUivalent to the free representation cor
responding to the generating functional Lo!j). This is an 
example of the folk theorem in field theory that a re
normalization results in an inequivalent representation 
of the fields. If we were dealing with a system having a 
finite number of degrees of freedon corresponding to N 
particles in a volume V, then the perturbation expansion 
of the generating functional resulting from Eq. (4.1) 
would lead to an equivalent representation of the density 
operator and the average density would not get renormal
ized. This can be shown by using the fact that for .\' 
particles the density operator can be represented on the 
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usual quantum mechanical Hilbert space of square inte
grable wave functions. 

It is interesting that f3 enters the expression for the 
generating functional, Eq. (4.1), in the same manner 
as the coupling constant A enters in the field theoretic 
generating functional, Eq. (3.8). As a result of par
tial summations, L(j) was expressed as a power series 
in P while f3 appeared only in the quantity [exp(- f3U) 
- 1]. The replacement of f3 by P as an expansion param
eter leads to a series whose convergence can be proved 
for certain classes of potentials. In field theory, the 
perturbation expansion in powers of A is believed to lead 
to an asymptotic series. The analogy with statistical 
mechanics suggests that in field theory partial summa
tion may lead to other useful and possibly convergent 
expansions. Indeed, precisely such considerations were 
advanced by Symanzik"12 to motivate the transformation 
from the perturbation expansion to the loop expansion 
in Euclidean quantum field theory. Somewhat different 
applications of these ideas will be considered in Sec. 
VI of this paper. 

B. Comparison with other derivations of the vi rial 
expansion 

In this subsection we compare and contrast our deri
vation of the virial expansion with previous ones. The 
fugacity expansion was first derived by Mayer and 
Montroll. 28 They started by considering a given corre
lation function in the canonical ensemble, Eq. (2. 1). A 
cluster expansion for this correlation function was de
veloped and then the thermodynamic limit was taken. 
In taking the thermodynamic limit, the activity is intro
duced as follows 

Z(N - II, V)/Z(N, V) - zn as N - 00, V _ 00, 

and N/V-p. 

Thus, the same technique is used to treat each corre
lation function individually. In Sec. IVA all the corre
lation functions were combined into a single generating 
functional L(j). The thermodynamic limit for a free 
system was taken first to obtain the generating func
tional Lo(f), and then a cluster expansion was developed 
to express the generating functional for the interacting 
system, L(f), about Lo(f). 

A second method26 for deriving the virial expansion 
is to start with the grand canonical partition function, 
treated as a functional of an external potential as in 
Eq. (2.5). A cluster expansion is developed for ln2: 
and then a thermodynamic limit is taken such that V 
- 00 with the activity z fixed. In this method of deriva
tion the activity enters from the start because one 
works with the grand canonical ensemble, and all the 
correlation functions are treated together by introducing 
an external potential into the partition function. The ex
preSSion for 2: is the same as Eq. (4.6) with Po exp{if) 
replaced by z exp(- f3</J), where </J is the external poten
tial. In contrast, the generating functional we use de
fines a representation of the denSity operator, and by 
taking the thermodynamic limit first and performing 
the cluster expansion second, Po starts out having an 
interpretation as the average denSity of the free system 
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and then, after the interaction is added, one finds that 
the average density needs to be renormalized and that 
Po plays the role of the activity. 

Another way of obtaining the fugacity expansion is to 
go back to the functional equation for L(j), Eq. (2.17). 
We know it has solutions corresponding to N particles 
in a volume V, Eq. (2.18). Linear combinations of these 
are also solutions since the functional equation is lin
ear, and the idea is to try to piece these N - particle 
solutions together in such a way that the resulting solu
tion satisfies the boundary conditions corresponding to 
the thermodynamic limit. Motivated by the cluster 
property, we first consider the expression 

L(f) =Z(j)/Z(O), 

where 
~ 

Z(j) = B (lIn!) Jv d3Xl .•• Jv ~xn 
n=O 

n 

X n exp[if(Xi)]R~O)(Xb •.. , Xn) (4.13) 
i =1 

and 

R~O)(Xb ... , Xn) =P'Q n exp[ - i3 U(xj - x,,)]. 
j>k 

This is the generating functional for the grand canonical 
ensemble, Eq. (2.19). It is the analog of the grand cano
nical partition function. If we were to extend the inte
grals in Eq. (4. 13) to infinity to obtain translation in
variance, they would diverge. Instead, we introduce the 
cluster expansion 

L(j) = exp[B (1/n! ) J d3Xl .,. J ~xn C~l exp[if(xi )] - 1) 
x T;O)(Xb •.. , Xn)], (4.14) 

where the T~o) are the cluster functions of R~o>, Eq. 
(2. 13). Since the cluster functions approach zero for 
large values of their arguments, the integrals can be 
extended to infinity. This form for the L(j) is equivalent 
to the graphical expression given in Eq. (4.8). The 
cluster functions of the correlation functions are then 
given by 

00 

+ L) (11m!) r ~Xn+l· •. 
m=l c 

(4,15) 

which is equivalent to the graphical expression given in 
Eqs. (4.11) and (4.12). The graphical expressions are 
easier to manipulate, thus facilitating efforts at partial 
summation. This argument is due, essentially, to 
Zumino. 29 

The last method for deriving the fugacity expansion 
which we shall discuss is based on the Kirkwood
Salzburg equations. These can be derived starting with 
the grand canonical ensemble and are given by30,31 

R 1(Xl) =z [1 + 0 (lIn!) J ~Yl· .• J ~Yn 
n=l 
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XK(X1; Y1, ... , Yn)Rn(Yb ... , Yn)], 
(4.16) 

R m(X1, ..• , xm) = Z e~xp[ - j3W'(X1, ..• , Xm)] [R m_1(X2, ... , Xm) 

+.0 (l/n!) f cfYl ' .. f cfYn K (X1; Y1, ... , Yn) 
n=l 

where 

and 

K(x; Yl, . '" ynh n {exp[- i3U(x- y)]- I} 
j :1 

m 

W'(X1, . , . , Xm) =.0 U(X1 - Xi)' 
i=2 

Setting RiO) = z and R~O) = 0 (n'> 1) on the right-hand side 
of Eq. (4.16) and iterating results in the fugacity ex
pansion, the Kirkwood-Salzburg equations can be used 
in place of the BBGKY equations which were employed 
in Sec. IVA. The main difference between the two sets 
of equations is that, whereas the BBGKY equations are 
integro-differential equations which couple VRn to Rn 
and Rn+l' the Kirkwood-Salzburg equations are inte
gral equations which couple Rn to R n_1 and all higher 
correlation functions. 

The correlation functions can be thought of as ele
ments in a Banach space having norm 

I~Rn}ll~ = sup [~-ness sup I R n(Xl, ... ,Xn) I ]. 
n,.1 

(4.17) 

The Kirkwood-Salzburg equations can be considered as 
a fixed point equation 

(4.18) 

in this Banach space. By showing that K is a contrac
tion operator one can prove that the iteration procedure 
mentioned above converges. This method has been used 
by RuellelO to obtain a nonzero lower bound for the ra
dius of convergence of the fugacity expansion for a 
certain class of potentials, thus proving the conver
gence of the fugacity expansion for small z and obtain
ing a bound on the correlation functions: 

ess suplRnl < (constHn. (4.19) 

This bound is sufficient to show that the series for L(j) 
given by Eq. (4.10) is convergenL 

In Sec, IVA, the correlation functions were combined 
to form a generating functional which in turn defined a 
representation of the density operator on a Hilbert 
space and the virial expansion was interpreted as per
turbing the free representation so as to obtain a repre
sentation for the density operator on a new Hilbert space 
which accommodates the interaction. In the method 
just described, the correlation functions are considered 
to define an element of a Banach space, and the fugacity 
expansion is interpreted as describing the convergence 
of the iterative solution of the Kirkwood-Salzburg equa
tions to an element of the same Banach space. Finally 
note that the correlation functions, besides defining an 
element of a Banach space, must satisfy other physical 
conditions. For example, in order to obtain the correct 
probability interpretation for the correlation functions 
one needs Rn "0, and to obtain a representation of the 
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density operator we need the generating functional to 
be positive in the Bochner sense. 

V.GENERALIZATIONS OF THE VIRIAL EXPANSION 

In this section we outline several generalizations of 
the graphical expansion developed in Sec. IV. Some of 
these will be used in the next section. 

A. External potentials 

It is simple to extend the virial expansion so as to 
include the effect of an external potential U1(x). For N 
particles, the correlation functions are defined as in 
Eq. (2.1) with UN replaced by 

N N 
UN =i L; U2(X i - Xj) + L; U1(x j ). 

i~j=1 i:1 
(5.1) 

It can be shown that the associated generating functional 
satisfies the functional equation 

In the thermodynamic limit, this equation has the 
formal solution 

L(j) =Z(j)/Z(O), 

where 

Z(j) = exp [- ii3 f f d
3
xd

3
yU2(x - y) =t- Oj~x) Y O~y) : ] 

x exp [- i3 f d
3
xU1(X)y O~X) ] Lo(j) 

and, as before, 

Lo(j) = exp(pof cfx{ exp[ij(x)]- I}). 

(5.2) 

(5.3) 

Since exp[ 0/ oj(x)] acts a translation operator on f(x), 
we have 

= exp [- i3 f cfxU1(x)y Of~X)J ~:ro) 

= exp f(cfx po exp[- i3U1(x)'£..exp[if(x)] - I}), (5.4) 

and thus Eq. (5.3) can be written as 

L(j) = exp [- i{3 f f cfxd
3y U2(x - Y) 

1 0 1 0 ] L 1(j) 
x: i oj(x) i Of(Y): Z(O)' 

(5.5) 

It is easily checked that Ll (j) is the N Iv limit of the 
generating functional for a system of bosons interacting 
with an external potential. 32 Furthermore, the expan
sion for L(j) developed in the previous section goes 
through in the same manner except that we now asso
ciate the factor Po exp[ - {3 U 1 (x)] instead of just Po with 
a vertex in assigning a weight to graph. 
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o ; Y, - point 

• ; y.- point 

FIG. 1. A generalized vertex Tn. 

B. Generalized vertices 

Suppose one has an interaction potential which can be 
divided into two parts, U and W. Suppose also that by 
some means one can solve for the generating functional 
Lu(/) corresponding to the interaction U. One can then 
perturb about Lu(/) with the interaction W to obtain the 
generating functional corresponding to the total inter
action U + W. To do this, we note that if Lu(/) satisfies 
the functional equation: 

( . ( )16Lu (/) 
Vx - zVj x) i 6j(x) 

=-!d3yVP(X_ Y):T 6~X) T 6~Y) : L u(/), (5.6) 

then 

(5.7) 

formally satisfies the functional equation 

(5.8) 

which determines the generating functional for the inter
action U + W. 

By writing the generating functional in the form 

Lu(/) = exp(~(1/n!) I ~X1'" I ~Xn 

X~l {exp[ij(xi )] - l}T~U)(Xb .•. , Xn») , (5.9) 

one can develope a graphical expansion for L u+w(/). To 
do this, one needs to define graphs with "generalized 
vertices." A generalized vertex can be pictured as a 
circle labeled Tn with n dotted lines extending out of it, 
each ending either in a "'1 point or a "'2 point (Fig. 1). 
A graph is now formed by connecting pairs of points in 
the generalized vertices with solid lines, with the points 
labeled and restricted by the following conditions (Fig. 
2): 

(1) At most one line joins a pair of points; 
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(2) a 'Y2 point must be connected by at least one line; 

(3) a Y1 point may be connected by no lines. 

We assign a weight to a graph by the following 
prescription: 

(1) We associate with each labeled Y1 point the factor 
f d3x;{exp[ij(Xi)] - I}; 

(2) we associate with each labeled Y2 point the factor 
f d3x i ; 

(3) we associate with each generalized vertex the 
factor T~U)(Xl"" ,xn); 

(4) we associate with each line the factor {exp[ - W(X1 

-x2)]-1}. 

The expansion developed in Sec. IV can be extended 
to the case at hand by replacing the graphs used there 
by graphs having generalized vertices. 

This type of expansion can be applied in several ways: 

(1) In many cases of interest the potential has both a 
long range and a short range part. Typically, the virial 
expansion works reasonably well for short range poten
tials but not very well for long range potentials. Thus 
other methods may be required to calculate the effect 
of the long range potential, but when this has been done, 
the above form of the vi rial expansion can be used to 
take account of the short range part of the potential 
perturbatively. An example of this kind of procedure 
has been given by Lebowitz, Stell, Baer, and 
Theumann,33 who have developed a graphical expansion 
which enables one to calculate the correlation functions 
while treating the short range and long range pieces of 
the potential differently. 

(2) In nonrelativistic many-body quantum mechanics 
the Jastrow approximation, in which the ground state 
is apprOXimated by a wavefunction of the form no 
= n i>j exp[t¢ (Xi - x)], is frequently employed for Bose 
systems. In this approximation, the ground state cor
relation functions are the same as those for a classical 
statistical mechanical system with a two-body interac
tion potential - (3U2(x) = ¢(x). For spinless fermions, 
the analog of the Jastrow apprOXimation is to write the 
ground state wavefunction as no =ni)j exp[t¢(Xj - xj)]nF , 

where nF is the ground state wavefunction of the free 
Fermi system. The generating functional for a free 
Fermi gas is known. 32 Therefore, in the Jastrow ap
proximation, the correlation functions of an interacting 
Fermi system can be obtained by using the virial ex
pansion to perturb about the correlation functions for 
a free Fermi system. 

(3) In Section VID, we show formally that the Eucli
dean, lattice, A¢4 theory can be obtained by applying 
the virial expansion in the form given in this section to 
the free static ultralocal lattice theory. 

FIG. 2. Example of a graph 
with generalized vertices. 
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FIG. 3. Example of a graph with generalized vertices and gen
eralized lines. 

C. Many·body potentials 

Finally, we consider the generalization of the vidal 
expansion to the case of many-body potentials. These 
do not usually occur in statistical mechanics problems. 
However, in nonrelativistic many-body quantum mecha
nics, corrections to the Jastrow wavefunction of the 
form 

no = n exp[i¢2(X j - x)] n exp[i¢3(X j , Xj, xk )] (5.10) 
j)j j>j>k 

have been considered, 34-37 whose effect on the correla
tion functions is the same as including a three-body 
potential in a classical statistical mechanics problem. 
If the original Jastrow wavefunction is a good first ap
proximation in a given problem, then contributions 
from the ¢3 terms can be included perturbatively using 
the vidal expansion. 

The generating functional for a system of particles 
interacting via a many-body potential Un' 11= 1, 2, 3, ... , 
satisfies the functional equation: 

[ 
. 1 oL(j) 

VX1 -lVj(X1)]i OJ(Xl) 

= - fj ( _11)1 fd3
X2 .. 'fd3

Xn V x1Un(X1, .•• , x,) 
n=l 11 • 

1 ° 1 6 
x:; OJ(X1)' o. i oj(x

n
): L(f). (5.11) 

In the thermodynamic limit, Eq. (5.11) has the formal 
solution 

(5.12) 

Since we may want to solve first for part of the poten
tial, treating the rest as a perturbation, we consider 
an expansion for 

L(j) = exp [- t -\fd3X1 •• ·fd3
X nUn 

n=1 n. 

x: ~ Of~Xl)'" 7- Oj~x,):J 
xexp[E(1/Jl!)! J3Xl'" fd3xn 

X~l {exp[ij(x j )]- l}Tn/Z(O). (5.13) 

A graphical expansion of Eq. (5.13) can be obtained 
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by generaliZing the results of Sec. VB as follows. In 
the graphs used previously, the lines represented two
body interactions. We shall now need "generalized lines" 
to describe the many-body interactions. We represent 
a generalized line pictorially by a circle labeled Un 
with n solid lines extending out of it, and we consider 
graphs formed by connecting the points of the general
ized vertices with generalized lines (Fig. 3). To assign 
a weight to a graph we may follow the prescription given 
in the previous subsection, except that in place of rule 
(4) of that prescription we now associate the factor 
{exp[ - Un(X1, ••• ,x,)] - 1} with each generalized line. 

It is our conjecture that the expansion developed in 
Sec. VB can be extended to the present case simply by 
replacing the graphs used there with the generalized 
graphs defined here. 

Remarks: (1) Clearly, if Tn=O for n2:2 and Un=O 
for n 0# 2, then the expansion described here reduces to 
the one given in Sec. VB. 

(2) Similar generalized diagrams have been introduced 
in connection with many-body quantum mechanics by 
Campbell. 38 

(3) The number of generalized graphs increases rapid
ly and soon becomes unmanageable. This expansion is 
likely to be useful only if it facilitates partial summa
tions of the series or if Tn and Un fall off sufficiently 
fast that the series converges rapidly, so that it is 
necessary to deal only with the first few terms, 

VI. APPLICATIONS TO EUCLIDEAN QUANTUM 
FIELD THEORY 

A. Relationship between the virial expansion and 
Feynman diagrams 

The vidal expansion can be applied to the formal ex
pression for the generating functional in Euclidean quan
tum field theory to obtain the usual Feynman perturba
tion series. To illustrate this point, we consider the 
example of a neutral scalar field with a A¢4 interaction. 
The generating functional for this model is given byl1,12 

L(j) =Z(j)/Z(O), 

where 

Z(f)=exP[:lf ~x:Go;xS:J 
x exp[ - iff ~ x~ yj(x)~(x - y)j{j')] (6.1) 

and 

~( )1~k exp(ik ·x) 
x (21T)' k2 + m 2 • 

It is well known that a formal expansion of this ex
pression for L(j) in powers of A leads to the Feynman 
perturbation series for the n-point functions. We shall 
show that this result can also be obtained using the 
vidal expansion. To do this, we will need to use the 
following: 

Lenl111a39 (reciprocity relation): Let F(z) be a limit of 
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polynomials in z, f(x) a test function and ~(x) a kernel, 
such as given in Eq. (6.1). Then 

Fa 6;X») exp[ffct xctYf(x)~(x- y)f(y)] 

=exp [-tff ctxctYf(X)~(X-Y)f(Y)J 

x{exp[-t If ctxctY~(X-Y)T6j~X)] 
x.!_6_] F(j)} 

i 6j(y) j(x)=/Jd4 y l>(x-y)f(y) 

(6.2) 

is a formal identity. Applying the Lemma to Eq. (6.1), 
we obtain 

L(j) =Z(j)IZ(o) 

=exp[-tff ctxctYf(X)~(X-Y)f(Y)] 

x {exp [- tf f ct xcty ~(x - Y)T 6j~X) T 6j~y)] 
xexp[~fctx:j4(X)J. } /Z(O). 

4! j (X) = i!d 4 yl> (x-y)f(y) 

We consider the expression 

exp [- t If ct xcty ~(x - Y)T 6j~X) T 6j~) ] 

x exp [:! I ctx :j(X)4] I Z(O) 

in more detail. This can be written as 

(6.3) 

(6.4) 

To derive Eq. (6.5), we have shifted the normal order
ing in Eq. (6.4) from the lex) terms to the functional 
derivatives. This can be justified by examining the 
terms in the expansion for each expression. Equation 
(6. 5) is in a form to which the virial expansion can be 
applied. [Compare with Eq. (4.1).] Note that-to write 
the expression in this way we have introduced a ficti
tious fifth dimension corresponding to the variable k. 

To apply the virial expansion, we make the following 
identifications: 

(1) k1k2~(X1- X2) corresponds to the tWO-bOdy poten
tial U(Xl> k1; x2, k2); 
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(2) (A/4!)(idldk)46(k) corresponds to the activity 
Po(x, k); 

(3) i3 = 1. 

Then, using Eqs. (4.1), (4.9), and (4.10), the right
hand side of Eq. (6.5) can be written in the form 

exp[~ (lIn!) Eo (lIm!) G~m W(Gn,m)] , (6.6) 

where Gn m is a simple connected graph with n Y1 ver
tices lab~led from 1, 2, ... , nand m Y2 vertices labeled 
from n + 1, ... , n + »1, and the weight assigned to a 
graph is 

W(Gn•m) = fctx1fdk1'" fctxn+mfdk n+m 

n m+n~ ~ d )4 ] x.n{exp[ikJ(x j )]-l}X ~ 41 i
dk 

6(k i ) 
.. 1 1-1 i 

xn{exp[- kl1kI2~(Xl1 - XI2 )]- I}. (6.7) 
I 

This expression can be Simplified by doing the integrals 
over k j • Because of the factor (idldk j )4 6(k l ), Eq. (6.7) 
can be written in terms of connected graphs with four 
lines meeting at every Y2 vertex and one, two, or three 
lines meeting at every Y1 vertex. To compute the weight 
assigned to a graph, we include a factor [~(X1 - X2)]n I (nl )2 
if there are n lines (n = 1 ,2,3) connecting the points 
Xl and x2, a factor ,\ for each Y2 vertex, and a factor 
,\j(x)4-n/(4 _ n)! for each Yt vertex which has n = 1, 2, or 
3 lines connected to it. The normal ordering in expres
sions (6.4) and (6.5) has the effect of eliminating graphs 
in which a line connects one vertex to itself. To enhance 
the resemblance to field theory diagrams, we treat all 
vertices as Y2 vertices and associate an external line 
(a line in which only one end is connected to a vertex) 
with each factor of j(x). Thus, we can expand the gen
erating functional L(f) as 

L(j) = exp ( - t f Jet xcty f(x)~(x - Y )f(y) 

+EE (1lml~B W(Gn•m ») , (6.8) 
n.m 

where Gn•m is a connected graph with n external lines 
and m labeled vertices in which four lines meet at every 
vertex. The weight is given by 

where no is the number of lines between the vertices 
x i and y J and nl is the number of external lines at the 
vertex Xl' 

Equations (6.8) and (6.9) determine all the n-point 
functions. If the reduction formulas are used to calculate 
the scattering amplitude, then in computing the weight 
of a graph we would associate with an external line the 
wavefunction of an incoming or outgoing particle in
stead of the factor j(x) = [ifcty~(x - y)f(Y)], and we would 
have the usual Feynman rules for scattering. 
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Thus, the virial expansion for the correlation func
tions can be thought of as a statistical mechanical analog 
of the Feynman series for the field theory scattering 
amplitude. In order to get finite results, the formal 
perturbation expansion discussed here would have to 
be renormalized or resummed. This procedure is be
lieved to result in an asymptotic series in the coupling 
constant. 

B. Perturbing about the static ultralocal model 

We consider a relativistic scalar field ¢ associated 
with the Lagrangian 

(6.10) 

where P(¢) is a polynomial in ¢ which defines the inter
action and d4x = dx dt. In Euclidean space, the ge:1.erat
ing functional for this model can be written as a formal 
functional integral in the following manner14: 

L(f) =Z(f);Z(O) 

=I n 4exp[-~qx(x,(-\72+m2)y)qyl 
x,yER 

x n exp[- :P(q,) :] exp(ijxq,) dl]xIZ(O). 
xER4 

(6.11) 

The expansion of Eq. (6.11) treating P(q) as a pertur
bation on the Gaussian term leads to the Feynman series 
for the /1- point functions, as discussed in Sec. VIA. In 
the remainder of the paper we shall be considering an 
alternative expansion for LifJ which results from treat
ing the off-diagonal terms in the Gaussian factor in Eq. 
(6. 11) as perturbations about the remaining terms in 
the integral. Thus in this approach the idea is to per
turb about the static ultra local form of the theory, 
rather than the free field theory. Static ultralocal mo
dels have been discussed by several phYSiCists, among 
them Klauder, 15 Caianiello and Scarpetta, 40 and Kovesi
Domokos. 41 These models have the property that, since 
all gradient terms are dropped from the theory, differ
ent space-time points are completely decoupled from 
one another. It will be seen that by using the virial ex
panSion the off-diagonal terms in Eq. (6.11), whose 
effect is to couple together different space-time points, 
can be treated perturbatively in a manner similar to that 
used to include the effects of two-body potentials in clas
sical statistical mechanics. 

Equation (6.11) can be written in the form 

L(f) =exp [ - ~ f f ~ xd
4

yw(x - y) : T o;(x) T Oj~y):] 
x Lsu LifJ I Z(O), (6.12) 

where w(x - v) is the kernel of the Laplacian operator 
-\72=-L j a! and LsuL{f) is the static ultralocal generat
ing functiona\: 

= I n exp( - Mm 2 + w(O)]q; - : P(qx):} 
x 

(6.13) 
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Assuming that the formal expression (6.13) exists and 
defines an infinitely divisible process, one can use the 
Levy-Khinchine formula of probability theory to show 
that Lsu L has the general form15 ,16 

LSUL(f) = exp[ I ~x[ - j2(X)/1I7 + ia(x)j(x) 

+ .c: da(k)(exp(ikj(x) - I)1\-. 

Equation (6.14), in turn, can be written as 

LSUL(f) = exp[J ~x J dh[exp(ihf(x)) - 1]c(h)}, 

where 

Thus, combining Eqs. (6.12)-(6.15), we obtain 

L(f) = {exp [- ~f d4x1jdl<1!rl4X2!dl?2h1h2W(X1- x2) 

x.
1 ° 1 ° .J 

. i oj(X1, "1) i OJ(X2, !?2) . 

(6.14) 

(6.15) 

x exp [fd4xfd!?[eXP(ij(X, l?)) - 1]c(l<)] II }/Z(O). 
f(x ,k ) ;kf(X) 

(6.16) 

The generating functional is now in a form to which the 
virial expansion can be applied. Note that, as in Sec. 
VIA, to achieve this, it is necessary to integrate over 
a fifth dimension corresponding to the variable!? Note 
also that the kernel 1<1"2W(x1 - x2) corresponds to a two
body potential and c(l?) to the activity. 

In order for the virial expansion to be applicable to 
Eq. (6.16) in any but the most formal sense, however, 
two problems must be overcome. The first is that the 
kernel w(x - y) is quite singular and needs to be regular
ized. This can be done by working on a lattice, as il
lustrated by the examples discussed in the following two 
subsections. The second problem is that for many types 
of interactions [such as P(¢) = A¢4] the formal expres
sion (6.13) leads to the trivial result LSUL(j) = 1. In 
Sec. VID, we indicate how this difficulty might be over
come by working on a lattice and using the generaliza
tion of the virial expansion given Sec. VB. Finally, we 
note that Klauder17 has suggested a modification of the 
measure dqx in Eq. (6.11) which leads to a noncanonical 
theory having a static ultralocal generating functional 
of the simple form: 

LSULifJ =exp(f ~x f~:{exp[i"j(X)]-1} 

x exp( - t[m2 + w(O) W - P(k)}) . (6.17) 

The above-mentioned difficulty does not apply to this 
type of non canonical theory. 

C. Example: The free neutral scalar field theory 

Here we illustrate the ideas of the previous subsec
tion by showing that the free neutral scalar theory can 
be obtained by applying the virial expansion to the free 
static ultra local theory. 
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To regularize the kernel w(x - y) of the operator 
- v2, we introduce a lattice as follows. Let n=the num
ber of space-time dimensions, 0 = the lattice spacing, 
and let i = (il> ... , in) be an ordered n-tuple of integers. 
The points x EO R n are then replaced by the lattice of 
points labeled by Xi = (oil> ... , Oi n) and the test functions 
are replaced by lattice fields fi = f(x i)' 

The static ultralocal generating functional for a free 
scalar field can be written, on the lattice, as 

=[1 i:dqi exp(iqJion) exp(- on1112q~/2)/Z~UL(0) 
i 

(6.18) 

The kernel of the operator - v2 can be defined on the 
lattice either by using a finite difference approximation14 

W~j = [2nOii - Bow] /02+n 
Ij_j'lol 

or by using Fourier transforms42 

Wo.=! dOdPl ... j'/OdPn 
IJ -,/5 21T _,/5 21T 

x (pi + ... + P~) exp[ip . (Xi - x j )]. 

(6. 19a) 

(6. 19b) 

Thus, on a lattice, the free field generating functional 
[see Eqs. (6.12) and (6018) with P(qxl=O] can be written 
as 

Applying the virial expansion to Eq. (6.20), we obtain 

L 5 (j) = exp[B (lIP!) is (l/q!) B W(G p,.)] , (6.21) 
pol .=0 Gp ,. 

where Gp ,. is a simple connected graph with P Yl vertices 
labeled from 1, 2, ... ,p and q Y2 vertices labeled from 
p + 1, ... ,p + q and the weight assigned to a graph is 

(6.22) 

Upon carrying out the integrals over k j one finds that, 
owing to the occurance of the factor d20(k)/dk2, the only 
nonvanishing graphs are Gl 0 and G2 ., q = 0, 1, .. '. As 
a result, L 5 (j) Simplifies a~d takes the form 
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L 5 (j) {"2n "> fJj = exp - v !...J 2 ( 2 on ) 
i,j 111 + Wii 

>" W p 
[ 

00 ( ) ]} X I+!...J - 2 n , 
p=l m + 0 W ii i ,j 

(6.23) 

-n"" ".... 2 n......... 
where 1=13 l3 ij , wij = Wi} - WijOij, (w)ij = 6 L:.WikWkj , 
etc. The series L: p ( • YiJ in Eq. (6.23) is the expansion 
of 

( 
(;; )_1 

1+ 2 n • 
111 + 6 Wi; i,j 

Therefore, Eq. (6.23) gives 

L
5 (j) = exp [- ~ 02n ~ fJnh + W]iJfj] ' (6.24) 

• ,j 

and, taking the limit 6 - 0, we obtain the generating 
functional for the free neutral scalar theory, 

L(f) = exp [ - ~ J dnx J d"y f(X)(111 2 - V2)_1 f(y)] . (6.25) 

Remarks: (1) Note that since the kernel w5 is Singular 
in the limit 0 - 0, each individual term in the series 
Z;p( • )~j in Eq. (6.23) is ill-defined as 6 - O. However, 
the limit 6 - 0 of the sum of the series is well defined. 
Thus the sum must be performed before the limit is 
taken. 

(2) In this example, we have essentially used the viri
al expansion with lattice cutoff to derive a special case 
of the formal Gaussian combinatoric identity43: 

exp [- hf d
4
Xf ~y Oj~x)A(X- y) Oj~V)] 

xexp[tifd4xf ~yj(X)B(X_y)j(y)] 
= exp {t f ~x f ~y j(x)[B(l - AB)_l] (x - Y )j(y)} 

x exp[tTr In(l- AB)-l]. 

(3) Scarpetta44 has used a different method to derive 
the free neutral scalar theory by perturbing about the 
static ultralocal theory. 

D. Example: Neutral scalar field with A¢ 4 interaction 

To get a better idea of what is involved in this ap
proach, we briefly examine a neutral scalar field with 
a Aq} interaction in this section. One might expect from 
looking at the formal expression (6.13) that the static 
ultralocal generating functional for this model would be 
given by Eq. (6.15), with c(k) determined by the 
equation 

J dq exp[iqf(x)] exp{ - ~(m2 + w(O) ll- Al} 

=exp(j dk{exp[ikf(x)]-l}c(k). (6.26) 

However, a theorem of Newman45 can be adapted to 
show that a function c(k) satisfying Eq. (6.26) does not 
exist. Indeed, a direct calculation of the functional in
tegral in Eq. (6.13) leads to the trivial result LSUL(j) 
=1. 

This difficulty might be overcome if one starts with 
the static ultra local generating functional defined on a 
lattice. For the case of a A¢4 interaction, Eq. (6.13) 
gives 
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L~UL(f) = Z~L(f)/Z~dO) =~ f: dq exp(iq!i O") exp( - i 0"[1/12 + w(o)]l} exp(- M"q4)!ZguL(O) 

_ {>'l [1 + f dq[exp(iqfi O") - l](exp( - io"[m
2 + w(o)]l}) exp(- M"l)]} 

-exp z....: n fdqexPl-~on[1112+w(O)ll}exp(-Ao"q4) 

= exp{t (l/P! ) 6 jdq1 .•. B fdqp ~ [exp(iqdj 0") - l]Tp(q1' i1; ... ; qp, ip)} , 
p=l i1 ip j=l 

(6.27) 

where 

.• . . . _ I p_1 .. . p [exP( - io"[m2 + w(O)]qJj exp(- M"qj) J 
Tp(qb il; ,qp,7p)- (P - 1). (- 1) Oi 1i2 °i1ip ~l f dq exp[ _ ~0"[m2 + w(O)]q4" exp(- AO"g4) . (6.28) 

Thus, the full generating functional for a A¢4 field theory on a lattice is given by 

LO(I) =Z5(f)/Z5(O) = {exp [- ijdQl!dQ202" '£ q1q2W~i : ~l" OifO( ) '!n OifO( ):] L~L(f) I }/ZO(O), 
j#j 1 i q1 l j q2 f i 1i1)=q f i 

(6.29) 

and one can see that it is in a form to which the generalization of the virial expansion described in Sec. VB can be 
applied. 

In the free theory case discussed in the previous subsection it was necessary to carry out a resummation of the 
series before taking the limit 6 - O. Most likely, similar resummations will have to be carried out in the interacting 
case as well before one is able to take the 0 - 0 limit. Of course, additional resummations corresponding to re
normalizations of m and A will be necessary as well. We will not pursue these points in this paper; however, we 
believe they merit further investigation. 

Remarks: (1) One can also show that Eq. (6.15) and the generalization of Eq. (6.26) to the case of an arbitrary 
polynomial interaction of degree greater than 2 does not define an ultralocal generating functional. However, it 
may be possible to define a generating functional in this manner for nonpolynomial interactions such as the sine
Gordon interaction. Also, it may be possible to define the static ultralocal generating function by using Eq. (6. 13) 
on a lattice and adjusting the mass and coupling constant as the limit of zero lattice spacing is taken, in order to 
obtain an expression of the form (6.15). This procedure could be interpreted as taking into account renormaliza
tion in L SULo It would also simplify the use of the virial expansion to obtain the full L(j). 

(2) Caianiella and Scarpetta40 have determined the II-point functions for the static ultralocal A¢4 model by solving 
the hierarchy of coupled equations for the Green's functions. These may be used to define a formal generating 
functional. However, we do not know whether it would possess positivity and the other essential properties of gen
erating functionals. 
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APPENDIX A: RESUMMATION OF EO. (4.3) 

The expression for the generating functional in Eq. 
(4.3) contains a summation over allowed graphs with 
labeled and directed lines. The allowed graphs (con
nected or disconnected but with no isolated vertices) 
may have any number of lines between pairs of vertices. 
In this section we outline the resummation which re
duces the allowed graphs to simple graphs with labeled 
vertices. The first step is to switch from graphs with 
directed and labeled lines to those with labeled vertices. 
To accomplish this, we need to introduce the symmetry 
factor. 26 The symmetry factor, a, of a graph is the 
order of the group of permutations of vertices that leave 
the graph invariant, times the factor ni,inij!' where 
nij is the multiplicity of lines between vertices i and j. 
For a graph G with Ny vertices and N z lines, it can be 
shown that the symmetry factor is given by 

_1_ = n (_1_) (the number of ways to label vertices) 
o-(G) i,i nij! Ny! 

_ (the number of different ways to label lines) 
- N

z
! 
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X(factor of ~ for each connected) 
subgraph with two vertices 

_ (number of ways to label and direct lines) (A 1) 
- N

z
!2NZ • 

Thus, by including the factor n i ,j(1/nij!) in the weight, 
we can switch from graphs with labeled and directed 
lines to those with labeled vertices and still get the 
same counting factors. 

The resummation leading to simple graphs is per
formed as follows. Every graph can be reduced to a 
unique simple graph by replacing multiple lines between 
every pair of vertices by a single line. Next we consider 
the family of graphs {G} which reduces to a given simple 
graph G. We denote a member of this family by 
G(n1, .•. ,IlN ), where n i is the multiplicity of the ith 
line. The s~mmetry factor of G(nl, ... , nNz) is 

1 (A2) 
0-(n1, .•. , nN1 ) 

where P is the number of nontrivial permutations of the 
multiplicities which leave the graph invariant, i. e., the 
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permutations 7T having the properties that G(17l, ••• , 17N,) 
= G(~l' ... , nrN ,) and 17'1 *n; whenever 7T; *i. As a re
sult, the counting factor is just right to vary each multi
plicity independently. Therefore, the sum of the weights 
for graphs in {G} with labeled vertices is 

N
1\.0 fcrX1" 'fd3XN V [ri Po eXP[i!(X;)]] 
v IG} 1=1 

NI 1 
x TI -\[-j3U(X'1-X'2)]"' 

'=1 17, 

= (}(~) t £ fcrX1'" fd3XNV {1:: ",p(;;~:)V ,~( n: I [- PU(x" - x,,) I"' 

= (}(~)f crX1" f crxNv [~~ Po exp[lj(X;)] ] 

N, 

X TI (exp[ - j3U(X'1 - X'2)] - 1) . 
, =1 

(A3) 

Thus the sum over a family of graphs with the same 
simple graph results in a modification of the weight 
associated with a simple graph [- j3U is replaced by 
(exp(- j3U) - 1)]. The summation over all allowed graphs 
can thus be performed by first summing over the family 
{G} and then over all simple graphs G. 

APPENDIX B: A THEOREM ON GRAPHS 

In Sec. IV we used the following: 

Theorem: Let CN be a connected graph with N labeled 
vertices, GN a graph, either connected or disconnected, 
with N labeled vertices and X (GN ) the weight aSSigned 
to GN such that 

(1) W(GN ) is independent of the labeling GN , 

(2) W(GN ) is the product of the weights for each dis
j oint connected part of GN • 

Then, 

;'?" () (.;;xH" ( ) 1 + L..i NT 0 W GN = exp "0 NT 0 W CN ) • 
N=1 'GN N=1 . eN 

For a proof see Ref. 25. 
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Multiple steady states in a simple reaction-diffusion model 
with Michaelis-Menten (first-order Hinshelwood-Langmuir) 
saturation law: The limit of large separation in the two 
diffusion constants 

J. L. Ibanez and M. G. Velardea) 

Departamento de Fisica-C-3, Universidad Autonoma de Madrid, Cantoblanco (Madrid), Spain 
(Received 21 March 1977) 

The admissible mUltiple nonuniform steady states of a model bimolecular autocatalytic reaction-diffusion 
system with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law are constructed in the 
case of large scale separation in the two diffusion constants. Both the Dirichlet and the Neumann 
problems are discussed in a one-dimensional geometry, and the corresponding bifurcation pictures are 
given. 

1. INTRODUCTION 

In a recent note1 (see also Ref. 2 and for motivation 
Refs. 3,4) we have discussed the existence and sta
bility of limit cycle and nonlinear spatially ordered 
structures in a simple bimolecular autocatalytic reac
tion-diffusion model with Michaelis-Menten (first
order Hinshelwood- Langmuir, which corresponds to 
Holling's law in ecology) saturation law. The model is 

A-Y, 

X+Y-2X, 

X 1.p, 

(1. la) 

(1. Ib) 

(1. lc) 

in which S accounts for the saturation process whose 
law is given below. Under various simplifying assump
tions, which are specified fully in Ref. 1, the differ
ential problem that describes (1) in terms of dimension
less quantities has the form 

ax X 
-=XY---+D AX at 1 +qX x , 

~~ =A _XY +DyAY, 

(1. 2a) 

(1. 2b) 

in which X, Y, and A are positive concentrations; A and 
q:> 0 are treated as parametric constants, and Dx and 
Dy are diffusion coefficients and are also constant. 

In Ref. 1 (and in ReL 2 for a spherically shaped sur
face problem) we have discussed the formation of non
linear structures when Dy - Dx , though D y :> Dx. Both 
Dirichlet's (fixed concentrations on boundaries) and 
Neumann's (fixed fluxes on boundaries) conditions were 
considered in Ref. 1. Recently Boas has discussed the 
multiple steady states having finite deviation from the 
fixed point of a similar model to (1) in the limit Dy 
- 00. We are referring to Boa's work on the (Brusselat
or) trimolecular model of Prigogine and co-workers. 6 

On the other hand, Koppell and Howard7 have argued 
that such a limiting case (Dy - 00, Dx < 00) should be of 
interest by analogy with the double-diffusive (thermo-

a) Also at Laboratoire de Dynamique et Thermophysique des 
Fluides (CNRS No. 72), Universit{ de Provence, Centre de 
Saint-Jerome, 13397-Marseille-Cedex 4 (France). 

haline) problem, 8 in which the large separation of 
scales of heat diffusivity (K) and mass diffusivity (D), 
K» D, is at the origin of convective instability. It 
seems to US

1
,2 that such an analogy has no firm founda

tions as it has also been pointed out by A uchmuty and 
Nicolis. 9 However, the change in the boundary value 
problem of (2) introduced by the limit D y "'" 00 is so dra
matic that we decided to explore the salient features of 
(2) with D y "'" 00, for which (2) becomes a "conservative" 
system. Besides, the discussion that follows gives a 
more complete picture of bifurcation with two largely 
different diffusion constants than the brief account pro
vided by Boa. 5 

2. STABILITY OF THE FIXED POINT IN THE 
LIMIT D y = 00 

The one-dimensional boundary value problem for 
steady states of Eqs. (1.2) in the limit Dy=oo is 

X d2 

o "",XY - 1 + qX + DX(f?X (2.1a) 

d2 

O""'a;zY (2.1b) 

with either (Dirichlet problem) 

X(O) "",X(1) "'" const, 

Y(O) "'" Y(1) "'" const, 

or (Neumann problem) 

dX I dX I - ""'- "",const, 
dr roO dr ro1 

dY I "",dY I "",const, 
dr roO dr ro1 

where the constant can be set vanishing. 

The solution of (2. Ib) is 

Y"",K, 

(2.2a) 

(2.2b) 

(2,3a) 

(2.4a) 

in which K is a positive constant. Thus, in the time 
scale considered we cannot see any Y fluctuation. We 
may choose for K the value corresponding to the steady 
solution at Dr < 00, Dy > Dx. We have 

Y""'I-qA, (2.4b) 

and Eq. (2. la) becomes 
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X d2 

O=X(I- qA) ---+Dx"T'lX 
1 +qX dr 

(2.5) 

Equation (2.5) has the nontrivial steady solution 

X =A/(I- qA). (2.6) 

The stability of (2. 5) in the neighborhood of (2.6) is 
decided by the following eigenvalue problem: 

L(q, A, Dx)</! "" [qA(I- qA) + Dxfrz ] </!= AI/J, (2.7) 

with functions </! defined in [0, 1] that possess continuous 
second-differentials and satisfy the b. c. We define the 
following inner product: 

(2.8) 

for I/J and <P belonging to the space defined above. 

For the Dirichlet problem (2.7) yields 

<p" = ak simrky (2. 9) 

with ak real and k = 1, 2,3, .... 

For the Neumann problem from (2.7) we have 

<p" = bk COS1fkY (2.10) 

with bk real and k = 0, 1,2,3, .... In both cases the 
wave-dependent eigenvalue Ak corresponding to </!k is 
given by 

qA(I- qA) _ Dx1f2k 2 = \ (2.11) 

and the fixed point (2.6) is asymptotically stable if for 
all allowed values of k the real part of the eigenvalue 
is negative. 

From (2.11) we get: 

(i) Neumann pyoblem: The fixed point (2.6) is un
stable for all values of q and A such that qA < 1. This 
comes from the fact that 

AO =qA(I- qA) > 0, (2.12) 

Thus, the fixed point is always unstable for perturba
tions of infinite wavelength. 

(ii) Diyichlet pyoblem: There is the following alter
native. Either 

(2.13) 

and the fixed point (2.6) is asymptotically stable for q 
and A such that 0 < qA < 1, 01" 

Dx<I/41T2 (2.14) 

and the fixed point (2. 6) is asymptotically stable for q 
and A restricted to the region 

qA EO: (0, Ai) u (A!, 1), (2. 15a) 

A~ == 0.5 ± O. 5(1 _ 41f2 DX)l /2 

and unstable otherwise. 

(2. 15b) 

(iii) In eithey case (Dirichlet 01" Neumann pyoblem): 
At q and Dx fixed, there exists a set of values of A, 
AZ

c
' for which the normal mode corresponding to kc 

becomes unstable. We have 

L(q, A~ ,Dx)~ = 0, 
c C 

(2. 16a) 
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A;c = (1/ q)(O. 5 ± O. 5[ 1 _ 41T2 Dxk~]l /2), 

where if 

(2. 16b) 

A E (O,A; ) U (A; ,q_1), (2.17) 
c e 

the fixed point (2.6) is asymptotically stable to pertur
bations of wavelength 21f/ke. For AE (0, q_1) there is an 
upper bound to normal modes rn that may become un
stable. We have 

(2.18) 

Thus, with Dx < 00 the fixed point (2.6) is asymptotical
ly stable to perturbations of short wavelength. 

Lastly, we note that the following transversality con
dition is satisfied, 

(2.19) 

in which L' comes from differentiating L with respect 
to A and </!:e is an eigenfunction of the adjoint operator 
of L, with vanishing eigenvalue. In our case here we 
merely have Ij{e = </!ke . 

3. NONLINEAR STEADY SOLUTIONS 

We shall now construct the branches that bifurcate at 
A~e. We use the Poincare- Linstedt method, and define 
the series expansions 

(3.1a) 

(3.1b) 

Introducing (3. 1) in (2. 5) a hierarchy of equations is 
generated in powers of the new unknown E. AkCn) and 

e 
u~n) are to be determined. 

c 

(ij Dirichlet problem 

The results found are different according to the cha
racter, even or odd, of the critical mode. 

(ia) If kc is even, we have 

(3.2a) 

and 

- (128q(l- qA~ )6k~/1f2Dx1s1}(I- 2qAZ )-1, 
c c 

(3.2b) 

in which 
ro 

Sl =0 [k2(k2 _ 4k~)2(k2 _ k~)]-l (3.2c) 
k =1 

(k odd) 

(ib) If he is odd, we have 

(3.3) 

It is to be noted that with kc even 
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E 

1\=1.. 
q A 

FIG. 1. Qualitative sketch of the various bifurcating branches 
that appear with Dirichlet b. c. The quantity E denotes an am
plitude and E = 0 accounts for the fixed point (the homogeneous 
steady solution). 

(3.4) 

whereas with kc odd we have 

(3.5) 

Figure 1 depicts the various possible bifurcations for 
values of Dx such that only the first three modes kc 

= 1, 2, 3 can be destabilized, with 

1/361T2 > Dx > 1/641T2. (3.6) 

(ii) Neumann problem 
Whatever the values of kc are, we have 

A~I)·=O 
c 

(3.7a) 

and 

Ak(2)'=[t(1-qA; )4q +(5/6A: )(1- qA! )5](1_2qA! )"1. 
c c c c c 

(3.7b) 

We also have 

sgn(A:2 )+) '# sgn(A:2 )-) • 
c 

Figure 2 describes the bifurcations that appear for 
values of m in the range (3.6). 

(3.8) 

4. FURTHER DETAILS ABOUT THE NONUNIFORM 
STEADY STATES 

For later convenience we introduce the new variable 
V(r) = DdX/dr. Then Eq. (2.5) can be recast in the 
following matrix form: 

:r(~)= (1- :):x+~ \=(~E:::aX\' 
\- q 1 +qX) C) 

(4.1) 

in which E(X, V) denotes a first integral of (2.5) 

E(X V) =~ X2(1_ qA) _~ + 1 (11 +qXI) (4.2) 
, 2Dx + 2 q og l . 

As a matter of fact, the existence of a conserved quan
tity like E to Eq. (2.5) follows immediately from the 
type of equation that we are dealing with. A generic 
equation like 
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(4.3) 

has the following first integral: 

E=~(:r +jf(X)dX. (4.4) 

This corresponds to the differential equation also found 
in the stability analysis of catalytic wires. 4,10 

The system (4.1) has two fixed points, namely 

X(I)=V(I)=O (4.5a) 

and 

X(2)=A(1-qA)"l, V(2)=0. (4.5b) 

The stability of these two fixed points is related to the 
eigenvalues of the linearized operator (for given b. c. ), 
L, 

L (~:;;ox) ~'''" ''', ", ," 
(
0 D-}) 

= [1_qA]+[1+qX(i)]-2 0 . 
(4.6) 

It is to be noted that the existence of a first integral 
like E forbids asymptotic stability to the fixed points 
(4.5). Nor can they be nodes or focuses. 11 It is found 
that (4. 5a) is a saddle and (4. 5b) is a center. Figure 
3 gives some of the admissible trajectories for the val
ues of E. SI and S2 correspond respectively to (4. 5a) 
and (4. 5b). There is an obvious symmetry ariSing from 
the invariance of E under the change V into - V. 

It is clear that not all trajectories in Fig. 3 are real
ized, for the admissible trajectories to be realized 
they must satisfy the b. c. 

(i) Dirichlet problem: The only trajectories that are 
solutions of the problem are those for which, if at the 
origin, we have X(r= 0) =X(2) and V(O), then at the end 
point the value is X(r= 1) =X(2) with V(r= 1). These 
are the trajectories that after any number of turns in a 
unit distance end at X =X(2), though V may be different 
from V(O). 

E 

FIG. 2. Qualitative sketch of the bifurcating branches with 
Neumann b. c. and E as above. 
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v 
I 

IX=X~21 
I 
E>O 

x 

FIG. :3. Phase trajectories of the system (4,1). E is a con
served quantity, S1 and S2 correspond respectively to the two 
fixed points of the system. 

(in Neumann problem: The admissible trajectories 
must satisfy the following conditions: X(r = 0) and 
X(r= 1) are both real and positive and V(r=O) = V(r= 1) 

= O. They start and end after a unit distance on the 
axisV=O. 

Figure 4 gives a qualitative sketch of the period in 
r-space of trajectories of (4.1) as function of the con
ditions at the origin. T 1 (V) denotes the distance from 
(X(2), V) to (X(2), - V), with V real and positive. T 2(V) 
corresponds to the passage from (X(2), - V) to (X(2), V). 

v 

Ym 

0.3 

-Vm 
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3n 
w 

2n 
w 

T 

n 
w 

Vm v 

FIG. 4. "Spatial periodicity" of (4. 1) as function of the condi
tion at the origin. 

They do not need to be equal. V m gives the value of V 
for which the point (X(2), ± Vm) lies on the separatrix, 
£=0. We have 

I 

V m = {_ 2Dx [---L (~_.!) _ log 11 - qA I ] }1/2 
1 _ qA 2 q q2 

(4.7) 

Note that T2(Vm ) =00 for the origin (0, 0) is a solution of 
(4.1). On the :other hand, at V = 0 [(4. 5b)], Tl and T2 
are equal: ' 

Al A 
0.5 

(4.8) 

FIG. 5. Actual bifurcation 
picture with Dirichlet b. c. in 
the case q ~ 2.0 and Dx~ O. 002. 
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Case: q=2.0,A=O.15, Dx=O.002 

'~ 
o r= 1 

'bc/j 
o r = 1 

'~T2j 
o r 1 

o r = 1 

FIG. 6. The five nonuniform steady states available for q= 2. 0, 
Dx= O. 002, and A = O. 15 in the preceding figure. 

with w given by the purely imaginary eigenvalue of (4. 6) 
with i = 2. We have 

(4.9) 

For Dirichlet b. c. a solution to (4.1) corresponds to 
the intersect of any of the curves of Fig. 4 with the or
dinate T = 1. With values of Dx in the region 1/367T2 

> Dx > 1/647T2 the following results are found: 

(a) For values of A such that A E (0, Ai) u (Ai, l/q) in 
which A~ are given by (2. 16b), it follows that 7T/W > 1. 
Thus, only the curve T 1 intersects the ordinate T = 1 
and yields a solution to (4. 1). 

(b) For values of A, A E (Ai, A2') u (Ai, Ai), it follows 
that 7T / W < 1 < 27T / w. Thus, there is only steady solution 
corresponding to an intersect of T = 1 with the T2 curve. 

(c) With A E (A2', Ai) u (A;, Ai) we have 27T/W < 1 < 37T/W. 
Thus, for every value of A there are at least three sata
tionary solutions to (4.1): One corresponds to T2 and 
two belong to the intersects of T = 1 with the curve 
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(TI + T 2), respectively depending on the initial condition 
(X(2), V) or (X(2), - V). On the other hand, the minimum 
on the curve (2T I + T 2) is correlated to the eventual ex
istence in the neighborhood of Ai and A; of two other 
solutions, which respectively correspond to the initial 
conditions (X(2), VI) and (X(2), V2), with VI and V2 posi
tive constants. 

(d) Lastly for A E (Ai, A;) we have 37T/W < 1, and then 
every value of A branches five solutions: One with T2, 

two with (TI + T 2) and two with (2T I + Tz) and (TI +2T2 ), 

respectively. 

The whole bifurcation picture is depicted in Fig. 5 
for the case q = 2.0 and Dx = 0.002. To the vanishing 
value of V belongs the fixed point (homogeneous steady 
solution). There is a clear correspondence of the 
branches drawn in Fig. 5 with the above constructed 
solutions by the Poincare- Linstedt method. In parti
cular, it is to be noted the close relationship between 
the existence of a minimum on the (2T I + T 2) curve and 
the kind of bifurcation that appears at kc =: 3. More gen
erally one is led to say that the existence of a minimum 
in the function (n + I)T1(V) +nT2(V), with n an integer 
and V* 0, corresponds to bifurcation with kc odd. 

To the generic case of Fig. 5 and for A = O. 15 cor
respond the five steady nonuniform concentration pro
files drawn in Fig. 6. The intersects of A = O. 15 with 
the curves in Fig. 5 give the values V to be reported 
to Fig. 3. Thus, we have the value of X, together with 
the slope at the origin, and E. Then with these initial 
values the profiles are constructed by direct computer 
integration of (4. 1). 

Lower values of Dx (Dx < O. 002) merely yield more 
critical values A~c but qualitatively do not change the 
picture. For the Neumann b. c., as the trajectories 
must start and end at V=: 0, their existence depends on 
the behavior of the functions (n/2)[T 1(V) + T 2(V)] of 

T 

IT 

w 

Ven v 

FIG. 7. The functlon ~n(Tl + T 2) for bifurcation with Neumann 
h.c. 
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Vm 

0.1 A3 0.2 0.3 

-Vm 

which a qualitative sketch is given in Fig. 7. Every 
intersection with the ordinate T = 1 yields two solutions 
belonging respectively to the conditions at the origin 
(Xl, 0) and (X2, 0) where Xl <X(2) <X2, They respectively 
cross the points (X<2>, V) and (X<2), - V). Figure 8 gives 
a qualitative bifurcation picture for the case q = 2.0 and 
Dx =0.002. 

We have completed our aim of providing a classifica
tion of all admissible spatially nonuniform steady states 
that are expected in the limit Dy» Dx, Dy - 00, Dx < 00, 

for the system (1. 2), with either Dirichlet or Neumann 
b. c. All the new solutions bifurcate from a homogeneous 
fixed point when the parameters A, q, and Dx have val
ues for which this homogeneous solution is unstable. 
Whether or not they appear in a" realizable" experi
ment is a matter of their stability. The stability analy
sis of the nonuniform solutions though is simple of con
ception yields a very difficult task, and at present lies 
outside the scope of this note. What we can safely say, 
however, is that all branches described in Figs. 4 and 
6 that have (JT/JV)v=o < 0 are unstable. 10,12 

Note added in proof: Shortly before receipt of the gal
ley proofs we learned of the work by N. Chafee and E. F. 
Infante, Appl. An. 4, 17 (1974), where a different 
though related problem is discussed. Following their 
method, the stability of the nonuniform states Tz, Tl + Tz, 
and 2 T 2 + T 1 (see Figs. 4 and 6) can be decided with the 
use of the Lyapunov function 

in which ¢ describes an initial, though not merely in
finitessimal disturbance upon the steady state whose 
stability is being tested, and 

1 ( A + (1- qAH ) 
fW = Dx A + (1- qA)~- A +q(l- qAH . 

156 J. Math. Phys., Vol. 19, No.1, January 1978 

FIG. 8. Actual bifurcation 
picture with Neumann b. c. in 
the case q = 2. 0 and Dx= 0, 002. 

At 0.5 A 

USing V(¢), it is shown that the states T1 + T2 and 
2T2 + T1 are unstable, whereas the profile correspond
ing to T2 is the only stable one. Computer runs con
firmed the analytical results. 
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A characterization of Lorentz transformations 
A. Lenard 

Departments of Mathematics and Physics. Indiana University. Bloomington. Indiana 47401 
(Received 26 April 1977) 

If a one-to-one correspondence of Minkowski space-time onto itself is such that timelike lines, and only 
timelike lines, map onto timelike lines, then the correspondence is an inhomogeneous Lorentz 
transformation combined with a dilation. 

In an early issue of this journal, Zeeman! gave a 
remarkable characterization of Lorentz transformations. 
Namely, if a one-to-one correspondence of Minkowski 
space-time onto itself is such that the relation of 
temporal precedence is preserved in both directions, 
then the mapping is necessarily an inhomogeneous 
Lorentz transformation combined with a dilation. The 
purpose of the present note is to point out that there is 
a characterization which is similar in spirit, one 
whose proof reduces in a very simple manner to two 
theorems of geometry. The first of these is the Theorem 
of Desargues. The second is the fact that every collinea
hon in a real affine space is induced by a nonsingular 
inhomogeneous linear transformation in terms of 
coordinates. 

We propose to characterize Lorentz transformations 
by the property that they map time like lines into timelike 
lines. As in Zeeman's theorem, no hypothesis of con
tinuity is needed, or indeed any other regularity 
assumption. Nor is it assumed that the order of the 
points on a timelike line is preserved, or otherwise 
related in any particular way, to the order of their 
images under the given mapping. Also, unlike Zeeman's 
theorem, ours is valid without the restriction that the 
dimension of space-time exceed 2. 

Theorem: If a one- to- one correspondence of 
Minkowski space-time onto itself is such that it, as 
well as its inverse, maps timelike lines onto timelike 
lines, then the correspondence is an inhomogeneous 
Lorentz transformation combined with a dilation. 

Consider three distinct points in space-time, say 
A, B, and C. Let t be a time like line such that the given 

points do not lie on one line parallel to t. Suppose that 
six points X, Y, Z, X' , Y', and Z' exist such that the 
triplets AYZ, BZX, CXY, as well as the triplets 
AY' Z', BZ'X', and CX'Y' are collinear along six 
timelike lines not parallel with t, but the lines XX' , 
YY', and ZZ' are parallel to t. It follows then from 
Desargues' theorem that the triplet ABC is collinear. 
Conversely, if that triplet is collinear, the rest of the 
points with the above properties can be found. Note that 
parallelism of two timelike lines can be characterized 
this way: They are parallel if and only if they are 
distinct, do not meet, and there are two more timelike 
lines meeting each other as well as the two given lines. 
These considerations show that collinearity of three 
points is a relation that can be defined entirely in terms 
of the weaker relation of collinearity along lime like 
lines. Suppose now that a one-to-one correspondence 
of Minkowski space -time onto itself, satisfying the 
hypotheses of the theorem, is given. Then, by what we 
just said, it and its inverse preserve the relation of 
collinearity of triplets of points in general (such 
mappings are called collineations in geometry). But 
then, according to a basic theorem in geometry2 the 
mapping is necessarily affine (inhomogeneous linear) 
in terms of coordinates. Its homogeneous part preserves 
the sign of the Minkowski quadratic form. It follows 
immediately that this must be a nonzero multiple of a 
Lorentz transformation. This proves the theorem. 

iE. C. Zeeman, J. Math. Phys. 5, 490 (1964). 
20. Veblen and J. W. Young, Projective Geometry (Blaisdell, 
New York, 1910), esp. Sec. 71 of Vol. I and Sec. 99 of 
Vol. II. 
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Expanding shearfree spatially homogeneous universes with a 
nonsynchronous time coordinate and anisotropy of the 
universe 

A. J. Fennelly 

Department of Physics and Astronomy. Western Kentucky University. Bowling Green, Kentucky 42101 a) 

(Received 17 January 1977) 

The apparent isotropy of the microwave background radiation on all angular scales and regions thus far 
observed is usually accepted as evidence of the isotropy of the universe. Current applications of the 
Einstein theory of gravitation in cosmology couples all rotation or peculiar velocity to anisotropy in the 
background radiation. Rotation in particular is coupled to shear. These are based on a number of results 
that apply to spatially homogeneous cosmologies with a synchronous time coordinate. While the models 
allow the past of our universe to be rather interesting, they constrain the present to be quite boring. We 
introduce a nonsynchronous time coordinate and show that the present could allow more interesting fluid 
motions, including rotation and peculiar velocity in spite of the microwave background's isotropy. We use 
the formalism to construct rotating Friedman universes and study observations in them. Almost all other 
cosmological data are consistent with a rotation of the universe. 

1. INTRODUCTION 

It is generally accepted that the universe we presently 
observe is highly isotropic on scales 200 Mpc or 
greater. 1 This is based mainly on the apparent isotropy 
of the microwave background radiation. 2 This interpre
tation of the observations rests heavily on cosmological 
models with a synchronous time coordinate and spatially 
homogeneous 3-spaces, 25 allowing fluid motions with non
zero shear, vorticity, and acceleration of the fluid 
motions. 3 

A number of theorems have been generated in the 
synchronous time anisotropic formalism coupling shear 
with vorticity, and evolution of anisotropy, and the 
allowed peculiar velocities. 4,5 Other theorems connect 
the Bianchi classifications of the homogeneous 3-spaces 
to the allowed fluid motions. 6 The theorems assume a 
synchronous time coordinate, which means that the 
existence of vorticity requires a priori the existence of 
a shear tensor with nondiagonal components. The G jJ.0 

components of the Einstein equations require that the 
shape matrix determining the metric anisotropy4 not 
commute with its time derivative. These conditions are 
satisfied only if the shape matrix determining the metric 
anisotropy4 not commute with its time derivative. These 
conditions are satisfied only if the shape matrix has 
nonzero nondiagonal components; hence the shear tensor 
also has nonzero nondiagonal components. These GjJ.o 

= - KT jJ.0 equations also require that the group structure 
constants C~ be nonzero in synchronous systems. Hence 
the connection of Bianchi types and allowed fluid motions 
follows. 

The assumption of these theorems are very restric
tive. Their conditions obviously strongly imply the 
results of the theorems. Only when the most general set 
of conditions has been investigated to the same result 
can it be said that the theorems are generally true. This 

a)Guest Summer Research Fellow, May-August 1975, Mathe
matics Department, University of London King's College, 
Strand WC2R 2LS, U. K. 

enlargement of the physics is the introduction of non
synchronous time, of metrics with nonzero shift between 
spatial hypersurfaces. 5 One also hopes to bypass the 
present belief that boring observations (isotropic back
ground) imply boring fluid dynamics (isotropic expanding 
fluid). A further motivation are the possible large-scale 
inhomogeneity in the universe, 6,7 the distributions of 
quasars and of galaxy ellipticities and position angles, 8, 9 

and the anomalous slope of the number-count relation for 
radio sources. 10 These data are definitely not consistent 
with isotropy and their successful interpretation solely 
in such a context seems unlikely. We look for physical 
understanding that will fit all the data simultaneously 
and allow the universe to be a bit more interesting place 
to live in. 

Glass ll has derived an identity which supports these 
arguments. With vortiCity vector w"', density p, pro
jection tensor haa=g",a +ualla' magnetic type gravita
tional field H",a (defined below), and gravitational 
constant K, he finds 

(1) 

where 'V" is the gradient. In the metrics discussed below 
we have 

(2) 

where wjJ. = e"e~vo" with a a function of time and {3 a sym
metric traceless 3 x 3 matrix. The 0" are a basis of 
differential forms on 3-spaces of constant time and SljJ. 
is the fluid peculiar velocity. Then in such frames 
'V"'p= (ap/at)Q'" and one finds 

3w"Haa =(:) h"aQa(ap/at). (3) 

Although there are homogeneous space sections25 over 
which the 0" forms define a group of motions, the models 
are nevertheless inhomogeneous to observers as long as 
there is evolution with the time. It is possible to find 
perfect fluid models for QaCI'e-"', (ap/at)ae-4

", w"ae- 2
"" 

and H",aCie-3" so that Glass'll identity is consistent. 
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Hence shearfree cosmologies can have expansion and 
rotation. 

In further confirmation of this discussion, Shikin12 
has shown that cosmological models with a synchronous 
metric (0" = 0) are not complete. They do not allow 
spacelike traj ectories of matter. This point was dis
cussed in my dissertation. Causality restrictions 
implied by a synchronous coordinate system a priori 
prohibit continuation of the fluids into spacelike regions. 
Hence the manifold created by Lie-dragging geodesics 
as generators of the spacetime is incomplete. But, as 
Shikin12 shows, the complete system is inhomogeneous. 
His metric is still diagonal, but the time coordinate is 
not homogeneous. The same applies to the metrics in 
this paper as the transformation 

du=dt - O"w" (4) 

shows. The c;=c;(t) and (3={3(t) become c;=c;(u+ JO"w") 
and (3={3(u+ fO"w"). The terms involving fO"w" clearly 
will cause inhomogeneity. This is akin to the stationary 
inhomogeneous spacelike regions in the whimper sin
gularities of Ellis and King13 and Collins. 14 These 
metrics allow (unusual) complete spacetimes and the 
behavior implied by Glass' identity is therefore not 
surprising. The real choice of a complete metric is 
then between a nonsynchronous spatially homogeneous 
system or a synchronous inhomogeneous one. 

2. METRIC AND FIELD EQUATIONS 

We express an isotropic Friedman metric in null form 
decomposed into a set of null tetrad vectors15 gab = 2l(anb) 
- 2rn(arnbP where la and na are tangent to a null geodesiC 
and rna is the complex vector spanning the celestial 
sphere. Then la is tilted to have components in the rna 
directions. The full set of tetrad vectors is transformed 
accordingly, the tilted metric composed from them, 
and then returned to the time/ space form 

(5) 

where (.v" = e"'o", 0" is the peculiar velocity, c; = c;(t), 
0" =O,,(t,X"), and the ('I" are basis forms obeying the 
curl relations d('l" =iC~p(jvA(jP with C~p the structure 
constants of their isometry group. The vorticjty w"v, 
acceleration It , and expansion 8 are w = O[ 0] 

K ~ e 0 1-/.11. JLIJ IJ. II 

- OKe-"'C"v, a" =- (0" +O"c;), 8"v=0I15I'v). (There is 
no shear). 

The affine connection is rgo = - rg" = - a", rfo = - r~" 
=8"v+w"v' r~~=-r~,,=w,,~, and r~~=-r~"=-e-"'C~,,. 
We accept that the Friedman models are correct to zero 
order and treat w"v and u" as first-order quantities. 
neglecting all terms of higher order in Einstein's 
equations. 3 Under these conditions the field equations 
are 

- 2CP w e-'" + e-DtCP w + 2aa = 0 
'lI.p j..I.V IJ.:\, PA /J.' 

(6a) 

(6b) 

- 6a - 90.2 - iR* = 3Kyp, (6c) 

~ "V + 2aw"v + a~e-Dt(Cfv - tl5"vC:J = 0, (6d) 

with R* = the isotropic curvature of the space sections 
for the Bianchi types chosen 1- - c" = 0 V - _ c 2 

, vp' [21] 
=q31] = 1, IX - -c~p=e:p' With equations of state 
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p = yp the conservation equations are 

p=-3(I+y)pa, 

a = - (l5 b + U ub)....ElL , 
a • a (p + p) 

(7a) 

(7b) 

a" = - 31hu". (7c) 

The geodesic equations split into the zero-order (unper
turbed) set for q' and the correction set for the correc
tion factors 15" (then ?j" = qa + 15"), 

d "o • (q""~ + AO,,) 
_v __ (0 + 0 .) ~ + • 0 v q 
dt x xC; q O! "x qO 

(8a) 

dl5" • -+(0 +0 a)qo+ao oV+2w qV 
dt "" "V "V 

(8b) 

The perturbation of the expansion factor in the metric 
E is described by terms in Eqs. (6a) and (6c) with the 
usual Friedman parts of those equations assumed valid 
[we use R* = Ke- 2Dt e-2e ::::Ke-2"'(1 + 2E)] 

~(6Q.) + R* = 0, (9a) 

-6E·-18Q.E-2~~e-"'C~~ -ER*(E)=O. (9b) 

For the unperturbed Friedman models with dustlike 
matter we have the following. For type I, eDt = t2 IS, 
qi = const. For type IX, eDt = 010 sin2 T/4, t = e-"', 
t=ie Dt o[T-2sinT/2], qc=const. In type V, e"'=(8rrM/3) 
xSinh2T/2, ~=e-"', M=f-.lR[3Q.~-8rrpR)/3]-3/2, 1= (e",0/2) 
x(8rrM/3)[T-2sinh(T/2)], q1=cos8, q2=sin8coscp; q3 
=sin8sincp, cot8/2=Ke" and cp=const. The perturbed 
solutions are as follows. 

For type I, E = const, w"v = 0, it" = 0, and hence 0" 
O~ exp[ - (O! - O!o)]' The space curvatures are the same 
in all directions. Equation (7b) gives a necessary 
counterexample. With v = 0 , V o = - 1, V o = 1, go 

" " " = O"e'" , 

iJv" ' -Dt V"hl o 
~ -c;v e =--=. at " (p + p) 

(10) 

In type I with nonvanishing pressure this solves to v 
=v~(t/to)3y exp[_t2

/
3(1+Y)]/(Kpo)1 / 2. Hence neither th: 

acceleration nor the peculiar velocity vanish in type 1. 25 

For type IX 

E = Eo exp{[tan( T/ 4)t1l3}, 

0" = 0~e-"'(tanT/4)-,1/\ 

0°=0°+1.0° "Xln[I-O!], ° 2 "q 1 _ c; 

° 
and 

where X = e'" + e-Dt . For type V 

E = Eo{exp[tan( T/ 4)]1 13}, 

A.J. Fennelly 

(lla) 

(llb) 

(12a) 

(12b) 

(13a) 

(13b) 

(13c) 
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6° = 6g + h(o~(/ + 0~q3)(V - Vo), 

61 = 6~ + 2X(0~2 + 0~q3)(U - Uo), 

6A = ~ + 01X(3f - 2q1) (U - uo), 

(14a) 

(14b) 

(14c) 

where v - Vo= 10g[(1 - a)/(1 - a o)]" + era - a o) and u - U o 
= log[ (1 + a)1 (1 + a o)]" - era - Qo) (e is the base of the 
natural logs). 

3. OBSERVATIONS. I. THE NUMBER COUNTS AND 
REDSHIFTS 

We first discuss redshifts. The relevant equation 
from Kristian and Sachs, 16 appropriately truncated, is 

8y y2 
z=-+-(v+ve'") 

3 2 '"' 

v," =t81," +t(86,"y +Wlky)ly' 

Then 

8y y2 rp 8
2 

3. 1 z=- +- -+- +-80 e'" 
3 2 6 3 5 I" 

in type V, and 

z-- +- - +- + -80 +-CY W el" 8y y2 ~p 82 {3 0 e-" } ~ 
- 3 2 6 3 5 I" 5 1"0 ill' 

(15a) 

(15b) 

(15c) 

(16a) 

(16b) 

(16c) 

in type IX. There will be an affect on the number counts 
of radio sources due to rotation alone. Since the velocity 
vector is not orthogonal to the homogeneous spatial 
hyper surfaces , an observer's rest space will be tilted, 
sliCing through spatial hyper surfaces of the time co
ordinate t. 5 Therefore, the light cones will be tilted. 
We therefore find two rotation-induced effects on the 
number counts. 

First, because geodesic path are skewed, the lumino
sity distance increases as a power of the intrinsic 
luminosity whose power is also dependent on the lumino
sity distance itself. We can see this for a purely rotat
ing model since the rotational contribution makes the 
difference in the counts. Using Kristian and Sachs 
results,16 we have 

dN= [1 + y; (~- ~2)J {n + ~2 (n 2 - w2n)}y2dYdO (17) 

where dO is the element of angular measure on the 
celestial sphere and n is the intrinsic number density. 
In a Godel universe17 nand ware constants, and we find 

41T 3 (7 2W2)41T 
N=3'nY+ 12 n --3-5"ny5. (IS) 

Since there is no focussing, the received flux S is 
related to the intrinsic power of source P by S = pi 41Ty2 
and Eq. (IS) becomes 
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_ nP3 
/ 2 _3 / 2 nP5 

/ 2 2 -5 2 
N-3(41T)1/2S +60(41T)1/3(7n-Sw)S / (19) 

in a form similar to the usual N = No(S-il I So) for the 
integral number counts. If the Eq. (19) is constrained to 
that form, then obviously 1. 5.; {3.; 2. 5. 

Second, an apparent spatial density gradient will 
eXist,4 leading to an anisotropy in the number counts 
(on the celestial sphere). This depends on the fluid 
motions. If the veloc ity is tilted with respect to the unit 
normal to the spatial hyper surfaces and a quantity 
changes through the evolution of the hypersurfaces 
(i. e. , has a nonvanishing time derivative, where the 
time labels succeeding hypersurfaces), then that 
quantity will possess a nonvanishing spatial gradient 
in the 3 -surfaces orthogonal to the fluid velocity (in 
the observer's rest space). The expression for this is 

(20) 

so that the direction of the apparent gradient is in the 
direction of 01"' The orientation of the anisotropy is 
therefore in the 01" direction and its relation to wI" 
(rotation vector) varies as 01" does. The gradient can 
thus be parallel to or orthogonal to the rotation axis. 

Godel l8 gives a result for a class of rotating models 
To first order, integrated over two hemispheres of the 
celestial sphere split by a plane orthogonal to w·, the 
difference in number of galaxies from one hemisphere 
to the other is 

INl -N21_9 Iwlye"a 
Nl +N2 -"8 C2 (21) 

A similar result has been given by Batakis19 and 
Fennelly. 20 In all cases y is the radial distance to the 
limits of the integration. 

For the number counts our main formula is 

(22) 

where dO is the element of angular measure on the 
celestial sphere. With the formulas given above, Eq. 
(22) reads (n is the number denSity) 

[ 
8y y2 { h 82 (3 e dN= 1+-+- L:+_+ -0 
3 2 6 3 5 I" 

e-ex e-ex )}J + 5D,:ow"o + 50'I"OwOY el" 

x[n +Y(n8 +~0"e,")]y2dYdO. (23) 

The different group types alter Eq. (23) as in Eqs. 
(16a)-(16c). In type I, the redshift distance relation 
reads 

z=- +- - +- +-80 e" 8y y2 ~p 82
) 3y2, 

3 2 6 3 10'" 
(24) 

The term second order in the distance containing lm"e'" 
will vary with the angle on the celestial sphere. How
ever, the effect is second order in the luminosity dis
tance and so will show only at large distances. The 
anisotropy would be dipole in nature. Inserting the solu
tions the anisotropy term is O. 9~OOt~/3 cos6r8/ 3 y2 which 
for e-" 0: {"2/3 for dust, is - O. 900t;/3 cos6r8/3y2 with 6 
the angle between e'" and 01"' This may be rewritten in 
more common astronomical notation21 O. 900 (qo - l)h2 y2 
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xexp(Oio - QI) COSO, where qo is the deceleration param
eter and h is the Hubble parameter. Since qo may not 
differ significantly from zero, 22,23 we may write, the 
large -scale anisotropy of the microwave background as 
- 1. 8(h2r 3) exp(O!o - O! )~o. Observations put this number 
at O. 1%. 2 If the radiation were last scattered at a red
shift of 1,000, then ~o_10-3 and ~,,-10-l (at z=l,OOO). 

The number-count relation becomes 

[ 
8r r2 (p 82 38 \] 

dN= 1 +3" +2"\6 +3 +5~cosoJ 

x[n + r(n8+~~coso)]r2drdO. (25) 

The anisotropy term, after neglecting all terms to order 
r3 or higher, is 

r. (n8 3i1n) 2 1 2 dN=Lnr + 3+10 r~cosoJrdrdo. (26) 

We must be careful of the terms involving n: The num
ber density can change because of volume expansion. 
It can also change because of evolution of the sources 
in both luminosity (cutoffs in survey used) and actual 
number of sources. A recent derivation24 has no mention 
of this. Let n be of the form noe-3"e-Xtrm, where.\ and 
m are positive numbers describing the evolution. Since, 
as we look backward in time along the lightcone rO! - I, 
for small volumes we may write n as no exp( - 301 + .\r)/ 
r+m in Eq. (26), and Eq. (26) reads 

dN= [- 8r+ G~ -8;)r - (.\+ mr- 1 )r 

- ~(.\ + mr-l )rJr2 drdO. (27) 

Equation (27) integrates to give the following relation: 

(28) 

With strong enough evolution we can now set ~ at its 
value of ~o -10-3 found for the microwave background 
and allow the rest of any anisotropy to be caused by a 
suitably chosen evolution parameter. Note also that the 
insertion of the evolution term in the isotropic parts of 
the number-count relation will change the slope of the 
relation, a s discussed previously, to zeroth order. 

The redshift distance relation reads from Eq. (16b) in 
type V, 

z = 8r + r (8.. + 8
2

) 
. 3 2 6 3 

+ 2 " + " (38~ elL 2e-'" ) 
r 10 -5- W.,le , 

and from Eq. (16c) in type IX, 

z = 8r + r2 (e. + 8
2

) 
3 2 6 3 

+ 2 " + " (3e~ e" e-'" ) 
r 10 TE/j)'"w/j)'e. 

The number-count relation is altered in each case. 
anisotropy term is 
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(29) 

(30) 

The 

dN={[~r+(n: +;~n)rJ~"e" 
2ne-'" } 

+-5- w"le" r2drdO (31) 

in type V, which becomes 

{r. (n8 3en) ~ 
dN= Lnr + 3" +10 rJSG 

2ne-'" t 
+-5- wfcosordrdO. (32) 

We find for type IX that the number-count anisotropy 
term is the same to the first order. 

From the redshift relation we find limits on ~" similar 
similar to those for type 1. The results are similar to 
the number counts, and evolution is required as dis
cussed above for type 1. 

4. OBSERVATIONS. II. DISTORTION AND 
PROPER MOTION 

There are the Kristian-Sachs distortion and proper 
motion effects. 16 The distortion may have been mea
sured9 and the proper motion could contribute a trans
verse component to the quasar redshifts. The relevant 
equations are 

(33a) 

for the distortion of the ellipticity e and 

(33b) 

where m" spans the celestial sphere, H/l
V 

is the gravi
magnetic field, 3,16 e" is the direction of the observer's 
telescope in his local cartesian axes, and a different 
projection operator, h"v = 0"" - e"e", is used. We can 
estimate the size of H "V to first order from equations 
derived from the Bianchi identity3,1l: 

and the constraint equation 

(34a) 

(34b) 

(34c) 

Using the metric and equations as developed for the 
Bianchi I, V, and IX models above, we may determine 
H"v in each case. In the wI' basis of Eq. (1), Eq. (34b) 
reads HabllO= - 8Hab and Eq. (34c) reads Hab= 

~f dll, 
- U(anb)Oa,w f . 

In type I, Hab = H~be-" because HabliO = - 8Hab implies 

(35) 

and the rotation vanishes in these models for type I so 
Hab only exists if there is gravitational radiation. 

In types V and IX we find [from Eq. (34c)] 

For initially dust models we may use the unperturbed 
values for eO<, Q, and p and then use W = n[ ~ 1 

IJ.V JJ. V 
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- !1.e-aC:v for w to determine the Hab components. The 
driving term Hacwg in Eq. (35) is second order. To first 
order only gravitational radiation Hab = H~be-a and a ro
tation-generated induction field will appear in types 
V and IX. In type V we have 

(36) 

and in type IX 

(37a) 

(37b) 

for the induction fields. 

The distortion is then maximized at 

e = 1 + Hmax[e3HI2(mI2 - m 22 )]} 

in type V, and at 

(38) 

e = 1 + Hmax[e3Hl2(ml2 = m 22 ) + e 1H23(m22 - m 32 )]} (39) 

in type IX. 

In type I there is no distortion as the induction field 
HOb = O. 

In types V and IX there is distortion. Assume that 
the major axis of the ellipsoidal image is along m\ 
then Eq. (38) for type V is 

(40) 

and in the direction of maximum distortion, e3
, we have 

e = 1 + ¥,;H 120 where ° is the difference (m 12 - m 22 ). In 
type IX this is 

(41) 

where E is the difference (m 22 - m 32 ). Insertion of the 
solutions in Sec. 2 gives 10-11/yr for the ellipticity 
change in any elliptical segment cut from the microwave 
background temperature ellipsoid. Detecting this seems 
much too difficult with present technology. This distri
bution of ellipticities of distant galaxies photographed in 
a given field changes approximately as e - eo = ¥,;!1°e-3a . 
If emission is at redshifts of about 0.25, 0.5, 0.75, 
and 1, then respectively the values of tle are 0.2 x 10-3

, 

0.8xl0-S, 2.4xlO-S, and 9.6xlO-3
• These are not 

extreme changes. The effect has been claimed to be 
detected by a few investigators, 9 but the matter is still 
not concluded one way or the other. 3 

To first order in dynamical quantities, the proper
motion equation reads 

(42) 

The terms in HH' when there is only the induction field, 
are an order of magnitude lower than the other terms, 
and as they will involve terms containing the square and 
the cube of the e" components, we will neglect them in 
hopes of simplifying the equations. Section 2 suggests 
that tf3wY6er will angle-average to (Wyaw"a)I/2 which is 
!1e-a = (!1,,!1" )1/2e-a , and Eq. (42) becomes 
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XW l2 
- ra!1e-a (43) 

- XW 23 

with X = (1 + ra). In type I the proper motion de./ dt 
vanishes and e = eo' 

Taking e1 as a typical component of the position 
vector, the components precess according to Eq. (3\:11 
as 

del I • r. " - =e r QI ><e-
dt ° 

(44) 

in both types V and IX. For the proper-motion effect, 
solve Eq. (44) by inserting the results of Sec. 2 in it, 
and then differentiate to give the precession rate in 
observer time t; this gives a precession of 10-5 rad/yr 
for the microwave background temperature ellipsoid 
and 10-8 rad/yr for the quasars of their distances are 
indicated by their redshift. These are presently not 
detectable. 

5. CONCLUSIONS 

We have exhibited and examined a set of cosmological 
models based on a formalism which does not a priori 
couple the fluid motions of shear, vortic ity, and 
peculiar velocity in a nonsynchronous system that allows 
an inhomogeneity like Shikin'sl2 complete manifold 
models. 25 From this we were able to obtain tilted shear
free first-order models of the universe with expansion, 
peculiar motion, and vorticity in Bianchi types V and 
IX, and a tilted model with expansion and peculiar 
velocity in type I in confirmation of Glass' identity. 11 

None of the models seriously conflicts with any observa
tions. In fact, they are all cons istent with the mic ro
wave background and also with the number-count, red
shift, proper-motion, and distortion data. We have 
therefore exhibited what may be called rotating 
Friedman universes. The peculiar velocity in the 
models was limited to!1 < 10-3

• The limits on w in type " . V and IX models are 10-9
• The ratio w/ O! is then 10-5

, 

greater than that previously found. 3,5 These observa
tions need to be considered in more detail, with shear 
of course included, if fully realistic models are to be 
examined in light of the data. 

A heuristic discussion showed that rotation could 
seriously affect the number -count relation, both in 
shape and isotropy. Subsequent calculation confir med 
the heuristic argument. 

It is not claimed that any model shown here presents 
the real universe, only that such models exist in 
general relativity. Realistic models probably must 
exhibit shear and the spin of an observer's Fermi
transported reference axis (the dragging of inertial 
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frames}. The formalism developed here will next be 
applied in those directions. 
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A new approach to the eigenvalues of the Gel'fand 
invariants for the unitary, orthogonal, and symplectic 
groups 

S. A. Edwards 
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The expressions for the Gel'fand invariants (Casimir operators) of U(n), O(n), and Sp(n) in terms of the 
IR labels are derived by relating them to the trace of a suitably defined operator pk. The method has 
unity and simplicity, since trace (p k

) can be related directly to the IR labels using the Weyl dimension 
function-without having to determine the eigenvectors of P. 

1. INTRODUCTION 

The Gel'fand invariants of the groups U(n), O(n), and 
Sp(2h) have eigenvalues which can be expressed as func
tions of the irreducible representation labels in a simple 
and elegant way. 1-4 Two distinct methods for deriving 
these functions have evolved: One, due to Louck and 
Biedenharn, has been applied only to U(n)I.2.4-6; the 
other, first enunciated by Perelomov and Popov, has 
been applied in addition to the orthogonal and symplectic 
groups. 3.7-10 Both methods, however, proceed by a 
somewhat complicated path to expressions comparative
ly simple in form. In this paper an alternative technique 
is presented for deriving the expressions, one which (it 
is felt) preserves throughout the simplicity apparent in 
the final results. The framework upon which this tech
nique is built is provided essentially by Green's 
workll.12.4 on characteristic identities for the genera
tors of U(n), O(n), and Sp(2h), and particularly as modi
fied by Hannabuss13 and O'Brien, Cant, and Carey. 14 

In Sec. 2, we derive the form of the expression for 
the Gel'fand invariants common to all the groups, and 
in Sec. 3, we use this to derive the particular formulas 
that appear in Refs. 1-4, 6 and 10. Appendices A and 
B contain some details of the calculation. 

2. GENERAL RESULTS 

Our procedure is to set up a matrix P the trace of 
whose kth power is directly related to the eigenvalue of 
the kth-degree Gel'fand invariant. The eigenvalues of P 
and their multiplicities are simple to evaluate, and from 
them we can immediately write down an expression for 
trp k

• As distinct from Perelemov and Popov's method, 
it is not necessary to know the eigenvectors of P, either 
right or left. 

The summation convention for contraction between 
upper and lower indices will be used throughout. The 
generators of U(n) satisfy the commutation relations 

[E~,En=o'E~-oiEL i,j,k,l=I, ••. ,n. (1) 

To define the symplectic and orthogonal groups, we in
troduce a metric tensor gii; no generality is lost in de
fining it explicitly by 

{
Vii for O(n), i,j=I, ... ,n, 

g,i= (2) 
O'i+h-O'+hi for Sp(2h), i,j=1, ••• ,n=2h. 

The group action on vectors v' and w' is required in 
each case to leave the form guv'wi invariant. For n 
even (= 2h), the contravariant form of the metric tensor 
for Sp(n) exists and is 

For convenience we define the quantity TJ by 

i. e. , 

{
1 for O(n), 

TJ = _ 1 for Sp(n). 

(3) 

(4) 

Also, let TJ = 0 for U(n). The orthogonal and symplectic 
generators may be written in terms of the U(n) 
generators: 

Eli=gikE~-gkiEL i,j,k=1, ... ,no (5) 

(E is used here to avoid confusion with E, but will be 
dropped below to enable a unified treatment. ) The com
mutation relations become 

[Eii> EkI]=gkiEi/-gi/Eki -g'kEj/ +gljEkl • (6) 

The generators we use for the definition of the Gel'fand 
invariants are of mixed variance, given by 

(7) 

The Gel'fand invariants for U(n), O(n), and Sp(n) are in 
each case now defined by 

il i2 Eik 
Ik=E, EI ••• ii' 

2 3 
(8) 

or alternatively 

I _Ei2E~3"'Eil 
k- /1 '2 i k ' 

(9 ) 

[where E replaces E for O(n) and Sp(n)]. 

In the following, we shall restrict ourselves to 
evaluating the Ik and the Ik on an arbitrary (but fixed) 
finite- dimensional irreducible representation with high
est weight [m] (= [Tnt> ••• ,m.] for U(n), but [ml' .•• ,mh ] 

for 0(2h), 0(2h + 1), and Sp(2h), and ml ? Tn2 ? 0.0 

? m. or h)' The labeling is the usual one for U(n); for 
O(n) we take the Cartan subalgebra to be the set 
{- iE2r _1 2r: r = 1, ... , h} and for Sp(2h) the set {Er+h r: r 
=1, ••. ,h}, We denote the carrier space of the repre
sentation [m] by V(rn] , and use E~ for the generators on 
this space' we introduce also a second representation 
[1] (which ~e shall later choose to be [10] or [0-1]) and 
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denote by F~ the generators on V[I]. We may then de
fine a representation on V[ 11 & V[ml by the generators 
G~=FJ&l +10E~. Consider now the operator on V[ll 
0V[ml 

(10) 

pI intertwines with the generators, as can be seen from 

12 ([l]0[m]) = (F~01 + 10E~)(F{01 + 10E{) 

=12([l])&1 +2P'+1012([m]L (11) 

Thus on each irreducible component, en], of [l]0[m], 
pI reduces to the constant 

P rnl =H12 ([n]) - 12 ([l]) - 12([m])}. (12) 

We have therefore immediately 

(13) 

where D([nJ) is the dimension of V[nl' 

We now choose ell = [10], the fundamental representa
tion for all of the groups, and choose a basis for V[1l)] 
such that the U(n) generators have matrix elements 

(14) 

and the O(n) and Sp(2h) generators are related to the 
F~ in (14) by Eqs. (5) and (7), Taking an arbitrary basis 
{lr): r = 1 '" • OJ D([m])} for V[ml' and writing 10'; r) 
for 10')0 [r), we have 

(0'; r IpC1 l)] 113; s) = (0' IF~ I i3) (r I Ef Is) 

j(r IE! Is) for U(n), (15) 

-12(rIE~ls) forO(n), Sp(2h), 

The details of this calculation are in Appendix A. The 
commutation relations for each group are left invariant 
under the transformation of the operators 

F~-F~=-F{ . 

The [10J representation. of U(n) now bec<?mes [0 -1], but 
with O(n) and Sp(2h), (10] remains as [10]. In the same 
basis (I~; r» as above, but with respect to the new gen
erators F~, the matrix elements of pi (written P ro-Il ) 
become (see Appendix A) 

(O';rlpco_ll li3;s)=j- (rIE~ Is) for U(n), 

1- 2(rIE~ Is) for O(n), Sp(2h). 

(16 ) 
For O(n) and Sp(2h), the transformation F - F has the 
same effect as a simple change of basis in [10]; ac
cordingly P{I(Jl and P CO- ll may be regarded as equal, 
the matrix elements of (15) and (16) being related by 
the change of basis; this "equality" will finally appear 
as the equality of [lk I and 11k I for O(n) and Sp(2h). 

We now define 

p ={- p[O-1J for U(n), 

- !Pro-ll for O(n), Sp(2h), 

i5J p Cl()] for U(n), 

hpC1 ()] for O(n), Sp(2h). 

(17) 
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Then 

trpk = 6 (0'1; rll pk 10'1; r 1) 

"1,Tl 

6 (0'1; r 1 1P I 0'2; r 2) (0'2; r 2 1P I 0'3; r3)' .. 
Ol1'0oo,a k 

rtf" <)Q ,r k 

= 6 (rll E:~ Ir2) (r21 E:! I r 3) '" , (rk IE:~ Ir l) 
rl'c> .. c>,rk 

=trE"IE"2 •• , E"k 
"2 "3 "1 

=lk XD([m]). (18) 

Similarly 

trP =7 kXD([m]), (19) 

Hence, a general formula for the Gel'fand invariants is 

D([m]}lk= ~ P~nlD([n]}, 
[.l E [0-110 [011 

(20) 

D([m]}Ik= 21 ~.lD([n]), 
[nlE[101<8tml 

where the hnl and P[nl are the eigenvalues of P and P: 

P 
-{- HI2([n]) - 12([m]) - 12([0 -l])} for U(n), 

[nl-
-HI2([n])-12([m])-12([10j)} for O(n) and Sp(2h), 

P jHI2([n])-12([m])-I([10])} for U(n), 

[nl-~{12([n])_12([m]) -12([10])} for O(n) and Sp(2h). 

(21) 
(-) 

Evaluation of the P[nl in terms of the m l , and Weyl's 
dimension formula, provide a more explicit form of 
Eqs. (20) and (21). It will be clear from what follows 
that we lose no generality by imposing on [m] the strict 
inequalities 

111 1 > m2 > • ,. > tnn' 

This is because we may define, for nil = Tn 1+1' 

D([ml,'" ,ml- 1, ml"'" 111n]) 

(22) 

=D([ml,'" ,111 I ,ml+l +1,.,. ,mn])=O, (23) 

[this turns out to be compatible with the Weyl dimension 
formulas for U(n), O(n), and Sp(2h)]. If Eq. (22) holds, 
there is a one-to-one correspondence between the irre
ducible components of [10]0(117] and the weights of [10]; 
for U(n), this is also true of [0 - 1]. Hence we may label 
the irreducible components, en], of [10]0[m] (and so al
so the eigenvalu.es of P), by the weights of [1 OJ, and 
Similarly with [0- 1] and the eigenvalues of P. We write 

[n]1 = [m] + [~]i ([~ ]1)' 

and Pi (PI) for the eigenvalue of P(P) in [n ]1. where 

[:l]1 =[0, .•. ,0,1,0, ..• ,0] (1 in the ith position) 

and 

[~]I =[0, .•. ,0,-1,0, ••. ,0] (-1 in the ith position) 

when 
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i=l, ••• ,n forU(n) 

i=l, ... ,h forO(2h), O(2h+1), andSp(2h), 

and 

when 

i=l, ... ,n [U(n+l)j2] forO(n=2h), O(n=2h+l), 

and Sp(n = 2h)j for O(2h + 1) we set 
(-) (-) 

[~] (n+t>/2(=[~h+l)=[0, •.. , 0]. 

The expression for 12 in terms of the m l can be straight
forwardly determined, and from it we can write down 
the eigenvalues PI and PI: 
PI=nzl+n-7)-it withi=l, .•. ,n forU(n), 

PI =m l +l-l ~ i=l, .. "h forO(2h), O(2h+1), 

Sp(2h), 

withi=l" •• ,n forO(n=2h), 

O(n=2h+l), Sp(n=2h), 

p(n+t> /2 = - P(n+t> /2 = (n - 1)/2 = h for O(n:= 2h + 1). 

(24) 

(details in Appendix B). For U(n), the PI and PI are re
spectively the partial hooks Pin and Pi!' Equations (20) 
and (21) thus reduce to the formula (B12) of Ref. 1 and 
its siblings: 

n 

D([m])Ik=,0 p:D([m] +[~]I), 
1=1 

(25) 
n 

D([mli1k = 6 Pl' D([m]) + [~]I)" 
1=1 

3. FULLY EXPLICIT FORMULAS 

WeyPs dimension functions are given in Ref. 15 in 
the form 

D([m]):=R ([q ])/{R ([q]) 1 [mJ'[OJ}' 

with 

ql= 
{

ml+n-i, i=l, ••• ,n forU(n) 

m l +!-(n-7)+l)-i, i=l, ... ,h forO(n), Sp(n). 

for U(n), 

for O(2h), (26) 

for O(2h + 1), Sp(2h). 

From the relations 

(all groups), 
(27) 

we may write 
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R([q]) =R([p]) 

n (PI-Pi) 
I<i 

n (PI - Pi)(PI - Pn+l-') 
1 ""I<i""h 

for U(n), 

for O(2h), 

x n (PI - Pn+l-1) for O(2h + 1), Sp(2h), 
1 "'I ""h 

from which 

D([m] + [~]j) 
D([m ]) 

rl (PCPI +1) 
i=1 (Pi-PI) 
Nt 

for U(n), 

IT 
i·1 

'~I, n+l-1 

n 
n 
J.l 

';<1,(".0/2,.+1-1 

(PJ-pj+l) 
(Pc PI) 

x (PI - PatH + 2) 
(PI - P".I-i + 201<.+0 /2 

for O(n = 2h + 1), 

Sp(n = 2h). 

(28) 

(29) 

In obtairdng (29) from (28) we have used the relations 

p, - PI =P".I-1 - Pn+I-J [N (n + 1)/2 for O(2h + 1)], 

D([m] + [~](n+O/2)/D([m]) = 1 for O(2h + 1), 

Pi - P(n+!) /2 + 1 = - (Pn+I-J - P(n+!) 12) for O(2h + 1) 

(30) 

[the 201 (n+!)/2 in the denominator of the expression in 
(29) for O(2h + 1) being needed to accommodate the 
second equation of (30)]. The equations (29) can be 
equally _well written by replacing throughout P with p, 
~ with~, and the H+" signs in the rhs numerators (and 
in front of 201("..0/2) with" -" signsj for we have 

[;ill =- [~]I' 

PJ-PI=Pi-PI [i=l, ... ,n, H(n+l)/2 for O(2h+l)], 

Pi - P(n+!) /2 - 1 = - (Pn+l-J - P(n+!) 12) for O(2h + 1). 

Thus finally we express the 1k , Ik in the form 

..:; k n (PcPI+l+EJI) 
1k =u PI n 

1=1 J=1 (Pi - PI) 
NI 

where 

for U(n), 

for O(n=2h), 

for O(n = 2h + 1), 

for Sp(n=2h). 
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[A comparison of Eq. (24) and Eq. (2.14) of Ref. 3 con
firms the equivalence of Eq. (32) and Eq. (3.6) of that 
paper.] One can readily verify from (30), (31), (32), 
and (33) that for O(n) and Sp(n) 

1k =(-)klk • 

ACKNOWLEDGMENTS 

The author would like to thank Professor H. S. Green 
for the inspiration of the characteristic identities, and 
Dr. A. L. Carey and A. Cant for some valuable help and 
enlightenment. He would also like to acknowledge the 
financial support of a Commonwealth Postgraduate Re
search A ward. 

APPENDIX A: MATRIX ELEMENTS OF 
p' [101 AND PI[O-11 

For U(n) 

(Ci; r I Pc 1{)] I i3; s) = (Ci I F~ I (3) (r I Ef Is) 
= O~Oj8 (r lEt Is) 
= (rIE~ Is). 

For O(n) and Sp(2h) 

(Ci ; r I P[ 1 (ll I i3; s) = (Ci I F~ I (3) (r I Ell s) 

(A1) 

=glk(Ci IF kjl(3)gil(rIEllls) 

=glk(gkmO~Oj8 - g mjO~Ok8)gjl(r IE Ii Is) 
= (gikgk",g81_g18gcdgil)(r IEII Is) 
= (o~g81_g18o~)(r IEli Is) 
=(rIE~ +g8io~Ellls) 

=2(r IE~ Is). (A2) 

The calculation for Pr.O-IJ is identical except for the sub
stitution (Ci I F~ 1 (3) = - o~o j",' It is notable that the result 
(A2) is independent of the particular choice of gij, pro
vided only that g iJ = 1jg ii . 

APPENDIX B: THE EIGENVALUES OF P AND P 

12([m]) is evaluated by letting it act on a highest weight 
vector I\:l>, and using the commutation relations and 
the fact that E 1 ~:l> = 0 whenever E is a generator that 
increases the weight. This method is standard and the 
results arel1 ,12 for U(n) 

n 

12=6 mj(mi +n + 1- 2i), 
1=1 

for O(n), Sp(2h) 
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h 

12 =26 mj(ml +n + 1-1)- 2i). 
1=1 

Thus 

• {n =12([0 - 1]) for U(n) 
12([10]) = 

2(n -1) for O(n), Sp(2h), 

and, from (21), with 1 ~ i ~ h for O(n) and Sp(2h), 

and 

n or h 

Pi =t 6 [- (mj- Ojj)(mj- Ojj +n +1-1)- 2i) 
j=1 

+ m j(m J + n + 1 - 1) - 2i)] + t (n - 1) 

=t(mj +mj +n +1- 1)- 2i-1 +n-1) 

=mj +n-1)-i, 

n or h 

Pj=t 6 [(mj+oj/)(mj+oji+n+1-1)-2i) 
j=t 

- mj(111 j +n +1-1)- 2i)]- t(n -1) 

=t(mj +mj +n +1-1)- 2i +l-n +1))] 

=mj+1-i. 

(Bl) 

(B2) 

(B3) 

(B4) 

That Pn+l-j = - pj for O(n), Sp(2h) (1 ~ i ~ n) is clear from 
(21) and the relation [~]not-j = [;i]I' For O(2h + 1), 

1 ([ ']) 1 -P<n+1l12=412 10 =2:(n-1)=-P<n+1l/2' 
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On the self-induced transparency effect of the three-wave 
resonance processa) 
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The Rockefeller University. New York. New York 10021 
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The self-induced transparency effect of the three-wave resonance is studied by the inverse scattering 
method. By transforming to the characteristic coordinates of the background wave, the inverse-scattering 
theory becomes greatly simplified. With the presence of a constant background wave, the three-wave 
process is dispersive, and the solitons and continuum behave in a different way from those of spatially 
bounded wavepackets. The continuum decays away, depositing energy to the background. The solitons 
have velocities which are amplitude dependent. 

I. INTRODUCTION 

The effect of self-induced transparency of a powerful 
ultrashort coherent light pulse through a resonant two
level medium was first predicted and experimentally 
verified by McCall and Hahn. I In this effect, the light 
pulse has sufficient intensity to cause total population 
inversion of the medium, and yet its duration is short 
compared with the relaxation time of the excited me
dium, so that the medium returns the energy to the 
pulse by coherent stimulated emission due to the excess 
intensity, and loss less propagation of coherent pulses 
becomes possible. The subsequent discovery of the 
solvability of the of the equations of this effect by Back
lund transformations and the inverse-scattering meth
od2- 4 allows a thorough study of the analytical solutions 
of this effect. It is now well known that arbitrary inci
dent pulses will eventually break up into solitary pulses 
above a threshold. Interactions among solitons eventual
ly only cause phase shifts without affecting the solitons' 
shapes. The so called "radiation" or continuous portion 
of the pulse is gradually absorbed by the medium. 4 

Armstrong et al. 5 first showed that there is an analo
gous effect in the three-wave resonance process, in 
which three interacting waves satisfy the resonance con
ditions ± WI ± w 2 ± w3 = 0, ± hI ± h2 ± h3 = O. More recently, 
Nozaki et al6- 7 studied this effect in the three-wave in
teractions in plasmas. Here, one of the waves acts as 
a background whose spatial extent is much larger than 
those of the other two waves, so that with respect to the 
latter two waves, the former may be considered to be 
infinite in extent. Nonlinear resonant interaction is 
such that the background feeds energy to the leading 
edge of the two short pulses which, in turn, return the 
energy to the background at the trailing edge. 6.7 

The discovery of an inverse- scattering transform of 
the equations of the three-wave process by Zakharov 
and Manakov8 greatly facilitates the understanding of 
this process. Using this transform, Zakharov and 
Manakov9 and Kauplo have independently studied the 
solutions in which all three waves are spatially bound
edo Recently, using the Backlund transformation, Case 
and the authorl1 found generalizations of the solutions 

a)The work was supported in part by the Air Force Office of 
Scientific Research, Grant 76-3085. 

of the three-wave self-induced-transparency of Nozaki 
et al, 6-7 and new solutions which showed that, in gen
eral, solitons are composed of two components, de
noted as fast and slow according to their velocities; de
pending on which wave acts as the background, only one 
of the components is stable. The speeds of the solitons 
now depends on the width and amplitude of the pulses, 
in contrast to solutions studied in Refs. 8-10. 

In this paper, we propose to study the three-wave 
self- induced transparency effect by the inverse- scat
tering transform. By transforming to the characteristic 
coordinates of the background wave, the "potential 
matrix" in the linear operator of inverse scattering 
transform contains only the two spatially bounded 
waves. The eigenfunctions of this operator has a much 
simpler analyticity structure than those of the original 
operator of Zakharov and Manakov8 as far as the self
induced transparency effect is concerned, however, the 
"initial" scattering data are not initial conditions at 
time t = 0, but at the characteristic coordinate T = 0, 
which is presumed to be the leading or trailing edge of 
the background. 

The inverse scattering transform allows a more com
plete analytical study. One can now investigate multi
solitons. They can chase through each other, due to the 
amplitude dependence of velocities, in contrast to pre
viously studied cases in which there are only three fun
damental velocities, the group velocities C i . The effect 
of the solitary pulses on the background is a phase 
change which is the sum of those of the stable branch of 
each individual solitary pulse. The solitons chase 
through each other without changing their shapes, but 
cause phase shifts. The background causes dispersion 
so that the "continuum" portion of the short wave decay 
as long as they are in the medium of the background, 
giving up energy to the background. 

In Sec. II, we present the inverse scattering theory 
of the relevant linear operator. In Secs, III and IV, we 
discuss soliton solutions and the behavior of the con
tinuum. Only the case in which 1112 (or 1]3) acts as the 
background, and EI = E2 = E3 = 1 (i. e., W2 = Wj + W3) is 
studied in detail. Other cases are briefly discussed 
towards the end, As expected, in explosive instability, 
a singularity can develop. We determine the condition 
under which this could happen. For other possibilities, 
initially regular pulses will stay regular. 

168 J. Math. Phys. 19(1). January 1978 0022-2488/78/1901-0168$1.00 © 1978 American I nstitute of Physics 168 



                                                                                                                                    

Ii. INVERSE-SCATTERING TRANSFORM 

Following Kaup, 10 we write the one-dimensional 
three-wave equations in the form 

qu +Clqlx=iYlqtqt, 

q2t + C2q2x = iY2qtqt, 

q3t + C3q3x = iY3qtqt. 

(II. 1) 

Here, Yi are constants with Y~ = 1; q i are the envelope 
wave amplitudes with group velocities C i , whose cen
tral frequencies and wavenumbers satisfy 

(II. 2) 

± k1 ± kz ± k3 = O. 

The case when all signs are the same pertains to ex
plosive instability; correspondingly, Yi have the same 
sign. Other possibilities represent decay instability, 
with one of the y's having a different sign. We also as
sume that 

(II. 3) 

For simplicity, we consider the case when q3 acts as 
the background. In the characteristic coordinates of q3' 

Z = (2C 3)-I(X + C 3t), 
(II. 4) 

The dependence is given by 

Equations (II. 1) allow an inverse scattering transform 
via the linear eigenvalue probleml2 

. a 
-taz 

Here 

I; 0 
Q! 

1/>1 

(II. 5) 

(II. 6) 

(II. 7) 

[i3 j , introduced below in Eq. (II.11), are thus defined up 
to a constant whose value does not affect the results]. 
V ij are related to qi by 

and 

v31 = ({32,j (312)1 12q2 , 

V23 = ({3I,j{312)1 12ql , 

vI2 = ({3I,j (323)1 12q3 , 

Vii =VjjEjE j , 

where 

(Ej, E2, E3) = (YI, - 1'2, 1'3)' 

(II. 8) 

(II. 9) 

(II. 10) 

2C3i3i~VI2 

- !;C3(C I + 2(32) 

(C I + C3){3j~v32 

(C 2 +C3){32JVI3 l 
(C I + C3){3i~v23 

- I;(C IC 2 + C3{32 + C3i33) 

(II. 11) 

All waves except vI2 vanish at Z - ± 00 and finite T. 
Cross differentiating Eqs. (II. 5) and (II. 11) shows that 
qi satisfies Eqs. (II. 1) and leaves I; constant. Equation 
(II. 5) is of the same form as the linear eigenvalue prob
lem studied by Manakov with respect to a two-compo
nent nonlinear Schrodinger equationo 13 Using this opera
tor for the inverse scattering transform has the advan
tage over that used in Refs. 8-10 in that the background 
V12, which does not vanish at x =- co, occurs only in the 
T dependence. The analytic properties of the scattering 
matrix and the wavefunctions becomes greatly simpli
fied. However, the connection between the inverse
scattering transform and the initial value problem is 
no longer so simple. Presumably, the solution via in
verse-scattering transform can be obtained as follow: 
Knowing VI3(Z, TO) and V23(Z, TO) for a fixed TO and all Z, 
we can find the scattering datum of Eq. (II. 5) at T = TO; 
the knowledge of VIZ at Z = ± 00 and appropriate intervals 
of T then allows us to find the T-dependence of the scat
tering datum; Vjj(Z, T) is then obtained for the corre
sponding intervals of T by inverse-scattering, i. e., the 
Gel'fand-Levitan equations. 

The initial values are, however, vij(x,O) at all x and 
t=Oo Taking TO=O, we see that vij(x,O) forx~O com
pletely determines Vij(Z, T) for all Z > 0, T ~ O. (At Z 
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= + 00, vI3 =v23 =0, but VI2 need not vanish.) Similarly, 
knowing Vjj(x, 0) for x"" 0 completely determines Vjj(Z, T) 
for Z < 0, T "" O. (Again, at Z = - 00, vI3 =v23 = 0, but VI2 
need not vanish. ) The knowledge of VI3(Z, 0) and 
V23(Z, 0) for Z > 0, T = 0, and vij(Z, 0) for X"" 0 de
termines Vij(Z, T) for all Z > 0, T < 0; and similarly, 
VI3(Z,0), V23(Z, 0) for Z < 0, T =0 and Vjj(x, 0) for x ~ 0 
determines vij(Z, T) for all Z < 0, T> O. There is a cer
tain degree of independence between Vij(Z, T> 0) and 
Vjj(Z, T < 0). Given VI3(Z, T = 0), v 23 (Z, T = 0), and 
v 12(Z = - 00, T) for T"" 0, the values of vjj(Z, T < 0) are 
completely determines, but there exists infinitely many 
sets of values of Vjj(Z, T> 0) which will give the same 
VI3(Z, T=O) and V23(Z, T=O)o There are various ways of 
defining initial-boundary values in Z, T that gives a 
one-to-one correspondence to some initial problem in 
x, t. To conveniently study the self-induced trans
parency effect, we set 

(II. 12) 

From what we have said, it is clear that one should not 
be too concerned about what happens at T> 0, except for 
the values of vI3(Z, 0) and v23(Z ,0) they produce at T = 00 
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Indeed, we shall ignore the region T> ° for most of our 
discussions. 

The analytic properties of the solutions and the scat
tering matrix of Eq. (11.5) for vij with or without the 
symmetry, Eq. (11.9), remain the same as those in 
Ref. 12. Thus, defining the Jost solutions q;<.li j(Z, !';) by 

lim cp<')3(Z, !';)-[:jexp (_ilz), (11.13) 
k .... %00 (1 

1 

(11.14) 

where l'lj is the Kronecker delta, one finds that 
cp<+)Y(Z,!';)exp(-i{;Z/a), y=I,2, and cp<-)3(Z,!';)exp(i{;Z/ 
a) are analytic in the upper half !'; plane, while 
cp<-)Y(Z, (;) exp(- i!';Z / a) and cp<+)3(Z, !';) exp(i{;Z / a) are 
analytic in the lower half !'; plane, provides that I vY3 I 
and Iv3y I are integrable. These solutions are thus 
uniquely defined in a half !'; plane up to and including the 
real line. Within the domains of definition, 

(11.15) 

and 

(11.16) 

We have used Greek indices y, a to denote those rang
ing from 1 to 2, and Roman indices i, j for those rang
ing from 1 to 3. This will be the convention adopted in 
the future. On the real line in !'; = 0, one may also de
fine the scattering matrices a1j(!';) and b1j(!';) by 

3 

cp<+)/(Z,!';) = 6 bll({;)cp<-II(Z, !';), 
1=1 

3 

cp<-H(Z, !';) = 6 aIlWcp<+)I(Z, !';). 

Clearly, 
3 

1=1 

6 all(!,;)b IjW = Oij. 
1=1 

It can also be shown that 

det(a) = det(b) = 1. 

(11.17) 

(11.18) 

(11.19) 

(11.20) 

From the mentioned analytic properties of cp<±li(Z, !';) 
and their integral reprentations in terms of Green's 
functions [see Eq. (II. 35)], one can easily show that 
byo(!';) and a33(!';) are analytic in the upper half !'; plane, 
and ayo(!';), b33 (!';) are analytic in the lower half !'; plane. 
We remind that all functions depend on T which has not 
been explicitly indicated, but are obvious from Eq. 
(11.11). 

The bound states are given by: 

(a) at!';k> k=I, ... ,N, Im(!';k) > 0, 

det[byo(!';k)] =a33(!';k) = 0; 
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(II. 21) 

then there exists constants CY3 (!';k) such that 

bd!';k)CP<+>1 (Z, !';k) - b12 (!';k)CP<+12(Z, !';k) = C 13 (!';k)CP<-13(Z, !';k)' 

- b21 (!';k)CP<+11 (Z, !';k) + bl1 (!';k)CP<+12(Z, !';k) = C 23 (!';k)CP< -13(Z, !';k); 

(11.22) 

(b)at!';I' l=I, .•. ,M, Im(tl)<O, 

det[ayo(I I)] = b33 (I I) = 0; (II. 23) 

then there exists constants C3r(!';I) such that 
2 

cp<+13(Z, 1: I) = 6 C3y (E l)cp<-IY(Z, E I). (11.24) 
Y=1 

For simplicity, we assume that all zeros are simple and 
do not lie on the real line. Although this is not the most 
general pOSSibility, the presence of other possibilities 
presents no theoretical difficulty and merely compli
cates presentation. We also note that depending on sym
metries of particular potentials, there may be further 
restrictions on bound states. 

When symmetry, Eq. (II. 9), is imposed on the poten
tials, we have 

(II.25) 

The numbers of bound states in the upper and lower half 
!'; planes are now equal, and !';k = It. The bound state 
constants Cd!';l) and C3y (!';t) are related by 

CY3 (!';I)=EyE3Gty(!';t). (11.26) 

When E1 = E2 = E3, there are no extra restrictions on the 
bound states. For all other cases, further restrictions 
are necessary for regular initial conditions. 

We shall now present the Gel'fand-Levitan inverse 
scattering theory. 

The wavefunctions cp<-li j(Z, ?;) allow the following 
Volterra representations: 

cp<-)Yj(Z, !';) = oYj exp(i~ Z) 

+1: K<-IYj(Z,s)exp(i~ s) ds, 

cp<-)3 j(Z, !';) = 03 j exp (- i~Z) 

(II. 27) 

+!: K<-13/Z, s) exp (- i~S) ds, (11.28) 

where K<-lij(Z,S) are independent of !';. This fact can be 
verified by substituting Eqs. (II. 27) and (II. 28) into Eq. 
(11.5). One finds from Eq. (11.27) that for Z > s, 

- i(a~ + o~)K<-IY a(Z, s) + v o3 (Z)K<-)Y3(Z, s) = 0, 

- i(o~ - aOs)K<-IY3(Z ,s) + E 1!3o(Z)K<-IYa(Z ,s)=O, 

with boundary conditions 

K<-IYj(Z, _ 00) =0, 

and 

(11.29) 

(11.30) 

(11.31) 

The fact that Eqs. (11.29)-(11, 31) can be uniquely 
solved for K<-IY j(Z, s) for s < Z follows from the theory 
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of characteristics of first order partial differential 
equations. Similarly, for K(-13 j (Z, S), 

-{l~ - O~)K(-13cr(Z, S) +vcr3 (Z)K(-133(Z, S) = 0, 
2 -i(o~ + o~ )K(-133(Z, S) + E VSy (Z)K(-13y (Z, S) = 0, 

for Z < s, with boundary conditions 

K(-13 j (Z, _ 00) = 0, 

K(-)3 o(Z, Z) = - iv 03 (Z)j2. 

(II, 32) 

(II. 33) 

(II. 34) 

Furthermore, one finds from an asymptotic expansion, 
at I I; 1- 00, of the integral equations 

cp(-IY j(Z, 1;) = oYj e){p~~ Z) 

+/: dy ~~/-ljl(Z,y, t)Vlm(y)cp(-IYm(y, 1;), 

(II. 35) 

where 

g(-l j/(Z ,y, 1;) = _ iOn exp[iI;d /0'-1 (Z - y)]' (II. 36) 

and d1 = d2 = - d3 = 1, that 

(II. 37) 

and 

K(-11 2(Z,Z)=-i!: dsv23 (S)V31(S), (II. 38) 

It follows from the nonlinear equation of V12 and V21' 

i. e., the equation for q3 in Eqs. (n. 1) in the charac
teristic coordinates, that for T":; 0, 

(II. 39) 

(II. 40) 

Thus, KC-lij(Z,Z) are the quantities we seek to solve 
from an inverse scattering theory. 

The Gel'fand-Levitan equations for K(-lIj(Z,S) can be 
derived by standard procedure, 14 namely, from the 
Fourier transform of the contour integrals 

Fj(Z, I;)=~ ± 1 dl;' (1;' - I;t1 
2m 0=1 c 

xnYOw)cpC+loj(Z, 1;') exp (- i I;~ z), (II. 41) 

I 3.(Z 1;) = ~ r dl;' (!;' _ 1;)-lb-1(I;') 
J' 2m}c 33 

(II. 42) 

where 

(II. 43) 

C is a contour starting from 1;':=- 00 +iE ending at 1;' 
= 00 + if and passing above all zeros of a33 (I;'), and C is 
a similar contour passing below all zeros of b22 (I;'). 
We shall omit the details, and write down the equa-
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tions. 15 For y < Z, 
Z 

K(-IY J(Z ,y) - f_~ K(-13 f(Z, S)B(-IY3(S +y) ds 

= B(-) YS(Z + Y)03f' 

2 Z 
K(-13J(Z,y) + 2:; f dsK(-IOj(Z, S)B(-130(S +y) 

0'=1 _00 

=(0j3-1)B<-13j(Z +y), 

where 

B(-\3(x) = (21fiQl tlJ~~ :::)g exp (- i ~ X) dl; 

_ '£ CY3(i)[~33(!;;)Q1l-1 exp C i 1;; X), 
I~ ~ 0' 

and 

B (-l () (2 . )-1 r~ ~ (. I; ) dr 
3r X = 1flQl :J_~ b

33
(1;) exp laX !, 

+t C3y(i)[b33(~I)Q1l-1 ex/i Ii x), 
I~ \ 0' 

(II. 44) 

(II. 45) 

(11,46) 

(II. 47) 

b33 and ~33 denotes derivatives of b33 and a33 with respect 
to 1;. 

In the case of interest here, 

(11.48) 

From Eqs. (II. 46) and (11.47), we see that the scatter
ing datum needed are b3yW/b33 (1;), ay3W/aS3(!;) and the 
bound state constants 

(II. 49) 

and 

(II, 50) 

The r dependence of these quantities may be easily ob
tained from Eq. (11.11) and the asymptotic values of 
Vii atZ-±oo, In general, if 

lim vY3 (Z, T) = lim V3y (Z, r) = 0, (11.51) 
z~±~ z~±oo 

and 

lim (3ilvdZ, r) =j<-I12(r), (II. 52) 
z ... _co 

then 

(11.53) 

and 

(II. 54) 

Whenj(-ldr) takes the simple form of Eq, (II. 12), we 
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have, for T':: 0, 

where 

and 

~ = i31z l;/2k, 

7) = (i3IzsZ + 4€t€zk2)1 /Z(2ktt, 

Q(±) = S(CZ
3 - C 1CZ) ± 2kC 37), 

A (+)(1;,0) = H1 + €1€Z~(~ - 7))]-1 

x[b3t (l;, 0) +EIE2(~ - 7)b3Z (I;, 0)], 

A (-)(1;,0) =H1 +E1EZ~(~ - 7))]-1 

X[b32 (1;, 0) - (~- 7)b 31 (1;, 0)]. 

For T> 0, we have simply 

b3y (l;, T) = b3y (l;, 0) exp[il;i3dC3_y + C 3)T]. 

(II. 56) 

(II. 57) 

(II. 58) 

(II. 59) 

(II. 60) 

(II.61) 

The T-dependences of C3(!;f, T) are the same as 
b3(st, T), i. e., Eq. (II. 55) with I; replaced by I;f and 
b3y replaced by C3Y • The T-dependences of Cy3 (l;j, T) and 
ay3 (I;,T) are deduced from Eqs. (II. 25) and (11.26). Tri
vially, from Eq. (II. 54), b33 (S) and a33(1;) are indepen
dent of T. 

There also exists a set of Gel'fand-Levitan equa
tions for K(+)ij(Z,y), where K(+)ij(Z,y) are defined by 

cp(+)l j(Z, 1;) = oj j exp(idj I;Z / Ci) 

+ J 00 K(+li j(Z, s) exp(id j I;s/ Ci) ds, 
z 

(II,62) 

where 

(II. 63) 

These require a different set of scattering datum. The 
equivalence of the two sets of Gel'fand-Levitan equa
tions will be demonstrated in the Appendix. 

III. SOLITONS 

The simplest solutions are the solitons, correspond
ing to aY3(s) =a3y(l;) =0. In this case, Eqs. (II. 44)-
(II. 45) reduce to a system of linear algebraic equations. 
Take the case when El =E2=E3, and let there be only one 
bound state at SI=W1 +ivl' and st. 

For T':: 0, the bound state constants, P31' P32 evolve 
according to 

IP31(st,T~=a(+)(I;(,ol 1 l 
l!dl;(, Tlj ~(I;n - 7)(st~ 

xexp[m(+)(sn T] +a(-)(I;f, 0) 

x [ltIl ~ ~I'I~ exp[m'·'I'tir], Im.11 

where ~("), ~, 7) are defined by Eqs. (II. 56)-(II. 58). 
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For T'" 0, 

P3y(St, T) =P3Y(S, 0) exp[iI;tJ33(C 3_y + C3)T]. (III. 2) 

Let us set 

K(-)Y o(Z,y, T) =K(-)Y o(Z, T) exp[ - il;IY/ Ci ], (III. 3) 

and 

(III. 4) 

Solving Eqs. (II. 44) and (II, 45), and using Eqs. (II. 34) 
and (II.3), we have 

(III. 5) 

V1Z(Z, T) = (312'l + 2iJ3di313i3~3vI)"1 P31(1;f, T) 

X Pj'2(l;t, T) exp[ (2vl + il;i)Z / Ci]~ -I, (III. 6) 

where 

~ = 1 + (i313i32sVI)"2 exp(4vlZ / Ci)[ IPsl (sf, T) 12 
+ Ip32(l;t,T) 12]. (III, 7) 

To analyze the solution, one should transform from 
Z and T back to space-time coordinates x and t. In the 
region x'':: C 3t (T':: 0), the solution is given by Eqs. 
(III. 1) and (III. 5)- (III. 7), and is the same as the two
soliton solution in Ref. 11 with v12 of the shock type, 
while VaS are spatially bounded, We take the factor 

1) = [«(31zl;/2k)2 + 1]1 /2, (III. 8) 

to have a cut on the imaginary axis from - i2kJ3ii to 
i2ki3iL and stay on the Riemann sheet sign(Im7) 
= sign(Iml;). The solution in the region x':: Cst has two 
branches corresponding to a(+) and a(-) in Eq. (III. 1), 16 

with different group velocities cli) and Cli) respective
ly. Let 

k1)(l;n = (At) - iAlil), (III. 9) 

where 

AlT) = [~a + ~(a2 + b)!l2]1 IZ(signwl), 

AliJ = [_ ~a +~(a2 + b)1 12]1 IZ, 

a=(3I2(WI- vi)/4+kZ
, 

b = i3iZ(WI vI)2/ 4. 

Then, according to Ref. 11, 

C(±) [VI(CIC3+CZCS -2CICz)±~93Alj)] 
IZ [vI(2C3-CI-CZ)±2AI']' 

(III. 10) 

(III, 11) 

(III. 12) 

(III. 13) 

(III, 14) 

For a fixed VI' cl~) are monotonic functions of WI in any 
quadrant, taking on extremum values at 1:1 - 00. It can 
be shown that 

Cz '" cli}? (CSCI +C3CZ - 2C I CZ)/(2C3 - C I - C z), 

(III. 15) 

CI ,:: Cli)':: (CSC I + CsC z - 2C1CZ)/(2C 3 - C 1 - Cz). 

(III. 16) 

As t-_ oo , in the region x'::C 3t, v1 2 -ll13 and 1IZS=I'13 
= O. As t - + 00, x,,; C 3t, v ij approaches the a(-) branch 
(sloW) shock type soliton with the (/+) branch vanishing. 
The magnitude of /vd oo , r = 0) / = i313k, but the phase is 
now eli) where 

taneli) = Vl i3 1Z (2AlT) - w l i31z )[k2(1 + I ~(I;n 

(Ill. 17) 
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At finite Z and T=O, IVl21 is, in general, not equal to 
f313k. At T = 0, let 

P3,,(tt, 0) = exp[ - 2istZ a/ad, (III. 18) 

and define Z ,,3 by 
2 

exp(- 4vIZ as/ Ci) = (Ci/2v l )2[.0 exp(- 4v1Z/ Ci), (III. 19) 
,=1 

then 

V,,3(Z, 0) =2i exp(2i~1 (Z -Z,,) - 2~1 (Z,,-Z"3») 

(
2V \ 

Xcosh ~(Z -Z"s); . (III. 20) 

Thus, at t = - "", the long wave train V I2 = i3lsk is un
disturbed. The pulses of vaS gradually enter this con
stant background from the right. After approximately 
time to, 

(III. 21) 

most of the VaS pulses have passed into the background. 
In the meantime, inside the background, the pulses split 
into a fast (a<+» and a slow (a<-» component both with 
group velocities less than C 2 so that they are propagat
ing towards the left relative to the front of the back
ground. The fast branch gradually vanishes until at t 
- DO, there is only the slow component. The short 
pulses vus modify the background within the widths of the 
pulses. After they are mostly inside the background, 
the amplitudes of the background in front and behind 
them are essentially the same; the only difference is the 
relative phase which will eventually approach the value 
eli) given by Eq. (III. 17). 

As mentioned in the last section, what happens in the 
region T> 0 is not too relevant to the self-induced trans
parency effect except that definite fUnctional forms of 
v~f) are formed at T=O. In this case, at t- - 00, the 
solution is a pure vI3-soliton. The presence of infinitesi
mal amounts of v23' vl2 causes the v l3-soliton to be 
gradually transformed into v2S' v12' Depending on when 
the VaS pul::::es hit the constant background, some amount 
of Vtz will be present at t - + "", T> O. One can find other 
solutions at T> O. One can find other solutions at T> 0 
which produce the same Vas at T = O. It is interesting, 
however, that solitons of VaS at T> 0 produce solitons 
inside the background (T < 0). 

The solutions for the case when there are two bound 
states at SI and S2 (st and sn can be found similarly. 
The expressions are rather complicated. However, one 
may deduce some general asymptotic behaviors. We 
assume that the group velocities given by Eq. (III. 14) 
are such that C~2)(!;2»Cg)(SI)' then Cli)(sz) <clz)(st). 
In this case, no matter whether the sz-solitons or the 
st-solitons enter the background first, eventually, only 
the slow branches of each will remain, and the sl-soli
ton will be to the right of the s2-soliton. There is an 
asymptotic phase difference of the background between 
the front and back of the solitons. It is the sum of the 
phase change due to the slow branch of each bound 
state, i. eo , 

2 

ti12 =.0 eli)(s;). (III. 22) 
i=1 
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It is also interesting to note that according to Eq. 
(III.14), there is a locus in the t plane for each given 
Cli). All solitons along this locus will eventually move 
with the same speed. 

IV. CONTINUUM 

We have seen that the solitons inside a background 
behaves quite differently. The reason, as one might 
well suspect, is that the presence of the background 
causes induced dispersion. It is, therefore, not sur
prising that the continuum spectrum of the short pulses 
will gradually decay as any dispersive system. The en
ergy is absorbed by the background, so that, the shape 
of the background may change after passage of the short 
pulses with a continuum. 

To simplify the discussion, we assume that short 
pulses are of compact support and contain only a con
tinuum contribution of small amplitudes. In this case, 
the first approximation to the solutions of Eqs. (11.44) 
and (11.45) is 

-~V"3(Z, T) =K<-)3,,(Z ,Z, T) "'-B<-)3u(2Z, T), (IV. 1) 

z 
K(-)2(ZZ T)"'-J B<-) (Z+s T) 

1 " _00 31 , 

XB<-)23(S +Z, T)ds. (IV. 2) 

By Eqs. (11.54) and (II. 55), for T':; 0, 

rB<-)31(2Z,T~ . -lf~ r 1 lA<+)(~,O) 
LB(-)32(2Z'T~=(27TZCi) ~ ds ~~-1)~ 

X exp[i/+)(s, x, t)l 

L
1)- ~J + 1 A<-)(s,O)exp ifC-)(s,x,t)l 

(IV. 3) 

where x and t are space-time coordinates, and 

(s n(±») x (t nCO) 
jC±)(s,x, t)= a +-2- C

s 
+ a --2- t. (IV. 4) 

For large t, the major contributions to the integrals in 
Eqs. (IV. 3) come from the stationary points of 
j(±)(s,x,t). The stationary points ofj<') andj<-) turn 
out to be the same. They are at 

t 1•2 = ± ki3i~(i313i323tl /2 ~23(T - c 1) 

(IV. 5) 

where the + signs pertains to SI' and the - sign to S2' 
Since the short pulses are of compact support, and the 
phase velocities 

aF (') (aF<±»)-1 W(')(s) -= _J __ l_ 

ax at ' 
satisfy 

C1 '" W(±)(s)':; C2 , 

(IV. 6) 

(IV. 7) 

where equality holds only at Is I - 00, We may suppose 
that for some x_ < 0, v3,,(x, t) is zero outside the region 

(IV. 8) 
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Therefore, in looking at the asymptotic behavior, we 
may let 

x=ut +xo, 

whereC Z >u>C 1,0>xo>x_, 

St.2 = ± ki3iiW13i323tl 12[1323 (u - C 1) + 1313 (u - C 2) 

(IV. 9) 

+ (1313 + i323 )Xor t
] [(C2 -U-?-) (u- C1 +0/-)] -112. 

(IV, 10) 

For t large enough, SI.2 are on the real axis, A stand
ard steepest descent calculation shows that 

~B31{-)(2Z'T~_(27Ti(¥)_I[t~ . ~ .~A(+)(S/'0)7T1/2 
B (-)(2Z T) ,1 ~(S.) 1)(s,) 

32 , 

x (21 j{.) n(Si) 1 )"112 exp[i(j(+) (S/) + el+» 1 

2 \J(S;) - ~(Si») 
+ 6 A (-) (1;;, 0)7T1I2 

i.l 1 

where 

X(2Ij(-ln(s/)lt1l2 

X exp {ilt'·' (t,) + ej.'J~, (IV. 11) 

e
(+) -- e(+) -- e(-l - e(-) __ .21: 
j - 2 - 1 - 2 - 4' (IV. 12) 

and 

j (±) n (s,) = ± i312t[ 4k1)3(s;) ]-1 (u - C3 + x oIf). (IV. 13) 

Hence, at sufficient large f, B~~), and consequently v cr3 , 
decays as rl 12. It should be noted that as u approaches 
C1 or C2 arbitrarily closely, lSi I becomes arbitrarily 
large and I j(±) n(Si) I becomes arbitrarily small. The 
path of steepest descent is really not so steep, but 
A<±)(s;,O) are also small; ifA<·)(1;;,O)-O(l/s;) as ISil 
-"", it can be deduced that v cr3 -0(t-l!2) even as u ap
proaches these limiting cases arbitrarily close. 

It is thus clear that the short pulses spread and de
cay as t-1 12 for large times. For V21 (x, f), it is conven
ient to consider K(-)2 1 (Z ,Z, T) in the coordinate system 
T, t. Then, forK(-)2 1(T,t)=K(-l2 1(Z,Z,T), we have, from 
Eq. (IVo 2), 

K(-l2 1(T, t) 

X~("" ) P b
30 

b ,T 1;' _ I; , (IV. 14) 

where pl(I;' - s) denotes the principal value of the quan
tity (I;' - n-t , and T"" O. For large t, this has a contri
bution depending only on T, 

K<-)2 ( t)--1-f~ dl;btz(s,T) b31 (?;,T) +OU-1/2) 
1 T, 27T0' _'" b33 (?;) b33 (?;) • 

(IV. 15) 

Thus energy is absorbed by the background. 
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V. DISCUSSION 
From the previous sections, we hope to have dem

onstrated that the three-wave self-induced transparency 
effect can be conveniently studied in the characteristic 
coordinates of the background wave. By studying the 
specific case in which VI2(Q3) is the background, and Et 

=E2 =E3 = 1 (w2 = w3 + WI), we have shown that inside a 
background, three-wave resonant interaction is disper
sive. The solitons are dependent on the amplitudes and 
widths (i. e., on the eigenvalue SI)' Each soliton has 
two branches, fast and slow, i. e., it is actually a soli
ton pair 0 In the case studied, which is characteristic 
of propagation in the background of the fastest (C 3) of 
the three waves, the slow branch is stable, and the 
fast branch eventually disappears. As other dispersive 
systems, the continuum asymptotically decay alge
braically in time (as f -1 12), Energy is fed into the 
background. 

There are, of course, other cases of interest, which 
we have not studied in any great detail. First, E'S may 
take different signs. The main effect is on the bound 
states. Still considering the case with v12 as background, 
we assume that the waves are kept regular by some 
means for T> 0 (before entering the background). The 
bound states must be such that at T = 0, the solutions 
are nonsingular. It is instructive to look at the single 
soliton- pair solution. Formally, the solution looks like 
Eqs. (m. 5}-(III. 7) for T < 0, with the following 
modifications: 

(i) The quantity 1)(?;t) is now given by Eq. (n. 57) with 
the factor E1E2; 

(ii) every term pta (tt, T) is replaced by E3EcrPtcr U;t, T}. 
The only places where singularities occur are at the 
zeros of the expression Ll., 

Ll. = 1 + (/313i323Vj )-2 exp(4vjZ I 0' )[EjEslp31 (s t , T) 12 

(V.U 

where P3j(tt, T) and PS2(tt, T) are given by Eqs, (III. 1). 
In the case - Ej == -"2 =ES (Wj = W2 + Ws), no regular soli
tons are possible, so there are no bound states. In the 
case - El =E2 =E3 (W3 = Wj + W2), the requirement on 
regularity at T = 0 implies that the term inside the 
square bracket of Eq. (V.n is positive at T = 0, i. e. , 

where s =a<-)U;t, O)/a(+)(st, 0). We require that the re
lation (V. 2) holds for all arg(s). Let the function 1)([;) 
have a cut on the real axis 2k/i3t2 > [; > - 2k/i312 , and 
Im1)(?;t) ,; O. One may then induce that for T < 0, the 
term in the square bracket of Eq. (V. 1) remains posi
tive, so that no singularity will develop. In the case 
El = - E2 =E3 (w t + w2 + Ws = 0), the inequality sign in Eq. 
(Vo 2} is reversed. Then one may show that a singularity 
will develop for some T < O. However, we must look for 
solutions which have regular initial conditions at t = O. 
For this purpose, we investigate the velocities C(±\2' 
When EtE2 = - 1, the velOCities of solitons formally have 
the same expression, C(±\2' as Eq. (III. 14) with All) 

defined by 

AlY)-iAliJ=M~2([;n-1F/2, (Vo3) 

S.C. Chiu 174 



                                                                                                                                    

The limits of C(%)12 are different from Eqs. (III. 15) and 
(III. 16). One finds 

Cz < C(") 12 < Ca· 

There is a half-ellipse on the lower half-plane, 

13-\21'21 + (13 13 + i323t2w 21 = (i313i323i3212tlk2, 

(V. 4) 

(V. 5) 

inside which C(-)12 > C3, and outside which C(-\2 < C 1• 
According to what was said about the stability of the 
two branches, the fast branch dominates initially, and 
for a regular initial condition, this must be the a(+) 

branch for explosive instability, i. e., regular initial 
conditions are possible only outside the ellipse, Eq. 
(V. 5), 

Secondly, a different wave may act as the background. 
When V23 (or ql) is the background, the short pulses 
enter the background from the left. The background 
stays in the interval 0 < T= (x - C l t)(2C 1t l < 00. This 
case presents no difficulty, and one will find that inside 
the background, the fast branch of a soliton is the 
stable branch at t - + 00. As in Ref. 11, the velocities 
of the two branches have the limits (for El =E 2 =E3 = 1 
only) 

Cs > C fast> C, C > Cs10w > C2 , 

where 

(V.6) 

(V. 7) 

When 1'13 (or q2) acts as the background, the situation is 
different. Short pulses can enter from both the right 
(for ql) and the left (for q3) of the background. Then it 
seems that the phases at both ends, and the amplitude, 
of the background will change with time. The solitons 
found from the Backlund transformations l1 are such 
that the phases at both ends are fixed, which means that 
these waves are already in the background for a long 
time. We feel that these solitons are probably approxi
mated only by very special initial conditions when the 
background has finite length, and are probably unstable 
in the sense that a slight change in initial conditions 
can drastically change the end result. From what was 
known about interaction of spatially bounded packets, 
we speculate that the q2 background is rather unstable, 
and will change shape under passage of either a soliton 
or continuum. 
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APPENDIX 

We have used the Gel'fand-Levitan equations for 
K<-lij(Z,y) for inverse scattering. An equivalent set of 
equations for inverse scattering are those for 
K(+)ij(Z,y) defined in Eq. (11.61). These equations are 

K(+)Yj(Z,y)- J~ ds K(+)3 j (Z, s)B(+)Y3(S +y) 
z 

=B(+)ys(Z +Y)OSJ> (Al) 

2 f~ 
K(+)3 j(Z, y) + E z ds K(+)uj(Z, S )B(+) Sa(S + y) 

=B(+\j(Z +Y)(Oj3 -1), (A2) 
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where 

(A3) 

(A4) 

and 

B(+)Y3(y) = (2 7fiet t 1f: dt' ~::~n exp(- it'yet-
1

) 

+ 6 Cy3 (i)[b33 (U)et ]-1 exp(- ittyet- t ), (A5) 

(A6) 

We are restricting ourselves to potentials with sym
I!,1etry Eq. (II. 9). The constants Cy3 (i) are related to 
CSy(i) of Eq. (11.24) by 

C I3 (i) = - aI2(tt)C32 -1(i) =a22(tt)C31 -1(i), 

Czs{i) = - a21 (tt)C31 -1(i) =al1 (tt)C32-1(i). 

(A7) 

(A8) 

The two sets of scattering datum, B(+)Y3(y), B(+)3Y(Y)' 
and B(-\s(y), B(-) 3Y(y) are presumably compatible so 
that knowing one set, we could find the other. We shall 
demonstrate this by showing that given bsy (w)/b33 (W), 
aY3(w)/a3S (w)=f.,.esbty(w)/bMw), the positions of the 
bound states, !;j, which we assume to be Simple, and 
the "polarization" vectors sU3(i), ssa(i) of the bound 
states defined by 

;u3(i) =Cu3 (i)/( 6 EyEs ICaa(i) 12), (A9) 
y 

(A10) 

it is possible to reconstruct the whole S matrix ajj and 
bil • In the case E1E2 = - 1, we must require that the 
denominators of Eqs. (A9) and (A10) are positive, 
which are the same as the regularity conditions of the 
solitons in Eq. (V. 1). Essentially, one only needs the 
relation 

and the analytic properties of a33' b33 , aar, and bar. 
First, 

2 

G(w)"'6 bb 3Y «w» ar3 «w)) +1=b33
1(w)aS3-1(w). 

1'=1 33 W a33 w 

Thus, for I; ~ 0, 

bdt) = f1 (t - tt) eXP[(27fi)"ljd w' G(W')] 
j (I; - til w' - t ' 

for I; cS 0, 

(All) 

(A12) 

(A13) 

a (~) f1 (t - til [(2 O)-ljd ' G(w) ] (A14) 
33 S = i (t-tf) exp - 7fZ W w'-t • 

For the 2 x 2 matrices 

(a')",,=aar, 

(b')",,=b ar , 

we have 

b
,
-1 (w)a,-l(w) =g(w), 
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where 

t;ay(W) = Oay + aa3(W) b3a(w). 
a33(w) b33 (W) 

We define the matrix (a)p(b)(i) by 

(a)p(b) ay(i) '" sa3(i)s3y(i). 

Then, 

(a) p(bl (ol p(b) = (a) p(b), 

andat('j, (,t, 
a'«(,t) (a)p(b)(i) = (a)p(b) (i)b'«(,i) = O. 

The matrix 

B'«(,) '" b' -Iwn ((, - (,j (a)p(b)(i) 
j (, - (,t 

+ 1- (a) P(b)(i)) , 

is analytic in the upper half (, plane and 

lim B'«(,) -1 + O(CI ). 
1 ~I- 00 

The matrix 

A'«(,)", n (.(,- (,t (alp(b)(i) 
j 1;- (,j 

+1- (a)p(b)(i)) a' -1«(,), 

is analytic in the lower half (, plane and 

lim A'(r,)-1+0W1). 
1 (1- 00 

On the real line r, = w, 

B'(w)A '(w) =g(w). 

(A18) 

(A19) 

(A20) 

(A2l) 

(A22) 

(A23) 

(A24) 

(A25) 

(A26) 

The solution of B'«(,), A'(1;), which are respectively 
analytic in the upper and lower t plane, and which satis
fy Eq. (A26) on the real line is the standaro homoge
neous Hilbert problem studied by Gohberg and Krein, 17 

and Newton and Jost. 18 The question of solvability and 
uniqueness depends crucially on the partial indices Kl, 

K2 which are uniquely determined for a given nonsin
gular g(w). Defimng the real and imaginary part of g(w) 

by 

gR(W) =Hg(w) +g+(w)]' 

g/(w) = (2itl[g(W) - g +(w)]' 

(A27) 

(A28) 

where g+ is the Hermitian conjugate of g, then as long 
as either gR(W) or g/(w) is definite, Kl = K2 = O. In this 
case, B'(t) and A'(t) are uniquely solvable. We assume 
that g(w) of Eq. (A18) satisfy these conditions. In the 
case El = E2 =E3 = 1, g(w) is positive definite. For other 
cases, we require 

l-iP31(W)i 2 >o, -Ej=E2=E3 =1, 

l-iP32(w)i 2>o, E1=-E2=E3 =1, 
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(A29) 

We must emphasize that these are only sufficient 
conditions. The matrices a'(t) and b'(t) can be obtained 
from 

a'(t) =A' -1«(,) n (t - tt (a)p(b)(i) +1- (a)p(b)(i)\ , 
i t - I;;i 'J (A30) 

b'(t) = n (I;; - t/ (a) P(b)(i) + 1 _ (a) p(b) (i)\ B' -1 «(,). 
i I;; - 1;;1 'J (A31) 

Finally, 

~ b3y (w) 
a3a(w)=- L.J b ( ) ayo(w), 

y=1 33 W 
(A32) 

and 

(A33) 
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Perturbation theory for Coulomb scattering 
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Perturbation series for the "renormalized" complex-energy distorted plane waves (RCEW's) are defined 
and shown to converge to the series expansions for the physical distorted plane waves (PW's) for two
particle scattering via Coulomb-like potentials V(x) = el e,lxl -I + V, (x), where V, E L 2 has compact 
support. A perturbation series for the "renormalized" half-ofT-shell T matrix is defined and shown to 
converge to the series expansion for the pure Coulomb physical T matrix. 

I. INTRODUCTION 

In a recent paper1 a "renormalized" off-energy-shell 
formalism was defined for scattering involving more 
than one charged fragment in either the incoming or 
outgoing channel. For the particular case of two-parti
cle Coulomb-like scattering it was shown that the com
plex-energy distorted plane waves (CEW's) ¢H(X, p) 
defined as follows 

cpH(X, p) = (±iE) r dx' ¢(x', p) G(x, x';p2/2m 'fiE), 

¢(x, p) = (277)-3/2 exp(ip· x) 

must be replaced by RCEW's 

<p"(x, p)=F:,(1 pi) ¢H(X, p), 

where 

Ft,( I pi) = r(l ± iy)-1 exp(±iy log(Em/2p 2)], 

y=rne 1e 2/lpl 

(1. 1) 

(1. 2) 

(1.3) 

with m the reduced mass and e i the charge of the ith 
particle. In addition the half -off -shell "T ma trix" 

(p'l v,rI_1 p)= Idx ¢(x, p)exp(-Ax) V(x) rfJ+(x, p), 

'(1. 4) 

where cP'(x, p) denote the PW's must be replaced by the 
"renormalized" half-off-shell T matrix 

limT(p', P; E, A), 
x .... +0 

(1. 5) 

where the limit A - + 0 is taken in the sense specified 
by (4.3). 

The renormalized quantities (1.2) and (1.5) for the 
pure Coulomb potential have natural series expansions 
in powers of t' for each E > O. In this paper we apply the 
calculations of Hostler2 and McDowell and Coleman3 to 
verify the convergence of these" renormalized" perturba
tion series for (1.2) and (1.5) to the respective series 
expansions for the pure Coulomb PW's and T matrix for 
: y I < 1. Furthermore, the renormalized perturbation 
series corresponding to (1.2) for Coulomb-like poten
tials V(x) = e1 e21 x 1-1 + V,(x), where Vs E L 2 has compact 
support is defined and shown to converge. 

The derivation of the renormalized off-energy-shell 
formalism given in Ref. 1 is based on the self-adjoint-

a)Supported by the National Research Council of Canada. 

ness of the Hamiltonian and the existence of the full 
Green's function and renormalized wave operators. In 
order to ensure these properties we assume in this 
paper that the Hamiltonian H has the form 

H=Ho + V, Ho= -(2mf1 ",2, 

V(x) = e1e2 1 x 1-1 + V,(x), 

where 

Vs(x) = Vll )(x) + V(2)(X), 

v(1) E L 1 n L 2, V(2) E L ro , 

V(2)(x)=O(lxl-2-'o), Eo>O, as Ixl-oo. 

(1. 6) 

(1.7) 

The Hamiltonian H is self-adjoint on D(H) =D(Ho)' The 
requirement (1. 7) ensures the existence and integrabili
ty of the full Green's function4 (see Theorem (A1)], 
which guarantees the existence of the RCEW's for each 
E > O. In addition the renormalized wave operators rI., 
corresponding to H, exist. 5 

In Secs. II and III of this paper the convergence of the 
renormalized perturbation series in the limit E - +0 
for the pure Coulomb and Coulomb-like RCEW's respec
tively is shown. The renormalized perturbation series 
for the pure Coulomb T matrix is defined and shown to 
converge to the perturbation series for the physical T 
matrix in Sec. IV, A discussion of the Coulomb-like 
renormalized half-off-shell T matrix is given in Sec. V. 

II. PERTURBATION THEORY FOR THE PURE 
COULOMB DISTORTED PLANE WAVES 

In order to define the renormalized perturbation 
series corresponding to (1. 2), we denote the formal 
iterative solutions of the off-shell Lippmann-Schwinger 
equations for the pure Coulomb potential [Eqs. (A5) 
with 11 = 0] as follows, 

ro 

cp;'(x, p) = E yl ¢ ;'(x, p), (2.1) 
1=0 

and the absolutely convergent expansion for I y I < 00 and 
E > 0 of (1, 3) as follows, 

F:,(lpl)=I;yIF:"I(lpl). (2.2) 
1=0 • 

The formal renormalized perturbation series for the 
pure Coulomb potential is defined as the product of (2.1) 
and (2.2), i.e., 

"H( ) ~ I CPc x, P =0 y 1\.1(X, p, 'fE), (2.3) 
1=0 

where 

(2.4) 
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The behavior of the renormalized perturbation series in 
the limit E - + ° is investigated in the following theorem. 

Theorem 2.1; For I y I < 1 the renormalized perturba
tion series (2.3) converges absolutely and uniformly 
with respect to E E [0, (J], (J > 0. Furthermore, the limit 
E - + ° can be taken term by term to yield the pure 
Coulomb distorted plane waves, i. e., 

<I>;(x,p)=lim ~;'(x,p)=E '/limAl(x,p, 'FE) (2.5) 
E'" +0 1=0 e" +0 

for each (x, p) E R3 XR3 \ {O}. 

In order to verify the above theorem, we use Hostler's 
calculation of <I>;'(x, p) [2] which is given by 6 

<I>~'(x, P) =H2k2m <I> (X, p)[exp(- 21TV)-lr1 

/

(1+> (I;" + I)-IV 
X dl;"--

+00; arc(~±j)=O I;" - 1 

fik Ix I l;"(k 2 - p2) _ ip· x(k2 _ p2)] I ~ 
x exp[ k21;"Z_p2 J \(k21;"2_p2{ 

+ k(1;"2 _ 1)( Ix I (k21;"2 + p2) - 2x • P?;k)) , 
(k21;"2 _ p2)3 

(2.6) 

where v = me le2lk, k = (p2 '1' 2miE)1 /2, Imk > 0, and the 
integration starts at I;" = + 00 with arc (I;" ± 1) = 0, runs 
along the real axis to the right of I;" = 1, circles I;" = 1, 
and returns along the real axis to I;" = + 00. 

The anomalous E dependence of (2.6) can be extracted 
by performing the transformations t = (f + 1)/ (1 - f) and 
t =Ell, which yields 

<1>:' (x, p) = ('1' 8k2m) <I> (x , p)[exp(- 21TV) _1]-1 EiV 

110+) d iv ~±2mI?IXI(I-E2U2)±p.x2m(I-EU)2] 
x uu exp 2. ( 2 

,-I;arcu=O 4P u'fz2m Eu+l) 

( 
i(I_E2u2) 

X [4P2u '1' i2m(EU + 1" 
2ku[ Ix I {I? 2 (1 + EU)2 + P2(1_ EU)2}_ 2x • pk(l- EV)]) 

+ [4p21H i2m(Eu + 1)2)3 • 
(2.7) 

The above concrete expressions for <I>~'(x, p) allow us 
to study the behavior of the series expansion (2.1) for 
small Eo To see this, let E > ° to fixed. It will be shown 
in the proof of Lemma 2.2 that (2.7) has an absolutely 
convergent series expansion for I y I < 1. Furthermore, 
by Proposition A. 2 (2.7) is the unique solution of (A5), 
which for sufficiently small I y I has an iterative solu
tion (2.1). Thus by the uniqueness of the power series 
expansion for each E> ° the series expansion (2.1) is 
given by the series expansion of (2.7) which is absolute
ly convergent for I y I < 1. 

The RCEW's corresponding to the pure Coulomb 
potential are given by 

rj;>(x P) j - ik2<1> (x ,P)[ exp(± 21TY) -1 ]r(1 'fiy) ) c," 1Tm[ exp(- 21TV) - 1] 
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Theorem 2.1 is a consequence of the following lemma 
together with the pointwise convergence of the pure 
Coulomb RCEW's, which is verified in Lemma 2,3, In 
this paper we let D and D' denote arbitrary compact 
subsets of R3 and R3\ {O}, respectively. 

Lemma 2.2: For all (x, p, E) E DxD' x[O, uJ, u> 0, 
there exist constants C/, 1 = 0, 1, 2, "', such that for 
I y I < 1 

IAl(x,P, 'fe)1 ~c!> :01'Yl l C,=c<oO. (2.9) 
1=0 

Furthermore, for eachl and each (x,P)ER 3 XR 3 \{0} 

limA/ix, p, 'fe) = A;(x, p) (2.10) 
e .. +0 

exist. 

Proof: By the argument given after Theorem 2.1 the 
perturbation series (2.3) is given by the series expan
sion of (2.8). We show via the Weierstress test for uni
form convergence that each factor in (2. 8) has an abso
lutely and uniformly in (x, p,e) E D xD' x[O, u J convergent 
series expansion for I y I < 1 which verifies (2. 9). 

It is straightforward to see that the first factor on the 
right side of (2, 8) has a series expansion which satis
fies the Weierstress criteria for uniform convergence 
with respect to (x, P,E)EDXD'X[O,uJ for Iyl <1. 

In order that the second factor on the right side of 
(2.8) satisfies the Weierstrass criteria, we must show 

I I P I II? ± II' I loge I' "" C t I I' c < if: 

11 r. 1=0 Y , , H < 00, (2.11) 

where (;" 1 = 0,1,2, •. " are independent of (p, E) 
E D' x [0, u J. The following inequality, 

p2 . 2fl . -1( 2me )] 
+ (p4 + 4m2E2)1I2 sm L2 sm (p4+ 4m2E2)1/2 

( 12m' d { 1 
= I p I 0 du du - (p 4 + U2) 1 74 

XCos[~sin-1Cp4+:m2E2)172)]})2 + (p4+4~2e2)1/2 
x(I2me 

du d~ {sin[hin-
1
(p4 + 4~2h172 )]~2 

'" ( mE + mE )2 +1- m~)2 
~ T'PJZ I'PJ2 \ I P 12 , 

together with I doge I < 1 + a2
, verifies (2. 11). 

The absolute and uniform in (x, p, e) E: D x D' x [0, a] 
convergence of the series expansion corresponding to 
the last factor in (2. 8) is a consequence of the following 
inequalities: 
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f'~I~)arcu.o iduiiHz(x, p, 'fE,u)i ~Mz' 
where the constants MI satisfy 

~ I I'-I 
~l~Mz<<XJ, iYI<l, 

with Hz(x, p, 'fE, 1/) given by 

Hz(x, p, 'fE, u) 

I [ ± k I x I (1 - E2U2) 'f P • x (1 - EU )2 ] 
= (logu) eXPL (2p2/ m)u 'f i (EU + 1 )2 

vi (1- E
2
U

2
) 

l[(2p2/m)u =Fi(EU + m-

(2.12) 

(2.13) 

iku[ Ix I {k2(1 +01)2 + P2(1_ EU)2 - 2x • pk(l- E2U2lJ} 
- 111[(217 11l)1I'fi(Ell+~ • 

(2.14) 

The inequalities (2.12) and (2.13) can be verified by 
considering the separate contributions corresponding 
to the right side of the following inequality: 

f ,~l:)arcu.o idu i iHz(x, p, 'fE, Il) i 

"'(f" + f + f,_1;arcu.2')i dll i iHz(X,P, 'fE, Il)i, 
e,"l;arcu=O C p 

(2.15) 

where c is the contour u=pe i8
, o~ e~21T, and p>O is 

an appropriately chosen constanL 

The first term on the right side of (2. 15) is bounded 
by (assuming E < 1, the case E ~ 1 is immediate) 

fP-1. idui IHz(x, p, h,u)i 
e ,arcu=O 

'" C
1 
+c2 f l

,-1 du(logu) 11112 

+ C
3
E f ,-I du(logll)1 lu + 64E

2 I ,-I du (logu)l , 
1 1 

where C;, i = 1,2,3,4, are constants independent of 
(x, p, E)EDxD'x[O,al. Estimating the integrals in 
(2. 16) yields 

1"-1. IduIIH1(x, p, 'fE, u)1 
€ ,arcu=Q 

which verifies (2,12) and (2.13) for the contribution 
corresponding to J~-I;arcu.o. A similar argument as given 
above verifies (2.12) and (2.13) for the contribution 
J /-1; arcu.2r. The contribution corresponding to J c will 
satisfy (2.12) and (2. 13) if we can show there exists a 
constant 65 > ° such that 

1(2p2 I m)p exp(ie) 'f i[EP exp(ie) + 1 F I ~ C 5 (2. 17) 

for all (X,p, E, e)EDxD'x[0,alx[0,21T1. In order to 
verify (2,17), we require the following inequality: 

I (2p 2/m)p exp(ifl) 'fi[EP exp(ie) + 1 F 12 
'y 

179 

= (2p2/m)2 p2 'f 2(2p2 I m)p sine + 1 

± 2(2p2/m )E2p3 sine +E4p4 + 4E3p3 cose + 6E2p2 

- 4E2p2 sin2e + 4EP cose 

~ [(2p2 /m)p - 1]2- 2 (2p2/m)E2 p3 - 4E3p3 - 4Ep. (2.18) 

J. Math. Phys., Vol. 19, No.1, January 1978 

Since there exists a finite constant K such that Ipl <K, 
it follows that (2p2 Im)p < t if p < m I 4K2

• Furthermore, 
since E E [0, aI, it follows 

4E3p3 +E2p2 + 4EP < 4a3p3 + a2p2 + 4ap. 

Thus, choosingp<min{I/24a, m/4K2
}, (2.17) follows 

from (2.18). 

The proof of (2. 10) follows from the observation that 
the limit E - + ° of each term of the series expansion 
corresponding to each factor in (2. 8) exists. 

Lemma 2.3: The pure Coulomb RCEW's satisfy: 

(i) lim¢~'(x, P)=¢~(x, P) 
E- +0 

for each (x, p) r::. R3 XR 3\{0}. (2.19) 

(ii) There exists a constant Q such that for all 

(x, p, E)EDXD'X[O, At for some A" 0, 

(2.20) 

Outline of proof: It is straightforward to see that the 
first two factors in (2.8) can be bound uniformly in 
(x,P,E)EDXD'x[O,al, a>O, and, furthermore, that the 
limit E - + ° of these factors exists. Thus, if the last 
factor in (2.8) can be bound by a constant for all 
(x, p, E) EO D xD' x[O, AJ for some A'> ° and has a limit 
E - + 0, it follows that (2.20) is valid and the limit 
E - + ° of ¢~'(x, P) exists. 

The boundedness of the last factor in (2, 8) can be 
proven by an analogous argument as given in the proof 
of (2.12). For example the contribution corresponding 
to J~-I; arcu.O satisfies the following inequality: 

I, -I fP ;v f±kIXI(I- E211
2)'fP 'X(I-EII)2] 

Y ,-I; arcu.O du u eXPl (2p2/m )1I 'f i(EIl + 1)2 

{ (1 - E
2

U
2

) 

(2.21) 

where Ci , i=l, 2,3,4, are constants independent of 
(X, p, E)E DxD' x[O,a], a'> 0. Since I j): '> K' for some 
positive constant K' depending on D', it follows that 
I ymdp21 '" 1- a, a'> 0, for E '" A=: (1 - a)1<'3 1m2 I C1C21. 

Thus restricting E E [0, A) guarantees the existence of a 
constant which bounds the right side of (2,21) for all 
(x, p, E)E DxD' x[O, AJ. A similar argument proves the 
uniform boundedness of the cont ribut ions J Cl J ;-1; arcu.2., 
which verifies part (ii) of the lemma, 

It is straightforward to show via similar estimates as 
given in (2.21) that the terms involving an E, E2, E3 , or E4 
factor in the last factor in (2. 8) converge to zero. 
Furthermore, by the Lebesgue dominated convergenve 
theorem the term in the last factor in (2, 8) not involving 
a power of E as a factor converges to the following 
expression: 
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j
(O+) 

-J d' ir r.- I p I Ix I 'f P . x 1 
y uu eXPL (2p2/m )uT-i J 

... 00; arcu=Q 

x{ 1 2iP2U[IPIIXI±P.Xl} 
[(2p2jm)u T-iF ± m[(2p2/m)u T-ilg---'- • 

Thus lim,_+o¢~'(x, P) exist and are given by 

lim¢H(x P)- -ip2p(x,P)r(Hiy) ('1 m ) 
,_ +0 C ,- 7Tm exp ± Iy og 2p2 'f 7Ty 

(2.22) 

A rather lengthy manipulation shows that the right side 
of (2.22) equals the pure Coulomb physical distorted 
plane waves p~(x, P) which completes the proof of the 
lemma. 

III. PERTURBATION THEORY FOR THE COULOMB
LIKE DISTORTED PLANE WAVES 

The renormaUzed perturbation series corresponding 
to (1, 2) for general Coulomb-like potentials is defined 
in analogy with the pure Coulomb case, We denote the 
formal iteration of (A5) as follows: 

~ 

<j)H(x, P)=L p;'(x, P), 
1-0 

(3.1) 

where p;'(x, P) are given by (A9). The formal renor
malized perturbation series is defined as the product of 
(3,1) and (2,2) as follows: 

~ 

¢H(x, p) ="E A/(x, p, 'fE), 
1-0 

(3,2) 

where 

A,(x,P, 'f~)=yo1)/Ao.I(X,P, 'fE)+Y1)I-1A1•1_1(X,P, 'fE) 

+ ... +y'-17/A I_1. 1(X, p, 'tE) +y'7/oA/•o(x, p, 'f~), (3.3) 

with Ai.j(x, p, 'f~) the coefficient of the term yi1)i in the 
product of (3.1) and (2.2). 

The convergence of the perturbation series (3.2) in 
the limit ~ - + ° is shown in the following theorem. 

Theorem 3.1: Assume V(x) = y(i3lx 1)"1 + 1) V.(x) , i3 = m/ 
I PI, where V. e: L 2 has compact support contained in the 
compact set D. Then for I y I < 1 and 11) I < 1)1> 7/1 = 
=[GCSUPxEDI IV.lx-.1-11 11rt, where Gcisdefined 
in Lemma 3.2, the series (3.2) is absolutely and uni
formly in ~ E [0, a 1, a" 0, convergent. Furthermore, 

p '(x, p) = lim¢H(x, Pl =t limA,(x, p, 'fE) (3.4) 
e ... +0 1=0 e .... +0 

for each (x, P)EDXD', where ¢'(x, p) satisfy 

<XD¢ I n" XD.1/!) = J Ddx ¢ (x) J D,dP ¢'(x, P) <fj(Pl (3.5) 

.vi th ¢ ELI i: L 2 and ~ E Co. 

In order to prove the above theorem we require the 
following lemmas whose proofs are given at the end of 
this section. 

Lemma 3.2: The pure Coulomb Green's functions 
have absolutely convergent series expansions for I Y I < 1 
and each (x,x')ER 3 xR3

, x,*x', i. e., 

180 J. Math. Phys., Vol. 19. No.1, January 1978 

Gc~,X'; 2~ 'fi~):= Ix-x'I-1P'0y'C~Il(x,x'; :~ 'fi~). 
(3.6) 

Furthermore, for all (x,x', P,dE DxDxD' x[O,al there 
existconstantsG~n, Z=0,1,2, "', such that 

IG~n(x,x'; p2/2m'fi~) I ~c~ll, 

I y 1< 1. (3.7) 

The following lemma concerns the iterations of the 
equations: 

¢H(X, P) 

= ¢~'(x, P) -7/ J dy Gc(x,y; p 2/2m 'fi~) V.(y) ¢H(y, P), 

(3.8) 

which we denote as follows: 
~ 

¢H(X, P) =01)1 KI(x, p, 'f-E), 
1=0 

where 

Ko(x, p, 'fE)=¢~'(x, Pl, 

KI(x, p, 'fE) = - J dy Gc(x, y; p2/2m 'fiE)V.(y)KI_1(y, p, ~). 

(3.10) 

Lemma 3.3; Assume V.EL 2 has compact support con
tained in D, The iterations KI(x, p, 'fE) of (3.8) satisfy 
for each Z' 

(i) Kdx, p, 'fE) have absolutely and uniformly in ~ 
E [0, a], a> 0, series expansions for I y I < 1, i. e. , 

KI(x, p, 'fE) =0 yj K J I(X, p, 'fE). 
i=O • 

(3.11) 

(ii) There exist constants K J• I , j = 0, 1, 2, 
that for all (x, P,E)EDXD'x[O,al 

such 

IKj.l(x, p, 'fE)1 ""Kj.z. (3.12) 

Furthermore, for I y I < 1 
~ E lylJ Kj,I=C[GcSUPXCcDII V.lx- ·1-111d', (3.13) 

where C and Gc are the constants appearing in Lemmas 
2.2 and 3.2, respectively. 

(iii) For each j and each (X, P) E R3 xR3 \{O} the limit 
E ~ +0 of KJ,I(x' p, 'fE) exists, 1. e., 

limKj I(X, p, 'fE) =KJ':(x, Pl. 
e ... +0 f t 

(iv) The functions Kj::(x, P) are continuous inpED'. 

Proof of Theorem 3.1: From (3.9) and Lemma 3.3 it 
follows that ¢H(X, P) have the following double series 
expansions for I 1'1 < 1 and 17/ I < 1)1: 

(3.14) 

where there exist constants K j • I such that 
~ ~ 

66 
1=0 i=O 

17Jl l lyIJIKJ,I(x'P' 't~)1 "'~ 0 \7JlllyIJKJ,z<OO 
1=0 1=0 

(3.15) 

for all (x, p, E)EDXD'x[O,al. 

For each fixed ~:> ° the series expansion (3.2) is 
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absolutely convergent for sufficiently small I y I and 1111 
(Proposition A2) and thus by the uniqueness of the 
double power series expansion KJ,I (x, p, + E) 
=AJ,/(x, p, 'I'd for each (j,l), Thus due to the inequali
ties (3.15) the series expansion (3.2) is absolutely and 
uniformly in E E [0, a] convergentfor I y I < 1, 1111 < 111' 

The equality (3.4) follows from the uniform conver
gence of the series (3.2) together with part (iii) of 
Lemma 3.3. 

The equality (3.5) follows from the representation 

(X v ¢ I n. Xv'</!) =~~~ J vdx ¢(x) J D' dp ¢H(X, P) $(P), 

¢ ELI n L z, ~ E Co, which is a consequence of Theorem 
4.1, Ref. 1. 

Proof of Lemma 3.2: The following integral repre
sentations of the Whittaker functions are valid7: 

exp(- z/2)z <1-1') /2 

r«1 + /.L)!2- K) 

(3.16) 

!I1K;I'/2(Z) re(l + /.L)/2 + K)r«l + /l)!2-K) 

x f 1 exp(zu)u<I'-1l/2-K(1_ u)<I'-ll/Z··du, 

o (3.17) 
where I arcz I < 7T and Re[ (1 + /.L)/2 ± K] > O. 

The integral representations (3.16) and (3.17) to
gether with the definition of the pure Coulomb Green's 
function (AI) yield 

Ix-x'ICc(x,x'; pZ/2m+iE) 

_ mexpJik(O'l + 0'2)/2] {f· OO 

tv' -Iv 
- 27T r(1- iv)r(l + iv) 0 dt exp(- t)t (- tk0'2 + t) 

1 

x [(1 + ikO't/2) f du exp(- ikalu)u 1v(1 - uri" - ikal 
o 

x I j du exp(- ikO'ju)u iV
' 1 (1 - uri,,] - ikO'l 

1 .00 
x f du exp(- ikO'lU)Ui" (1 - Ilrl

" [t f dt exp(- t) 
o 0 

x ,."(- i.o, + 1)"'" + i1" dl exp(- 1)1'" (- i.o, + 1).'".' l} 
(3.18) 

In order to verify the lemma, we must show that each 
factor of each term on the right side of (3.18) has a 
series expansion for I y I < 1 which satisfies the 
Weierstrass criteria for uniform convergence with 
respect to (x,x', p, E)EDXDXD'X[O,a], from which it 
follows that the series expansion (3.6) satisfies (3.7). 

Since the proof for each term in (3.18) is similar, we 
only give the proof for the last term in (3.18) which is 
given by 

- mkO'l exp[ik(O'l + 0'2)/2] il 
27Tk Q2r(1- iv)r(l + iv) 
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X[!:.. exp(- i'o,u)'"(l - ur'] 
{. u, .[. dt exp( - 1)1'" (- ik 0 , + 1)"'"·1 (3.19) 

It is straightforward to show that the first factor in 
(3.19) has a series expansion which satisfies the 
Weierstrass criteria for I y I < 00, 

From the inequalities 

Jo
1 

du I exp(- iko.lu) I Ilog(l/u - 1) I' "" 2 exp(A)l 1, 

where 

A= sup Iko.21 
(x'" ,.'1' flf~) E DxDx D~x [OJ 0 J 

it follows for I y I < 1 

J
O

I du exp(- ikalu)u iv(l- uri" 
00 1(_iIPI/k)' /1 . 

=~.2..l II duexp(-zkaju)[log(1/u-l)]/, 
o 

where 

I (- i I ~ l/k)1 [1 du exp(- ika 1u)[log(l/u -1)]/1 

"" 2 exp(A)o 

Thus for I y I < 1 the second factor in (3. 19) has a series 
expansion which converges uniformly with respect to 
(x,x', P,E)EDxDXD'x[O,a]. 

In order to verify the uniform convergence of the 
series expansion for the last factor in (3.19), we re
quire the following inequalities where k -= I k I exp(i</!): r dt 'xp(- I) 1_ ~:~;! 1 Il'"" (- i~O, +1) I' 

"" dtexp(- t) log2 ~~ + 21k I Oz sinp f +'" {( 2 2 

ott 

+ arcZ( - itkClZ + I)} I /2 

"" .(~~exp(-t){logt1 +1)+27Tr 

~ I A

d+Ogt1 +1)+27Tr + [~dteXp(-t){IOg(2)+27T}1 
"" 2A exp(27T)ll + {log(2) + 27TY. 

Thus for Iyl <1 

1
0
•

00 

dt exp(- t)(- ikoz)ti " (- iko.2 + ttlv- 1 

~ 

=0 /M1(x,x', p, +E), 
/ =0 

where for each l there exist constants 1M1 such that 

IM/(x,x',p, +E)I """W/ t lyll,W/<CoO, 
1·0 

Proof of Lemma 3.3; In Sec. II it was shown that 
Ko(x, p, 'fE) have series expansions for Iyl <1 which 
satisfy 

IKo(x,P, ,,"Ell ""t lyIJIAJ(x, p, +E)I ""'£ lylJcJ=c 
J =0 1.0 
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for all (x, P, E) E: D xD' x [0, o"l, Furthermore the limit 
E - + 0 of 1\ j (x, p, 'F E) exists for each j and the functions 
1\jn(x, I)) are continuous inpED'. Thus Lemma (3.3) 
is valid for l = O. 

Assume KQ _ 1 (x, p, 'F E) has the following series 
expansion 

~ 

KQ_1(x, I], 'FE)=0 /Kj ,Q_l(X, p, 'FE), 
j=O 

where there exist constants K j ,q_l, j = 0, 1, 2, 
that for I) I < 1 

jKi,q_t (x, fl, +E) j ~ K f ,q-l, 

(3.20) 

such 

(3.21) 

for all (x, fl, E) E: Dx!)' x[O,al c Furthermore, assume the 
limit E - + 0 of K j ,q_l(X, I), 'FE), j = 0, 1, 2, "', exists and 
f{ i," ~-1 ~\:, I») a re continuous in I) E: D'. 

From (3.10), Lemma 3.2, (3,20), and (3.21) we have 
~ 

KQ(x, fl, 'FE) = ~o ,,1 Kj,Q(x, I), 'FE), 

where for j = 0, 1, 2, ... 

j f e(kl( P2/2 . ) }{ . (. p ) = _;: 1 ,~x, y; m 'F ZE JqX, ,'FE '-.J C\ I I ' k=O' X - Y 

Furthermore, 

j 

<"'elk)}' jjvj j-ljj K' -"0 c tli_k),q_1SUP s X-' 1= i,q 
k=O xrc.D 

for all (c, p, ElE:DXD'x[O,alwhere, for 1}1<1, K1',q 
satisfy 

t jl'jiKj,q=C(csupjjvsjx- .j-ljj~q, 
J=O '\ xED Y 

which verifies the first two parts of the lemma for 
Kq(X, p, 'FE). 

The existence of the limit E - + 0 of Kj,Q(X' p, +E) for 
each j follows from the existence of the limit E - + ° of 
e~/)~"(, 1'; /)2/2111 'FiE), l =0, 1, 2, "', and K Z,Q_l(Y, p, 'FE), 
l = 0,1,2, "', together with (3 0 22). Similarly the con
tinuity of Kj;~("(, f!) in p rc D' follows from the continuity 
of lim,_ +Oe;/)(x , .'l'; p2/2111 'F iE) and K;~~_1 (y, P) in p rc. D' 

for 1 = 0, 1,2, ... together with (3.22). 

Thus the lemma is valid for l = q, and by induction it 
is valid for alll. 

IV. PERTURBATION THEORY FOR THE HALF-OFF
SHELL T MATRIX 

The perturbation series for the pure Coulomb re
normalized half-off-shell T matrix is defined as the 
expansion of (1 5) in powers of y and is denoted as 
follows' 

(4.1) 

This expression can be obtained from the perturbation 
series for the physical distorted plane waves via the 
definition (L 5) of the renormalized half-off-shell T 
matrix. 
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In this section we show that the nth partial sum of 
(4.1) converges to the nth partial sum L: Z.o yk+l 

XTk(p', I p'l, e, ¢) for the on-energy-shell T matrix in 
the following sense 

lim lim7T-1! dp'dp rP (p"7) f(p) t l+1 T k(P', p, E, X) 
€ .... +O ).-+0 .6.. txt:" k=O 

where for 0 < 0' < 1)1 < 7T/2 

A'={p'=(jp'j,e',<p')jjp'j rc[O, +oc), e'E.(1)j,7T-1)d, 

o Ec. [0, 27Tl} 
and 

A={p=(jpj,e,<p)jjpjdo,+oO), erc.[o,1)I-O'l, 

o E [0, 27Tl} 

and rP, *rc.CO~(R3\tO}). The restriction A'n A=.rjJ enables 
us to neglect the difficulties associated with the singular 
behavior of the Coulomb T matrix in the forward direc
tion. The sense of convergence specified in (4.2) is 
motivated by the following representation1 for the re
stricted 5 operator, 5(A', A), which defines the sense in 
which the limits X - + 0 and E - + 0 are to be taken 

(0j 5(A', 6.)+) = lim lim7T-1! dp'dp ¢ (P1 ~(P) 
E-+O ). -+0 .6.. 'X 6, 

(4.3) 

where 

5(A', 6.) = (_ 27Ti)-1 Q~ * Q~, Q~ = Q. plJ. 

with plJ. = XIJ. (P) the characteristic function of A. The 
relation (4. 2) allows us to calculate the approximate on
energy-shell physical Coulomb T matrix to any power 
of (' for the momentum restricted to (, p' I , e, ¢) rc. A and 
(I P' ',8', 0')E A'. 

For the pure Coulomb potential McDowell and 
Coleman have calculated (L 4) (Eq. 5.4, 60, Ref. 5), 
which yields the following expression for the renor
malized half-off-shell T matrix; 

IPly (-i~ Elil ~\ ( . 
T(P', I), E, /I.) 0= 27T211l exp'-I P' I log 2p,2 - 2/1 + zy) 

(imee2 )-I[p,2-(IPI+iX)21iY (4.4) 
x r\1-10- [(P'_ p)2 + /l.2]1+i7 

From (4,4) we obtain (4.1) for I I' I < 1 with 

Tk(P', p, E, /I.) 

0= Ipl [(P'_P)2+ x21-1± r/(IPIJ.1-J.PJJ/-ileJ.log~ 
27T2m . 1=0 (k -l)! \' 1 p'l 2p,2 

J
'~-I) 

_~+ilog[p'2_ ([pj +ix)21_ilog[(P'-P)2+ x2] , 
2 

where r/(1 pi I, 1 Pi) are defined by 

r(1+iy)r(1-iyjpj/jp'jr1=t y/r/(jp'j, jpj). 
1=0 
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It is straightforward to verify that the limit A - + 0 appearing in (4. 2) can be performed, i. e. , 

l!:~ ! dp' dp ¢ (p') ~(P) to l+1 Tk(P', p, E, A) (p,2/2m ~ p2/2m)2 + E2 
Ci'l<Ci 

f dP'dPi>(P')~(p)~ol+ITk(P',P'E' 0) (p'2j2m~p2/2m)2+E2' (4.5) 
6,'xa 

where 

( 1 P 1 ~ r l (I P'I , 1 PI) r/- i 1 P 1 log~ + i log I p,2 _ p21 _ i log[(P' _ p)2] _ ~1T) (k-!l 
Tk P', p, E, 0) 21T2m(p' _ p)2 \-;'0 (k -i)l L\ 1 p' 1 2p,2 2 

Iii P 1 Em ~ 1T)(k-J 1 r (p2 + 2>rlE~ log 2(p2 + 2mw) +i log2~ lu 1- i log {2p2 + 2mw - 21 P I (p2 + 2mEu)I/2 cose} +2 {2p2 + 2mEU 

_ 2 [ P [ (p2 + >rlEU)1 /2 cose}-1 ¢«p2 + 2nuu)I!2, 8', cf> ~, 

where cos 8 = (p . P')/ 1 P liP' I. The verification that the limit E - + 0 can be interchanged with the p, 8', and cf>' 
integrals is straightforward and allows us to write 

~~~1T-lf dP'dP¢(P1~(P)tol+1Tk(P',P'E' 0) (p'2/2m~p2/2m)2+E2 
6,'xL!.. 

f f "1-" f2. - n k+l ~ 8)-2 f+~ k {~ ~ _ _ 21T](k-Jl = dp' d8sin8 dcf>i>(p')~(lp'/, 8, cf»L;L8::3 sin-
2 

du(u2 +1rlL; ilogu-ilogSin2 !!.. 
, 0 k=O 1T J=O 2 

Ci 0 0 

+['1 -'1 . z1e\+~](k-Jl} r,(IP'iLl.t.:ll. 
lOgu Z ogSln'2J 2 (k-j)! (4.6) 

The Coulomb T matrix is given by 

T(') __ e1e2 r(1 + iy) 
P , Pip' 1.lpl - 81T2p2[sin2(B/2)JI+I. r(l- iy) , 

which can be rewritten as 

T(P', p) Ip' 1=lpl 

(4.7) 

For 1 y I < 1, (4.7) has a series expansion in powers of y whose nth term is related to the integrand of (4.6) by the 
factor Ip'lm, which verifies (4.2). 

V. THE COULOMB·LlKE HALF·OFF·SHELL T·MATRIX 

In this section we discuss the renormalized perturba-I 
tion series for the general Coulomb-like renormalized 
half-off-shell T matrix. 

The renormalized Coulomb-like half- off- shell T 
matrix has the form (for A> 0) 

T(p', P, E, A) = F;,( I p'/ )(P' I Vc;>. n_1 p) 

+ F:,( I p' I )(P' I Vs ;>. n_1 P), 

183 J. Math. Phys., Vol. 19, No.1, January 1978 

(5. 1) 

I 
where Vc;>.(x) = exp(- Alx 1 )y(.8Ix I ,-1, Vs;>.(x) = 
= exp(- A Ix I )1)Vs(x). Assuming Theorem 3. 1 and Lemma 
3. 3 are valid, we have for 1 y I < 1 and 11) 1 < 1)1 

~ 

cf>+(x, P) = ~ limA/(x, p, +E), 
1=0 E--+O 

(5.2) 

where each term in the above series is bounded by a 
constant independent of (X, P) E D X D'. 

Using (5.2), we obtain 
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(P' I vs;. st_1 P) =f?o l1f dx cP (x, p') exp(- A Ix I )Vs(x) 

x(limAI(x, P, +E)\' 
E-+O ') 

where each term of the above series is a continuous 
function of P' EO R 3

, P EO D', and A> O. Thus in the on
energy-shell limit, E - + 0, the contribution to the re
normalized perturbation series corresponding to 

F7,(1 P' I )(P' I Vs;. st_1 P) (5.3) 

must contain (IOgE)I, l=I,2,3, "', divergencies, 

The above argument shows that the validity of the 
renormalized perturbation series for (L 5) requires 
that the divergencies in the series expansion of (5.3) 
cancel divergencies in the series expansion for the 
first term on the right side of (5, I), Whether such a 
cancellation takes place is an open question. 

The following theorem shows that the last term in 
(5. 1) does not contribute to the on- energy- shell T 
matrix, 

Theorem 5,1: Assume Vs EO L 1 and there exists a con
stant Q such that for all (x, P)EODXD' 

I 1>'(x, P) I '" Q (5.4) 

and CP'(x, P) are continuous functions of p ED'. Then 

lim lim1T-1 ! dp'dp ¢(P1$(P) T(p', p, E, A) 
e"'+O ).-+0 6 'xo. 

E.~_~~,,-
x (p,2/2m _ p2/2m)2 +E2 

= lim lim1T- I! dp'dp ¢ (P') $(P) F:,( I P' I) 
e"'+O ). .... +0 .~ 'xL!. 

X (P' I Vc ;. st-i P) (p,2/2m ~ p2/2m) +7' 
where ¢, $E C;(R3\{0}), 

Proof: We must show 

lim limA(E, A) = 0, 
",,+0 ). ... +0 

(5,5) 

A(E, A) -= 1T-1 f dP'dp ¢(P') $(P) F~,( I p' I )(p' I Vs;. st-\ p) 
6,'X6. 

E 

x(p,2/2m_p2/2m)2+E2 (5,6) 

for 1>, If! E CQ'(R3 \ {O}), Setting p2 = p,2 - 2mElJ, we obtain 

A(E, A) = ; 1 dp' 1> (P') F~,( I P' I) f "1-<> de sine f 2. dCP 
6' 0 0 

f 
p'2/2m' 

X du(p,2 _ 2mw)l!2 (U 2 + lrl 

-~ 

X ~«p'2 _ 2nzEU)1!2, e, CP) 

x (p'l Vs;. st-\ (p,2 - 2lnEU)I/2, e, CP). 

In order to verify (5,6), we require the following 
inequality: 

jA(E, A)I 

~ :1 1, dp' 1¢(p')1 )r(l- i~~~lle2 r I ~ "1-" desine 
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X $«p,2 _ 2lnEU)1!2, e, 1» (P' I Vs;. st-\ (p,2 - 2mEu)I12, e, CP) 

-1Tlp'l $(lp'l, e, cp)(p'lvs;.st_1 Ip'l, e, cp)1 

+ In I f rip' ¢(P') F:,( I YTi I p'1 f ~1-<> de sine 
6' 0 

Due to assumption (5,4) there exists a constant Q such 
that 

I (p'IVs;.st_l(p,2-2mEu)1!2, e, cp)1 ",Q. (5.8) 

Furthermore, due to the continuity of cP+(x, p') in p' co D' 
we have 

lim liml(p' I Vs;. st_1 (p,2 - 2mEu)1!2, e, cp) 
e ... +O ). ... +0 

Thus by the Lebesgue dominated convergence theorem 
the limit A - + 0 and E - + 0 of the first term on the right 
side of (5.7) is zero, Furthermore, by (5.8) 

I P' I $(P')r(I- imele2/1 p' I rl Jo"I-" de sine 

XJo2'd1>~(lp'l, e, cp)(p'IVsst-\ Ip'l, e, CP)EOL 1(R 3
), 

Thus by a similar argument as used to prove the 
Riemann- Lebesgue lemma the last term in (5.7) con
verges to zero as E - + 0, which proves the theorem. 

Remarl?: It must be emphasized that, while the last 
term in (5. 1) does not contribute to the on- energy- shell 
T matrix, the series expansion of this term may cancel 
divergencies in the series expansion of the first term 
on the right side of (5.1). 

VI. DISCUSSION 

In this paper we have shown that the recently formu
lated renormalized off-energy-shell scattering formal
ism1 leads to natural perturbation expansions for the 
Coulomb distorted plane waves and T matrix, A two
step prescription has been presented for calculating the 
on-energy-shell Coulomb T matrix, The approximate 
physical distorted plane wave is calculated first via the 
renormalized perturbation series for the RCEW, The 
approximate physical distorted plane wave is then used 
to generate the perturbation series for the renormalized 
half-off-shell T matrix, which yields the approximate 
physical T matrix, 

The results of this paper suggest that the stationary 
renormalization terms appearing in the definition of the 
renormalized off-energy-shell formalism1 cancel the 
divergencies encountered in perturbation theory based 
on the short-range off-energy-shell equations, The 
validity of a three-particle renormalized perturbation 
theory based on the RCEW's and renormalized half-off
shell T matrix is of particular importance for Coulomb 
scattering, The case of three particles interacting via 
pure Coulomb potentials is of practical importance since 
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closed form expressions for the kernels of the Faddeev 
equations can be derived. Thus a prescription for can
celing the divergencies in the iterations of the off-ener
gy-shell Faddeev equations would yield a method for 
calculating the physical three-particle T matrices. 

In a recent paper by van Haeringen8 a stationary 
Coulomb scattering formalism based on Coulombian 
asymptotic states was derived together with a discus
sion of the energy-shell limit of the renormalized off
energy-shell T matrix [Eq. (51), Ref. 8]. The validity 
of a perturbation approach for the renormalized off
energy-shell T matrix has not been considered in this 
paper. 

APPENDIX: THE COULOMB-LIKE CEW'S 

In this appendix we summarize various properties of 
the Coulomb-like Green's function and CEW's which are 
required in this paper. 

The pure Coulomb Green's function has been explicitly 
calculated9 and is given by 

Gc(x,x'; 2~ 'fiE) 

mr(l + ill) { . 
= 2 I 'I W_iv;I/2(-zka2) rr x-x 

xlii -Iv; 1/2 (- ikal) - /Yi -Iv; 1/2 (- ikal) W_ iv; I /2 (- ik(2)}, 

(AI) 
where 0!2= Ixl + Ix'i + Ix-x'i and al= Ixl + Ix'l
- Ix - x' I and the dot denotes differentiation with re
spect to the argument of the Whittaker functions. 

The following theorem summarizes various properties 
of the Coulomb-like Green's function which are proven 
in Ref. 4. 

Theorem A. 1: Assume Vs satisfies (1. 7). Then for 
each E > 0 and p E: R3 \{O}: 

(i) The full Green's function G(x,x'; p2/2m 'fiE) exists. 

(ii) There exist finite constants K 1(p,E) and K 2(p,E), 
depending on E> 0 and p E: R3 \ {o}, such that 

j dy I G(x, y; p2/2m 'f iE) I "'" KI (P, E), (A2) 

J dyIG(x, y; p2/2m 'fiE)Vs(y)1 ""'K2(p,E) (A3) 

for all x E: R3. 

(iii) G(x,x'; p2/2m 'fiE) satisfy the following equations: 

G(x,x'; p2/2m 'fiE) =Go(x,x'; p2/2m 'fiE) 

185 

= Go(x ,x'; p2/2m 'fiE) - J dy G(x, y; p2/2m 'f iE) 

x V(y) Go(y,x'; p2/2m 'fiE) 

= Gc(x ,x'; p2/2m + iE) - J dy Gc(x, y; p2/2m + iE) 

x Vs(Y) G(y,x'; p2/2m + iE) 

= Gc(x, x'; p2/2m +iE) - J dy G(x, y; p2/2m +iE) 

XVs(y)Gc(Y, x'; p2/2m 'fiE) 
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(A4) 

for almost all (x,x')E:R 3 xR3
• 

Proposition A. 2: Assume V(x) = y(fllx I r l + 1)Vs (x), 
fl = m/ I PI, where Vs satisfies (1. 7). Then for each 
fixed E> 0, P E: R3\ {o}, ¢H(X,p) defined by (1.1) satisfy: 

(i) ¢H(·,P)E:C(R3
). 

(ii) ¢H(X, P) are the unique solutions in L 00 of each of 
the following equations: 

¢H(X, P)=¢(x, P)- JdvGo(x, v; p2/2m'fiE)V(y)¢H(y, P), 

(A5) 

q;,H(x, p) = ¢~'(x, P) -1) J dy Gc(x, y; p2/2m 'f iEjVs(\') 

Xq;,H()', Pl. (A6) 

(iii) q;,H(X, P)=q;,(x, P)- jdyG(x, v; p2/2m'tiEJ 

x V(y)¢( v, P), 

=¢;'(-(,P)-1)jdyG(x, \,;p2/2m+iE) 

x Vs(y) q;,~'(v, Pl. 

(iv) There exist positive finite constants y and~, de
pending on E > 0 and p E: R3 \ to}, such that the iterations 
of (A5) are absolutely convergent and satisfy (A5) for 
Iyl <y and 11)1 <ij. 

Proof: Parts (i) and (iii) and the validity of the off
energy- shell equations of part (ii) follow immediately 
from Theorem A. L 

We now verify that the solutions of (A5) are unique 
in L 00(R3). Thus we must show if fc L 00 satisfies 

f(x) = - J dy G(x,\'; p2/2m +iE)V(v)f(y), 

thenf= O. 

(A7) 

Due to (1. 7) there exists a constant (\ such that 
I V(2)(x) I "'" Cllx i -I. The following inequalities, 

jdx Ix 1-2[jdy exp[- Imk Ix - .1' Illx - y I-II V(y) I 12 
'S Jdx Ix 1-2[C2 {exp[ - Imk Ix 11- l}lx I-I 
+C3 jdv exp[- Imk Ix- y Illx - .\' I-I I vll)(y) 1]2 < 00, 

where C2 and C3 are constants, show that Vf E: L 2. It 
follows f= (Ho - ?;)-IVfc: D(Ho), l;,=p2/2'1l +iE, i. e., 
(H - I;,)f= O. However, H is self-adjoint and E" 0; thus 
{=O. 

A similar argument verifies the uniqueness of solu
tions to Eqs. (A6). 

Denote the formal iterations of (A5) as follows: 

00 

q;,H(X, P)=0 q;,;'(x, P), 
1=0 

(AS) 

where 

q;,~'(x,P) =¢(x, P), (A9) 

q;,;'(x, P) = - j dy Go(x, y; p2/2m 'f iE)V(Y)¢;~1 (y, Pl. 

Due to (1. 7) we have 
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where V~ll, V~ll ELI n L 2 and V~2>, V~2) E L~. Thus we 
obtain for each l 

11>;'(x,p)I-'S[{yIIV~2)11~+TlIlv:2)11~}IICo(')lll 

+{YIIV~1l112+11llv~1l112}IICo(·)112JI. 

Clearly for each fixed E> 0 and P E R3 {a} there exist y 
and 17 such that 

{YIIV~2)11~+1111 v~2)11~} I ICo(')1 11 
+ {y II V~1l112 + 11 II v~1l112} II CO (.) 112 < 1 

for 1 y 1 < Y and 111 1 < r" which proves part (iv) of the 
proposition. 
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Forms of all spacetime metrics which admit [(11) (11)1 
Killing tensors with nonconstant eigenvalues a) 

I. Hauser and R. J. Malhiot 

Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 
(Received 8 June 1977) 

Forms are obtained for all of the spacetime metrics which admit or are conformal to those which admit 
Killing tensors whose Segre characteristics are [(II) (ll)] and whose eigenvalues A(I) and A(2) are not 
constants. No a priori assumptions are made concerning separability, isometries, invertibility, Petrov 
type, or the matter tensor. Some of our metrical forms, viz., those for which the Hamilton-Jacobi 
equation is separable or partially separable after multiplication by an integrating factor, are already 
known; in particular, they include all of Carter's Hamilton-Jacobi separable spacetimes. Also, some of 
our metrical forms are new and may be applicable to finding interesting nonvacuum metrics which admit 
1(11) (1 J)] Killing tensors, but which do not necessarily have any Killing vectors. Though our results 
include a class of metrics for which A(I) and/or A(2) are constant. they do not include all such metrics; in 
an appendix, we prove that the set of all metrics which admit [(11) (11)] Killing tensors with constant A(I) 

and A(2) is identical except for conformal factors with the set of all metrics which admit [(11) (II)] 
conformal Killing tensors. 

1. INTRODUCTION 
A. Carter's Hamilton-Jacobi separable spacetimes 

The obj ective of this paper is a nontrivial generaliza
tion of Carter's' family of Hamilton-Jacobi (H-J) 
separable spacetimes. 2.3 It will serve that objective to 
start with a review of the general structure of these 
spacetimes and of some key pOints which have not been 
adequately stressed in the literature. 

Carter introduced his family of spacetimes in 1967-
68. The idea had come from his observations4 on the 
separability of the Hamilton-Jacobi equation for the 
geodesic orbits of the Kerr metric. Like the Kerr met
ric, each of Carter's H-J separable spacetimes ad
mits a coordinate system x" such that the Hamiltonian 
for geodesic orbits takes the form l

•
5

•s 

~g"BP"P6=(A(2)_AO»-1(Ht +H
2

), 

where 

2H l = FUlpi + [G(l) ]-1(P3 - JO) p4 J2, 

2H2 = F(2)p~ + [G(2)]-1(P4 _ J(2)pY. 

(1) 

The fields A (i), F(j), G(l), J<il depend at most on only 
one coordinate Xi (i = 1,2). This and the structure of the 
Hamiltonian H imply that 

H, A=o~p", B=o~p", 

K= tK"ap"Pa= (A (2) - A O)tl(A (2)H, + A (!)H
2

) (2) 

constitute a set of linear and quadratic forms whose 
six mutual Poisson brackets all vanish identically; the 
set is irreducible in the sense that K is not expressible 
as a linear combination with constant coefficients of the 
quadratic forms A2, B2, AB, H. 

The above description of the Carter family in terms 
of first integrals of geodesic motion has its equivalent 
in terms of symmetries of the metric. Specifically, 
each Carter spacetime admits a pair of Killing vectors 
A", B" [o~, o~, in the coordinate system for which Eq. 

a)Work supported in part by the National SCience Foundation 
under Grant No PHY 75-08750. 

(1) holds] and a Killing tensor? K"a such that 

(1) the Lie derivatives of B" and K"a with respect to 
A'" are zero; 

(2) the Abelian isometry group G2 which is generated 
by A", B" has nonnull surfaces of transitivity and is 
invertible; 

(3) the Segre characteristic of K"e is [(11)(11)]; 

(4) K"e is not reducible by G2 , which means that it is 
not equal to any linear combination of A "Aa, B" Be, 
A (" Be), f('B, with constant coefficients. 

It is essential to keep in mind some key points con
cerning the known solutionsl ,8-10 which are in Carter's 
H-J separable family and which, therefore, have the 
symmetries described above. Recall that any Killing 
tensor whose Segre characteristic is [(11)(11)1 has two 
linearly independent real null eigenvectors k", ma 
which are shear free and geodesic. 2.11 Therefore, by 
the Goldberg-Sachs theorem, every vacuum solution 
and every electrovac whose Maxwell field has k", m" 
as eigenvectors m'Jst be conformally flat or type D. l2 
Also, if a given spacetime is in Carter's family and if 
the coordinate system CJf Eq. (1) is chosen, the 
Schrodinger equation is separable if and only if the com
ponent R'2 of the Ricci tensor vanishes. '3 

All of the vacuum metrics and all electrovac augmen
tations of these metrics are, in fact, known and were 
computed by Carter, with quite a few new results .1.8 

The Kerr-NUT is the most general type D vacuum met
ricH in the H-J separable family. Also, there is 
Wahlquisus lo type D rigidly rotating perfect fluid solu
tion which has the Kerr-NUT as its vacuum subcase 
and which is manifestly in the Schrodinger separable 
subset of the Carter family. 

The glaring exceptions15 to the rule that type D 
vacuums14 belong in the Carter family are the C metric 
and its generalization, the C-NUT which was discover
ed by Kinnersley9 and which is the most general type 
D vacuum metric, from which all others can be obtained 
by limiting processes. However, as PlebanskPs and 
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DemianskPS have made clear by the elegant form of 
their seven parameter electrovac augmentation of the 
C-NUT, this metric and its electrovac augmentation 
are each conformal to a 5chrodinger separable member 
of the Carter H-J separable family. So, it is not an 
exception provided we extend the Carter family by in
cluding a conformal factor in Eq. (1). For the electro
vac augmentation ofC-NUT, this conformal factor is 
1 + 1:1.(1):1.(2)1

'
/ 2 • 

One possible direction of further research on the 
H-J separable family is to look into nonvacuum solu
tions for which R'2 * 0 and which are, therefore, not 
Schrodinger separable. Our interest overlaps that one 
but is not the same. 

B. Objective 

The property of Carter's H-J separable family which 
distinguishes it from the broader set of all spacetimes 
which admit a two-parameter Abelian group G2 is the 
existence of a [(11)(11)] KT (Killing tensor). It has 
occurred to us, as it has unquestionably occurred to 
others, that here is a place to study symmetry breaking 
by dropping the assumption that any isometries exist 
and retaining only the existence of a [(11) (11)] KL 

In view of the facts that the vacuum solutions and their 
electrovac augmentations are all known' •8 and all 
possess a G2 , there is nothing new to be found in that 
ball park. Nor is there any guarantee that a physically 
interesting metric will be found in our contemplated 
generalization of the H-J separable family. We have 
no evidence for that. However, the search for physically 
plausible matter tensors which permit the hidden sym
metry characterized by a [(11)(11)] KT is still an open 
field, and even a negative conclusion to that search will 
be of interest provided it comes at the end of a fairly 
thorough hunt. We want to set up tools for that hunt in 
this paper, 

In a previous paper, 2 the authors found a general 
metrical form for those spacetimes which admit 
[(11)(11)] Killing tensors whose eigenvalues :I. (1) and 
:I. (2) satisfy the condition that d:l. (1) II d:l. (2) not be zero 
or null. They obtained a result which is exactly like Eq. 
(0 except that F(O, G (0, and J(O can depend on Xi+1 as 
well as on xi (i = 1,2). The dependences are not arbi
trary, but they were not determined in that paper since 
its objectives were different. 

There remain the nontrivial tasks of extending our 
results to the case where d:l. (1) II d:l. (2) is a null 2-form, 
of clarifying some important parts of our previous 
derivation, and of obtaining explicit results for the de
pendences on x3 and X4. However, though we want to 
generalize the H-J separable family by dropping the 
isometry premise, we must stress that we are not going 
to embrace all spacetimes which admit [(11)(11)] Kill
ing tensors. For, as we prove in the Appendix, the set 
of all melrics which admit [(11)(11)] Killing tensors with 
constant :I. (1) and:l. (2) is identical except for conformal 
factors with the set of all m etrics which adm it [(11)(11)] 
conformal Killing tensors {whiCh, of course, automatic
ally includes all [(11)(11)] Killing tensors}. This is an 
appreciably broader family than the one which we are 
prepared to determine. 
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Our objective is the more limited one of finding the 
metrics of all spacetimes which admit or are conformal 
to those which admit nonsingular [(11)(11)] Killing ten
sors; by a nonsingular [(11)(11)] KT, we mean one 
whose eigenvalues :I. (1) and :I. (2) are neither of them 
identically constant. No a priori assumptions are made 
concerning separability, the existence of isometries, 
invertibility,17 Petrov-Pirani type, or the matter 
tensor. 

This objective should not be confused with a different 
extension of Carter's H-J separable family which has 
been considered by Dietz, 3 on the basis of Woodhouse's3 
separability theorems. Dietz constructed the entire 
family of metric tensors for which the Hamilton-Jacobi 
equation for geodesic orbits becomes separable or 
partially separable after it is multiplied by an integrat
ing factor. The result is a family of metrics which 
overlaps ours but is not the same, and the overlap does 
not include all of our metrical forms; in particular, it 
does not include those of our metrical forms which 
arouse our greatest interest and curiosity. The details 
will be given in Sec. 4. 

Our results fall into four subfamilies which are each 
characterized by different dependences of the metric 
components on the post-ignorable coordinates x3 and X4, 

For each of these subfamilies, there are three distinct 
cases which are labeled by a trichotomic variable E 

which equals 1, - 1, or 0 depending on whether the 2-
surfaces of constant x' and rare timelike, spacelike, 
or null 0 As in the H-J separable family of Carter, the 
metric is a functional of eight fields :I. (i), F<i), G (i) , J(/) 

some of which may be redundant or identically zero in 
a given subfamily. As before, :1.(0 depends at most on 
Xi but F(i), G(i>, J(i) can now depend on both Xi and 
Xi+' (i = 1,2). In one of the four subfamilies, which are 
detailed in Sec. 3, the dependence on Xi+1 is specific 
and involves two parameters; this is the subfamily which 
includes the Kerr metric. In each of the other subfami
lies, some of the metrical fields depend arbitrarily on 
Xi+1, and some are independent of Xi+1 • 

The general form of our results independent of the 
particular subfamily and not including any details on 
X3, X4 dependence is given by's 

~g",ap",Pa = e-20 (:I. (2) _ ,\ (1) )-' (H, + H
2
), 

2H, = F(1)pi + [G(l)]-1(P3 - J(l)P4)2, 

2H2 =E{ F(2) p~ - [G (2) ]-'(P4 - J(2) P3)2} 

+ 2(1 _E 2)(F(2) /G(2»'/2p2 (P4 -J(2)P3)' 

(3) 

If the conformal factor exp(- 2a) is unity, then there is 
a [(11)(11)] KT given by Eqs. (2) and (3). 

When E = 0, note that F(2) / G (2) in H2 actually contains 
only one independent field; we leave it in the form of a 
ratio because that is how it occurs in our calculations. 
Whe; E =± 1, and the conformal factor exp(- 2a) is unity) 
and all metrical fields are independent of x3 and X4, 

then Eqs. (3) reduce to Carter's H-J separable form 
as given by Eqs. (1).'9 

To avoid any misunderstanding, we repeat that all 
Carter H-J separable metrics ' are contained in our 

I. Hauser and R.J. Malhiot 188 



                                                                                                                                    

family. That includes H-J separable metrics whose 
[(11)(11)] Killing tensors are singular. To obtain the 
singular cases, let exp(- 20-) = [A (2)1 _ A (1)1]-l[A (2) - A (1)], 
where A (1)1 orland A (2)1 are constants, or simply let the 
conformal factor be unity and replace A (1) orland A (2) 

by constants. Examples of H-J separable metrics which 
admit singular [(11)(11)] Killing tensors are the 
Schwarzschild metric and all nondiverging type D 
vacuums. 1,8 

The existence of a coordinate system which gives us 
the canonical structure of Eq, (3) is proven in Sec. 2. 
In Sec. 3, we solve the affine connection equations to 
determine exactly what can be said about the coordinate 
dependences of the metrical components. In Sec. 4, 
we summarize our results, give a convenient form of 
the line element, and relate this form to the charged 
Kerr metric in Boyer-Lindquist coordinates. 4 

We open Sec. 2 with some derivations which were 
introduced in a previous paper2 by the authors. The 
treatment here differs, however, in some important 
respects. First, we now include the case where the 
2-surfaces of constant A (1) and A (2) are null, which we 
did not do previously and which involves some special 
treatment. Second, we previously used the eigenvalues 
A (i) as coordinates, because we were not interested in 
the Singular cases at that time. We now use generally 
applicable coordinates Xl, x 2

, and we replace our 
former notations cp3, cp4 by x3, X4. Third, our derivation 
here is an appreciable improvement of our previous one 
and has been boiled down to essentials as far as we can 
tell. 

2. CHOICE OF NULL TETRAD AND COORDINATES 

We first introduce a few notations. 

k, m, t, t* denote any null tetrad consisting of real 
I-forms k, m and complex I-forms t, t* such that t* is 
thec.c. oft, andk'm=tot*=I. We define real con
nection forms P, Q and complex connection forms v, W 

by the equations 

P =' dx'" ('\7 ",ks)mS, iQ =' dx'" ('\7 ",ts)t*~, 

v='dx"('\7",k6)t6 , w='dx"'('\7",m a)tH • 
(4) 

Then, the covariant derivatives of the null tetrad mem-
bers are given by 

'\7 '" k a = P", k 6 + V * '" t a + v'" t* a' 

'\7",m a=-P",m6 +w",ta+w*", t*a' 

'\7 ",ta = - w* ",ka - v",m B+ i Q",tB, 

and the exterior derivatives are given by 

dk = Pk + v* t + vt* , 

dm = - Pm + wt + w* t* , 

dt = - w* k - vm + iQt. 

Note that we follow the convention of suppressing the 
symbol /\ in exterior products of forms; e. g., d /\ k 
=dk and p/\ k=Pk. 

The script variables which we use for coordinate 
tetrad components of tensors are 
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(5) 

(6) 

(}!,{3, 000 with values 1,2,3,4, 

i,j with values 1,2, 

r,s with values 3,4. 

For null tetrad components, we use the script 
variables20 

a,b, ••• with values k, m, t, n, where n=t*. 

The components vk ' vI' Revn, Imvn are the geodesy, 
shear, divergence, and twist of the null congruence 
defined by k; the corresponding optical parameters for 
mare wm ' wn' Rewt> Imwt • As a note of caution, we 
always use the convention V* a = (va)*. 

The first step in the derivation is the selection of a 
null tetrad. Since the Segre characteristic of K",a is 
assumed to be [(11)(11)], the KT has eigenvectors 
k", m"" t"" t* '" and eigenvalues A (1), A (2) such that 

K"B = A (1) (k",m a + m"ka) +A (2) ((",t* a + t* ",ta). (7) 

The defining equation for a KT is 

(8) 

From Eqs. (5), we derive the following conditions which 
are collectively equivalent to Eqs. (7) and (8): 

Vk=Vt=Wm=Wn=O, 

dA (1) = p2[(Wk + V!)t + (W: + Vm)t*], 

dA (2) = p2[(Wt + W* t)k + (V n + v~)m], 

where we let 

p2 =A (2) _ A (1). 

(9) 

(10) 

(11) 

Note that dA (1) /\ dA (2) = 0 if and only if dA (1) = 0 or dA (2) 
= O. If dA (1) or dA (2) is identically zero, the KT can 
always be modified by adding a suitable constant multi
ple of the metric tensor so that A (1) or A (2) becomes 
identically zero. For this reason, we say that the KT 
is Singular if dA (1) /\ dA (2) = O. We consider only non
Singular K"B until the end of this section. 

Observe from Eq. (10) that dA (1) is spacelike 
(dA(l)odA(1»O), whereas dA(2) is spacelike, timelike, 
or null. The sign of dA (2) 0 dA (2) will be denoted by 

E=I, -1, orO. 

We will see that a fairly unified derivation can be given 
of all of the metrical forms regardless of the value of 
E. 

The null tetrad has a residual arbitrariness since 
the canonical form of Eq. (7) is invariant under the con
tinuous group of transformations 

X, cp any real scalar fie Ids, 

and the inversion 

k-m, m-k, I-t*. 

(12a) 

(12b) 

We now remove almost all of this arbitrariness. Note 
that, under the above transformations, 

Vm - e-j~vm' wk - el~wk' 

vn - eXvn' we - e-Xwt , 
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and 

(13b) 

We use the inversion (13b) only if € = O. If E = 0, either 
Rev"=O or Rewt=O; we use (13b) to make Rewt=O if 
it is not already true. Then, for all E, we use the 
transformation (13a) to make 

Yl '" H1'm + w:) real, (14a) 

1(wt +W/)=EY2 , whereYz"'Hv,,+v:), (14b) 

Y2 =Hv" + v!)= f(A (2»/p3 if E =0. (14c) 

By way of explanation, Eq. (14a) is obtained for any E 
by selecting an appropriate rp in Eqs. (13a). IfE=±1, 
Eq. (14b) is obtained by selecting an appropriate X in 
Eqs. (13a). IfE=O, Eq. (14b) holds trivially, because 
Rewt = 0; therefore, we can use the boost transforma
tion to make Rev" whatever we please, and Eq, (l4c) 
is what we please. The function f(A (2» of A (2) could have 
been made unity, but we prefer to leave it open for 
future flexibility. 

For givenf(A(Z», the null tetrad is now uniquely 
determined except for a discrete group, and Eqs. (10) 
become 

dA U) = 2p2Yl (t + t*), d>t (2) = 2p2 y2 (m +Ek). (15) 

In addition to Yl and Yz , the following combinations of 
connection form components will frequently occur in 
our calculationszl : 

O'l=1(Qt+ Qt*), iP l =1(Qt- Q/), 

0!2=1(EP
k

+Pm ), P2"'1(Pk -EPm ), 

i6 l "'1(vm -w/), i6 2 = 1 (v"-v"*). 

(16) 

As we will see, 6 1 is real; so, all eight scalar fields 
!)Ii' Pi' Yi , 6i are real. 

The next step is to apply the integrability conditions 
d2 A I;> = 0 to Eqs. (15), with the aid of Eqs. (6). Only the 
following algebraic implications of these straightfor
ward computations are needed in the sequel: 

Wk=V",=Yl +i61' Wt =EV"=E(y2+i6 2 ), 

P t = i6 1' Qk=-6 2 , Qm=E6 2 , Pm =E2P m • 

We are now ready to select a chart. 

Consider the tetrad2l 

WI '" t + t* , w2 
'" m + E k , 

w3 = - i(t - t*), w4 = k - Em. 

(17a) 

(17b) 

(18) 

We claim that there locally exist scalar fields xl, XT, 
Ell), and ATs U=1,2 and r,s=3,4) such that 

(19) 

where summation convention is not used for i, but is 
used for r, s. The fields x'" constitute our chart. 

To prove the existence of this chart, use Eqs. (11) 
and (15) to s how that 

(20) 

Then, use Eqs. (6), (9), (16), (17), (20) to compute the 
2-forms 

d( p-lWl ) = a 1 (p~lW3Wl), 
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d( p-1W2) = _ 2(1 +E2)-laz(p-lw4w2), 

d(p- lW3
) = (Yl _1,\)(p- lWlW3 ) + 4(1 +E 2)-16 l (p- l W2W4 ), 

(21) 

+C~22 -Y2) (p- l W2W4), 

whereupon the theorem of Frobenius implies the local 
existence of Xi, XT, E(O, ATs such that Eqs. (19) hold. 

The full set of implications of the affine connection 
is derived by substituting Eqs. (19) back into Eqs. (21). 
The results are conveniently grouped into three types. 
First, there are the following expressions for the con
nection form components, in which we let 

detA '" A3~44 - A 3
4A

4
3, 

R=5-i, S=2+i: 

( 
2 );-1 1 

1 +E2 O'i = pdetA 

__ '= + __ AR __ 4 _ R _~ 
( 

2 )i_l E(j) (aA S aA S
) 

1 +Ez Pi Yj pdetA 3 oxi A 4 axi ' 

(22b) 

(
_2_)2/-3

6 
- (_l)iE(O (AR OAR 4 R aAR3) 

1 +E2 3-i - 2pdetA 3 axi -A 4 ~ , 

(22c) 

Yldxl =1p-3E(l)dA(l), Y2dx2 =1p- 3E(2)dA(2). (22d) 

Second, there are the following equations which place 
direct constraints on the Xi -dependences of the metric 
tensor: 

(23a) 

AT aA
s

4 _AT aA
s

3 =0 
3 axi 4 axi if i = r - 2, 

and for all r, S • (23b) 

Finally, there are the following equations which place 
direct constraints on the xT dependences of the metric 
tensor and which hold for r = 3 ,4: 

iJECi) oEI;) 
AT -- _AT -- =0 if i=r-2, 

3 GX4 4 ax3 
(24a) 

ClE(2)/axT =0 whenE=O, (24b) 

aAT4 OAT 3 
ox3 - ax4 =0. (24c) 

By way of explanation, Eq. (24b) is derived with the aid 
of Eqs. (16) and (17b), which imply 0'2 = 0 when E = O. 

Let us see where we stand with respect to our choice 
of coordinates. Suppose Po is any given point in the 
domain of K"a' We have established the existence of a 
null tetrad and a chart which cover Po such that Eqs. 
(19), (23), and (24) hold. This chart is not unique; it is 
subject to any coordinate transformation of the form, 

Xl' =fl(xi), xT' =fT(X3,X4). 

Consider, first, the question of choosing the co
ordinates Xl,;? Observe that Eqs. (22d) imply that 
A (0 depends only on the coordinate Xi. Therefore, we 
can always select Xi =A (0, as the authors did previous
ly.2 However, we are now convinced that it is important 
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to maintain flexibility by not imposing a premature 
choice of the coordinates Xl. This flexibility was em
ployed by Carter in his treatment of the Hamilton
Jacobi separable spacetimes. lOne oj its advantages is 
that it enables us to include a host oj cases involving 
singular [(11)(11)] Killing tensors by admitting metric 
tensors such that 

A (l) or A (2) =' a constant. 

All oj our results remain viable when A (1) or A (2) is 
identically equal to a constant. As an example, con
sider the Kerr metric for which A (1) = - (a COS8)2 and 
A (2) = (r)2; the singular limit of Schwarzschild occurs 
when a=O. 

We next discuss where we stand with respect to our 
choice of the coordinates x3

, X4. Let d, ~ be the values 
of Xl ,x2 at the point Po. We can always restrict our 
chart so that all points in its domain are connected by 
coordinate lines to the 2-surface Xl = cl , x2 = c2

; then, 
(cl, c2 , X3, x4 ) is in the range of the chart whenever Xl, x2 

exist such that (Xt,~,X3,X4) is in its range. With this in 
mind, we prove that Eq. (24c) enables us to select 
x3 , X4 so that 

AT.(cl,CZ,X3,x4 )=6T• for all values of X3,X4. (25) 

(We follow the old fashioned practice of designating a 
point by one of its coordinate representations, with the 
hope that the context rescues us from ambiguity.) The 
proof proceeds by introducing scalar fields aT. defined 
over the domain of our chart and with values 

Equation (24c) implies the existence of scalar fields 
x 3

' , x4
' defined over a neighborhood of Po such that 

(26) 

which implies WT = pAT'.dxs , where AT' • =' (A ill )TS. From 
Eq. (26), A' is the unit matrix on the 2-surface xI = c1

, 

x2 = cz . QED 

We do have some concern that Eq. (25) may impose 
a poor choice of X3 and X4 in some cases. However, Eq. 
(25) will amply justify itself by the ease which it lends 
to solving Eqs. (24a), (24c). Once we have the solution, 
it will be seen that the condition (25) can be dispensed 
with. 

For the general class of metrics which admit non
singular [(11)(11)] Killing tensors or their singular 
limits, Eqs. (23) and (24) are the only constraints on 
the fields E(;) and N •. The solving of Eqs. (23b) and 
(24a), (24c) is the next objective. 

3. THE METRICAL FORMS 

The general solution of Eq. (23b) presents no un
usual difficulty and is given below without derivation: 

A 3
3

=t:;.-lH(1), A 3
4=A3

3J(2), 

A\=A\J(1), A\=t:;.- l H(2), 

Ll. =' 1 - J(l)J(2) > 0, 

where the four fields H<i), J(I) satisfy 

aH(I) aJ(i) 
o if i*j. axi = axi = 
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(27) 

(28) 

In terms of these four fields, Eq, (25) becomes 

H(l)(cI,X3,X4) = 1, J<n(cl ,X3,X4) =0, 

for all x3, X4, (29) 

We next consider the differential-functional Eqs. 
(24a,24c) with N. subject to Eqs, (27)-(29). These now 
become 

aE(2) _ J(1) aE(2) _ J(2) aE(:) _ aE(~) = 0, (30a) 
ax3 ax4 - ax ax 

We proceed to use Eqs. (29) and the fact that Ll.=1 if 
J(1) J(Z) = O. For any values of ~, x 3 , X4, set Xl = cl in 
Eqs, (30); the implications are 

aE(2) aJ(2) aH(2) 
~= ax3 =~=O. 

Likewise, if for any values of xI, x3
, X4, we set .cr = c2

, 

we get 

aE(1) aJ(1) aH(1) 
3x4 = ax4 = ax4 =0. 

Therefore, each of the six fields depends at most on 
two coordinates as follows: 

E(j) (Xi, X2+i), H(j) C,,(i ,X2+i), J<i> (Xi , ~+i). (31) 

Upon substituting Eqs. (31) back into Eqs. (30), we get 

(32a) 

(32b) 

(32c) 

To proceed any further, it is necessary to distinguish 
between four cases which depend on whether or not 6

1 
(i = 1,2) is identically zero in a neighborhood of Po' 
Also, within each of these cases, E(j) is independent of 
XI+2 if and only if (}' I vanishes identically. To help us 
understand these matters, we need the expressions for 
the connection form components CY

I 
and 6; in terms of 

the fields E(i), H(O, J{j). From Eqs. (22a), (22c), (24b), 
(27), and (31), 

-1 alnE(1) 1 alnE(2) 
(33a) Ql l = --(1-) 

~ , CY z = pH(2) ~ pH 

CY 2 =0 when € =0, (33b) 

6 1 = 
(1 +€2)E(2)H(l) aJ(2) 

4pLl.H(2) --aT , 
(33c) 

E(l) H(2) aJ(1) 

62 = (1 +€2)pLl.H(1) ~. 

Equations (33a), (33c) hold for all E. 

I. Hauser and R.J. Malhiot 191 



                                                                                                                                    

Suppose, for example, °1 is identically zero in a 
neighborhood (connected) of Po' We restrict our chart 
to the intersection of this neighborhood and the original 
domain of the chart. Since J(2) (c2, X4) =0, Eq. (33c) 
implies that J(2) is also identically zero, and Eq. (32a) 
imposes no constraint on the x3 dependence of E(l), i. e. , 
no constraint on 0' I' Equation (32b) is identically satis
fied, and Eq. (32c) reduces to a simple form. 

On the other hand, suppose there exists no neighbor
hood of Po in which °1 is identically zero. Then J(2) 

cannot vanish identically in any neighborhood of Po, and 
there exists a sequence of points Pn with coordinates 
xn

fX such that 

x~ - cas n - 00 (c" = coord. of Po), 

J(2) (x~, x~) * ° for all n. 
(34a) 

Also, E(l) is independent of x3
, and 0' 1 = ° at all points 

of the neighborhood. The mode of solving Eq. 
(32b), (32c) will be illustrated later. 

Similar remarks hold for °2 , with the only crucial 
difference being that Eqs. (33a), (33b) imply E(2) is 
always independent of X4 when E = ° (this is true even if 
°2 = 0). Corresponding to Eq. (34a), if °2 is not identical
ly zero in any neighborhood of Po, there exists a se
quence of pOints qn with coordinates y~ such that 

y~ - c as n - 00 , 

J(l)(y~,y~)*O for all n. (34b) 

These sequences will be used later. 

Without more ado, we give the final results for all 
four cases below. To apply these results to the con
travariant metric in Eqs. (3) of Sec. 1, note that 

(35) 

The derivations for cases (0,1), (1,0), (0,0) are obvious 
from the discussion which we just completed, and the 
derivation for case (1,0 will be given immediately after 
the list of results. 

(1,0 RESULTS when 0102*0: 

E(i) = e(i) (Xi), 

H(j) = h(j) (xl )[K(i) ]-1 

(i = 1,2), 

(i =1,2), 

JlO = lO (xl )[K(O]-l exp(0Ix i +2) (i = 1,2), 

K(1) = 1 - (°21 0l)[exp( 0lX3) - 1 UU ) (xl), 

K(2) = 1- (0/02)[exp(02x4) -lU(2)(x2). 

Op 02 are any real constants; 

(36a) 

e(l), hI;) ,lo are arbitrary smooth functions of xl 
except that d/o I dxl is not identically zero. 

(0,1) RESULTS when °1 =0, O2 *0: 

EU) = E(1) (Xl, x 3), E(2) = e(2) (x2), 

H(l) = H U ) (xl, x 3), H(2) = h(2) (x2), (36b) 

Jl1)=J(1)(x1,X3), J(2)",0. 

All are arbitrary smooth functions of respective 
arguments except that aJ(1) lor is not identically 
zero. 
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(1,0) RESULTS when 01*0, O2 =0: 

Like (0,1) except for interchange of scripts, 1 with 
2, and 3 with 4, and except for the additional con

straint expressed by 

E(2) = E(2) (x2 ,E 2X4 ), 

(0,0) RESULTS when °1 =0, °2 =0: 

E(1) =EU)(X I ,X3), E(2) =E(2)(X2,E2X4), 

H(!) = H{l) (Xl, X3), H(2) = H(2) (x2 ,X4), 

J(l) '" 0, J(2) '" 0. 

(36c) 

(36d) 

All are arbitrary smooth functions of respective 
arguments. 

Now, let us go through the derivation of the results 
for case (1,1), °1°2 * 0. Both of the sequences (34a) 
and (34b) exist in this case. In Eq. (32b), while keeping 
(x\x3) arbitrary and fixed, set (X2,X4)=(X~,x~), divide 
through by J(2), and let n - 00. In Eq. (32c), while 
keeping (X2,X4) arbitrary and fixed, set (x1,X3)= (y~,y~), 
divide through by JU), and let n - 00. It can be seen that 
the limits 

_. [alnJ(2)] ° = 11m ---
2 n-~ ax4 n ' 

exist and are independent of the choice of our se
quences; moreover, we obtain the differential equations 

We substitute the above Eqs. (37) back into Eqs. 
(32b), (32c), and we get 

(37) 

(38a) 

Next, in Eq. (38a), while keeping (X2,X4) arbitrary and 
fixed, set (x1,X3)=(y~,y~), divide through by J(l), and 
let n - 00. In Eq. (38b), keep (Xl, X3) arbitrary and 
fixed, set (x 2 ,x4 ) = (x~, x~), divide by J(2), and let n - 00. 

We obtain 
aJ(2) ° J(2) + ° (J(2»2 - -- =0 

2 1 ax4 ' 

aJ(l) ° JU) + ° (J(1»2 - -- -0 1 2 ax3 - • 
(39) 

If we now substitute Eqs. (39) back into Eqs. (38a) , (38b) , 
we find that the latter are identically satisfied by any 
solution of Eqs. (39). So, our cycle of substitutions is 
completed, and we proceed to solve Eqs. (39) and (37) 
for J(i) and H<i). The rest is straightforward. 

In spite of the fact that the choice of a chart for which 
Eqs. (25) hold played a useful role in Simplifying our 
derivation, it is easily verified that our results in Eqs. 
(36) satisfy Eqs. (32) without resort to Eqs. (25). So, 
Eqs. (25) are of no further concern to us, and the func
tions appearing in our results are quite arbitrary except 
for the usual demands of smoothness and signature and 
except for the condition that aJ(j) laxi is not identically 
zero whenever J (i) is not identically zero. 22 
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4. SUMMARY 

We now summarize our results by giving the general 
form of the line element for any spacetime which ad
mits a nonsingular [(11)(11)] KT or which is conformal 
to one which does so. From Eqs. (18), (19), and (27), 
the line element for all E =± 1, ° is 

1 {[dX1] 2 [H(1)(dX3+J(2)dx4)] 2 

ds 2=ze2cr
p2 E(1) + I_J(1)Jc2 ) 

[
dX2 J2 [H(2) {J(l)dx3 + dx4)] 2 

+€ E(2) -E I_JU)J(Z) 

2 [H(2)dX2 (J(1)dX3+dx4)] 
+4(1-E) £(2)(1 _ JU)J(2) • (40) 

Above, exp 2u is the conformal factor; p2 =A (2) - A (1), 

where A (1) and A (2) are arbitrary smooth functions of Xl 
and~, respectively. E(O,H(i),J(l) are given by Eqs. 
(36a)-(36d) for four distinct cases. The contravariant 
metric corresponding to Eqs. (40) can easily be read 
off from Eq. (3), where we have used the notations F(O 

and G(O as defined in Eqs. (35). When exp2u=l, there 
is a [(11)(11)] KT which is given by Eqso (2) and (3); 
otherwise, all we can say in general is that there is a 
conformal KT given by Hz - HI' 

As we stated in Sec. 1, there is an overlap between 
our metrical forms and those which admit separability 
or partial separability for the H-J equation after it is 
multiplied by an integrating factor U. The relations 
between our metrical forms and the H-J separable or 
partially separable ones are most easily obtained by 
comparing our contravariant metrics with the H-J 
separable or partially separable contravariant space
time metrics as listed in a convenient table given by 
Collinson3 or as derived from the general expressions 
given by Woodhouse3 and by Dietz. 3 We omit the details 
of this comparison and simply summarize the results 
for the various cases (1,1), (0,1), (1,0), (0,0) given by 
Eqs. (36a)-{36d). 

The case (1,1) when u1 "" ° and/or u2 "" ° [and for all 
E = 1, -1, 0] represents completely new metrical forms 
which do not fall under any conventional separable or 
partially separable classification 0 When u1 = u2 = ° and 
E = 1, - 1, 0, however, case (1,1) is separable if 

p2exp2u= U = U1(X1) + U2(x2), 

where U1(Xl ) and U2(X2) are any smooth functions of Xl 

and ~, respectively. (So, separability exists in this 
case if exp2u= 1.) The H-J equation then has completely 
separated solutions of the form 

5 = 51 (Xl) + 5 2(X2) + k3X3 + k4X4, 

where k3 and k4 are constants. 

The other three cases (0,1), (1,0), and (0,0) each 
involves at least partially separable H-J equations 
regardless of the value OfE. Case (0,1) has H-J solu
tions of the form 23 

5 = 51 (Xl, X3) + 52(X2) + k4X4 

provided that 

e2a
p2 = U = U1 (x\x3) + U2(x2), 
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where U1 and U2 depend arbitrarily on their respective 
arguments. Note that a/ax4 is a Killing vector for case 
(0,1). 

For case (1,0), (J/ax3 is a Killing vector, and the 
H-J equations have solutions of the form23 

5 =5 l (xI) +52(X2,X4) +k3X3 

provided that 

e2ap2 = U1 (Xl) + UZ{X2,X4 ). 

Finally, for case (0,0), the H-J equation has solutions 
of the form23 

5 =51 (Xl, X3) + 5 2 (X2 , x4 ) 

provided that 

eZap2 = U1 (Xl, X3) + U2 (x2, X4). 

In aU of the above cases, U1 and U2 are arbitrary smooth 
functions of their respective arguments. 

The most interesting of our metrical forms is, per
haps, the one corresponding to case (I, 1) with E = 1 ,24 

since the Kerr metric and its various augmentations 
have this form. For the charged Kerr metric expressed 
in Boyer-Lindquist coordinates, 4 

we have exp2 u= 1, and 

A(1)=-a2cos29, A(2)=r, 

F(l) = sin2 9, F(2) = ~ '= r - 2mr + a2 + eZ , 

G(l) '= sin2 B, G(2) = Y'4~, 

J(l) = acos2 B, J(2) = - ar-2 • 

One of the points which we intend to investigate in some 
detail is whether there can possibly exist any meaning
ful matter tensor for case (I, 1) when u1 '* ° and/or 
u2 "" 0 0 In this investigation, great caution must be pre
served with regard to the interpretation of the co
ordinates x3 and X4; i. e., when 0'1 * ° and/or u2 "" 0, Eq. 
(36a) makes it abundantly clear that we cannot simply 
regard x 3 and X4 as some kind of "post-ignorable" cp 
and t - acp even if the metric reduces to the Kerr met
ric (in Boyer-Lindquist coordinates) in the limit 
u1 - ° and 0'2 - 0. 
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APPENDIX 

Let KOla be any symmetric contravariant tensor field 
on any given differentiable manifold M of dimension four, 
and let g",a and 

(AI) 

denote any conformally related Lorentzian metrics for 
M. Suppose, furthermore, KOla is a conformal Killing 
tensor in the spacetime (M',g"'$); i.e., there exists a 
vector field ~'" in (M, gaa) 'Such that 
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(A2) 

where 'V" denotes covariant differentiation in I.M, g"a) , 
and where K"a = g"ygfjfjJ(Y6. Then, we recall that K"a is 
also a conformal Killing tensor in I.M, g'",e). Moreover, 
it is easily shown that the conformal transformation 
(AI) induces the following transformation of the vector 
field ~": 

(A3) 

Without loss of generality, we can make K"a traceless 
by replacing it with K"a - tg<'-aK~; it will be understood 
that IQ,: = 0 in the sequel. 

We will now prove the following theorem: 

Suppose the Segre characteristic of K"e is [(11)(11)], 
and K"B is a traceless conformal Killing tensor in 
I.M ,g"B)' Then, there exists a conformal mapping (AI) 
such that K"e is a [(11)(11)] Killing tensor in l.M,g~e) 
and such that the eigenvalues of this Killing tensor are 
constants. 

The proof proceeds by noting that 

K/K/=X2
6"Y 

where X and - X are the eigenvalues of the [(11)(11)] 
traceless conformal KT 0 Therefore, 

(A4) 

(A5) 

By a straightforward calculation which we do not re
produce here, we use Eqs. (A2), (A4), and (A5) to 
prove that 

(A6) 

From Eqs. (A3) and (A6), we see that ~", =0 if we 
choose 0= - ilnx. However, ~", = 0 if and only if K',a is 
a Killing tensor in 011 ,g~e)' Moreover, by applying Eq. 
(A6) to the spacetime I.M ,g' "B)' we see that ~", = 0 if 
and only if X' = const. So, the proof of our theorem is 
completed" 

Now, every Killing tensor is also a conformal Killing 
tensor. Therefore, the above theorem has the following 
corollary: 

The set of all spacetimes which admit [(11)(11)] con
formal Killing tensors is identical with the set of all 
spacetimes which admit or which are conformal to those 
which admit [(11)(11)] Killing tensors whose eigenvalues 
are constants. 
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paper is given by 1. Hauser and R. J. Malhiot, J. Math. Phys. 
17,1:306 (1976). 

'Another generalization can be based on the separability 
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On the relationship between conservation laws and 
invariance groups of nonlinear field equations in Hamilton's 
canonical form a) 

Sukeyuki Kumei b) 

Department of Physics. University of the Pacific. Stockton. California 95204 
(Received 28 January 1977) 

It is shown that whenever fields governed by the equations a/atpa = -8H /8qa. a/iJtqa = 8H /8pa 
allow a conservation law of the form ilp/ot +divJ = O. there exists a corresponding Lie-Biicklund 
infinitesimal contact transformation which leaves the Hamiltonian equations invariant. A condition that an 
invariant Lie-Biicklund infinitesimal contact transformation gives rise to a conservation law is established. 
Each such transformation. which may involve derivatives of arbitrary order. yields a one-parameter local 
Lie group of in variance transformations. The results are established with the aid of a Lie bracket formalism 
for Hamiltonian fields. They account for a number of recently discovered conservation laws associated with 
nonlinear time evolution equations. 

INTRODUCTION 

In previous papers, 1,2 we have studied invariance 
properties of various nonlinear time evolution equations 
by applying the theory of groups of Lie-Backlund tan
gent transformations3 (not to be confusep with the Back
lund transformations of recent literature4

) and we have 
shown that each of the well-known series of conservation 
laws assoicated with the sine-Gordon equation, the 
Korteweg-de Vries equation, and the nonlinear Schro
dinger equation is related to a different one-parameter 
group which leaves the corresponding differential equa
tion invariant. 

The group generators obtained in these papers depend 
upon derivatives of arbitrary order, so that they are 
not of the type considered in Lie's general theory of 
continuous groups of transformations. The question 
naturally arises: To what extent can the previous results 
be generaliz ed ? 

In the present paper, we study invariance properties 
of Hamilton's equations governing the time evolution of 
multicomponent fields p", (x), q '" (x), 

p",=-OH/oq"" q",=OH/op"" 0'=1,2, ... ,N, (1) 

where x=(xO,X
1
,X2,X3) and Prt = '(\OP", , q",=oxoQrt' We 

assume that an energy density H associated with H can 
depend on coordinates x (including XC), p"" and q"" and 
their spatial derivatives of arbitrary order. 5 The main 
interest of the study is: to examine the relationship 
between invariance groups admitted by Eq. (1) and 
conservation laws obeyed by the fields. We will prove 
that: The existence of N independent conservation laws 
associated with the fields of Eq. (1) necessarily 
requires the existence of N one-parameter groups 
which leave Eq. (1) invariant. The precise result will 
be stated here as a theorem. The notations in the 
theorem are the following: A and Ji are quantities 
associated with the fields and are functions of x, p"" 
and q "" and of their spatial derivatives of arbitrary 

alThis work has been supported by a Research Corporation 
grant. 

b)Present address: 1513-69 Sekido, Tama-shi, Tokyo 192-02, 
Japan. 

order; Di represents a differentiation with respect to 
Xi, and the quantity oAf Of (j = q", or p ",) is defined by 

OA 
Of =Af -DiAf .; + DiDJAf'i/ 

+ • 0 0 + (_ D.) 0 •• (- D )A + 0 •• 
, j It ito} , 

with 

A f, i •• j = ° f'i .• f A and f, j ... J = 0 xi ... ° xif· 

Theorem: If, when p DI. and q", are solutions of the 
Hamiltonian equations (1), the functions A (x ,p a' q"" 00') 
and Ji(X 'Pa ,q ",,'00) obey the conservation law DoA 
+Z:~=lDiJi=O, then the prolongation of the operator 
A= (oA/op",)o - (oA/oq",)c. is a generator of an in-

q", rp' 

variance group of the Hamiltonian equations. Con-
versely, for any operator of the form A' = (oA' / op ) 0 

'" q", 

- (oA' /oq",)cp", whose prolongation becomes a generator, 
of an invariance group of the Hamiltonian equations, 
there exists a flux Ji which together with a density 
A' forms a conservation law DoA +Z:~=lDiJi =0. 

The corresponding result for Hamiltonian systems 
with finite degrees of freedom governed by the equations 
q 01. = oH/ap"" p", = - cH/aq", has been obtained by 
Peterson. 6 

We will prove the theorem by using a Lie bracket 
formalism, instead of a Poisson bracket formalism, for 
Eq. (1). To establish the Lie bracket formulation one 
needs to associate appropriate operators with phy'SiCal 
quantities of the system. Such a formalism is known for 
Hamiltonian systems with finite degrees of freedom. 7 

In the following we will develop a similar formalism for 
th.~ field ~quations (1) by applying the theory of Lie
Backlund tangent transformations. The formalism turns 
out to be very appropriate in studying the connection of 
invariance groups of Eq. (1) to conservation laws. In 
this approach no reference is made to invariance prop
erties of an action integral f L dx: We deal directly with 
invariance properties of differential equations. 

All the results in the following sections remain valid 
for a general case of n spatial variables. 
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I. LIE BRACKET FORMALISM 

We consider groups of Lie-Backlund tangent trans
formations generated by the operatorsB 

V=F"o -C"op +(DJ,,)o .-(D.G lap . 
(la a qa, t t a at 1. 

+···+{(-D.) ••• (-D.)F }o 
I 1 a Qcx,iDOOj 

- {( - D.) ... (- D.)G }o + ••• 
t J a Pa,i ... j , 

(2) 

where Di represents a total derivative operator 

Di = O,i + P",/J p" + qat,i o." 
+ P .. 0 + q .. 0 + ••• 

O::,l,J Pa,j at tJ flCtsi ' 
(3 ) 

and P",; ... j' q ", i"'j represent coordinates associated 
with derivatives axi ···axip,,(x), O,i ···0xiq,,(X). 
Throughout the paper we adopt a summation convention 
for repeated indices: a greek index runs from 1 to N 
and a Roman from a to 3. In contrast to conventional 
contact transformations, we allow F and C to be func
Hons of x and p,,(x), q,,(x), and any of their derivatives 
of arbitrary order. In the study of Eq. (1) which is a 
time evolution type we can assume without a loss of 
generality that the F" and G" are not functions of time 
derivatives of p,,(x) and q,,(x). This will be assumed in 
the following for all the operators of the form (2). To 
avoid a complex expression we write the operator (2), 
which we call a Lie-Backlund operator, as 

V=F"o."-C"op,,. (4) 

We must always consider this to be the infinite series 
given by (2). We denote a set of operators of the form 
(2) by A. It is known that the V have the properties 

(a) If VI, V2E:A, then V3=[Vl,V2]E:A with F;.=V1F! 
- ~ F~ and G; = V1G~ - V2G~. 2,9 

(b) If VI, V2
, V 2 E: A, the Jacobi identity holds9

: 

[[ VI , V2], V 3] + [[ V 2 , V 3
], VI] + [[ V 3 , VI], ~] == a . 

(c) Members of A commute with the total derivative 
operator D

i
: [V, D

i
]=0.2,9,10 

This last property will be used frequently in the follow
ing without cOI1lment. We define the time derivative of 
the V, which we denote by V,o, by 

(5) 

Again, this is a simplified expression: the full expres
sion is obtained by replacing F" and G" in (2) by 0xaF" 

and o,oG". 
Now, let us consider a variational problem of a 

functional 

J(p, q, XO] = j~f) (x ,p, q) dx', dx' = dx1dx2dx3
• (6) 

The density fj(x,p,q) depends on x andp"" q" and their 
derivatives P", i ... j' q ",;.", of arbitrary order except 
ones involving time derivatives. For the variation p,,(x) 
- p",(x) + E </J" (x) we have 

oJ = EJG (~:,,) </J" dx' + surface integral (7) 

with 

+(-D.}···(-D)() + •••. 
, J (It> a,i ... j 

(8) 
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Similarly, for a variation q,,(x) - q ,,(x) + €<P",(x) , we have 

+(-D,}oo'(-D)() . +".. (9) 
1. J c/Qcx.,IeoOj 

We adopt (8) and (9) as the defining equations of oJ/op", 
and oJ/ oq at' We call fj a density of J. With the functional 
J we associate an operator J which is obtained from (2) 
by substituting oJ/oPat and oJ/oq" for F" and G,,: In 
simplified notation 

J- (OJ) a _ (~)o - oPa ·a oqat p,,' 
(10) 

We designate the operators of this particular form by 
boldface letters. Then, with the energy functional H, 
the following Lie-Backlund Hamiltonian operator will 
be associated: 

H_(OH)a _(OH)a (11) 
- 0Pa ." oqa POI' 

The operator corresponding to a functional f a ,of) dx' 
is found to be equivalent to 

J,o= [axo(o~~) Ja." - [3,0(6~~)J apa' (12) 

Let us denote the set of all the operators of the form 
(10) by n. We can prove that n closes under the com
mutation operation defined in (a) above: 

Proj)osition; If two operators A and B belong to n, 
the commutator C = [B, A] also belongs to n, and its 
denSity C is given by anyone of the following; 

c = (15~~) (o~~) - (o~~) (o~~), 
C=BA, c= -AJ3. (13) 

The proof will be given in the Appendix. Following the 
usual definition of a Poisson bracket for fields, we 
have C=fCjdx'={B,A}. Thus, we might state this as; 
The commutator of the operators associated with the 
functionals A and B is equal to the operator assoicated 
with the functional {A,B}. We note that the canonical 
commutation relations among P a and q", are not carried 
over to the operator formalism: The operators cor
responding to P", and q '" are P '" = a." and Q", == - op" and 
they all commute. 

II. INVARIANCE GROUPS OF HAMILTON'S EQUATIONS 
AND CONSERVATION LAWS 

We now turn our attention to the theorem stated 
earlier. The well-known equation which describes the 
time evolution of a functional A=: fA dx' is 

d~oA=:{H,A}+ JC,oAdx'. (14) 

We associate an operator K = [H, A] + Axo with the quan
tity on the right-hand side. In view of (12) and (13), it 
is obvious that; 

The density K corresponding to the operator K =: [H, A 1 
+ A,o is any of the following: 
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or (**) 

K2 = HA + 0xoA, K3 = - AH +oxoA. 

In the following, we prove the theorem by showing 
basically the following equivalences: 

A is a generator of an invariance group of Eq. (1). 
t 

A satisfies [H,A]+A 0=0 
t x 

A satisfies DoA + tD;Ji = O. 
i=l 

According to the theory of groups of differential 
equations,l1 the operator U of (2) becomes a generator 
of an invariance group of Eqs. (1) if and only if U 
satisfies the equations 

U~a+o~:)lw=O' u(qa-o~:)lw=O' (15) 

Here, the symbol ( ••• ) 1 w means: Evaluate the quantities 
under conditions (1) and the conditions implied by them. 
We note that there exist generators which do not take 
the special form given by (10). We start from the fol
lowing properties of a generator of an invariance group 
of Eq. (1): 

Lemma 1: The Lie-Backlund operator U defined by 
(2) satisfies the equations 

([H,Uj+U:o)Palw=O, ([H,Uj+Uxo)qalw=O, (16) 

if and only if U is a generator of an invariance group 
of Hamilton's equation (1). 

Proof: In view of the definition of H, under the con
dition (. 0 0)1 w we have an identity Do= 0xo + H. Using 
this relation, we obtain ([H,Uj+ Uxo)Pa1w={-HGa 
+ U(&H/oqa) - ° oG",}1 w= {U(&H/oq",) -DoG",}1 w= U(&H/oq", 
+ Pal 1 w' Simila~ly, ([H, Uj + Uxo)qa 1 w= U(- oH/oPa 
+ q a) 1 w' These relations obviously prove the statement. 

In the following analysis, it is often helpful to con
sider an initial value problem of Eq. (1). We say that 
functions fa (x,) and g", (x'), x, = (Xl, x 2

, x 3
), are admis

sible if the initial value problem Pal xO=t = f"" q" 1 xO=t = g a 
has a solution. A set of all such admissible functions 
will be denoted by I. The following lemma states that 
Eq. (16) holds without the condition 1 w' 

Lemma 2: If U is a generator of an invariance group 
of Hamilton's equations (1), the operator [H, Uj + Uxo 
vanishes identically for arbitrary functions f",(x') and 
g",(x') which belong to I. 

Proof: We have, by definition, [H, Uj + Uxo=Mao. 
-Nao~, where M",(x ,p,q) = HF" - U(oH/op,,) + 0xoFa, 
Na(x,p,q)=HGa-U(OH/oq,,)+oxoG. By Lemma 1, if 
P", q" are solutions of Hamilton's equation, then M" 
= N a = O. We let XO - t = initial time. At t, both M a and 
N", are well defined (note that F" and G '" do not depend 
on any Xo derivatives of p" and qa)' hence, M",=N",=O 
at t. Suppose that inital conditions were p" =f",(x'), 
qO/=gO/(x'). Then, M",(x,j,g)=N",(x,j,g)=O with 
x = (t, Xl, x 2

, x 3
). Because t is a parameter of arbitrary 

value, we may replace x by (XO, Xl, x 2
, x 3

) to obtain the 
desired result. 

Remark: If f"" g", or any of their derivatives were 
not defined at some point, the function M", and N "" hence 
the operator [H, Uj + U xO, would not be defined at the 
point. We note that the relation [H, Uj + U xO= 0 holds 
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even pOintwise: For any given values of x, P"" q "" 
Pa,i' q",i' 0 0 0, the operator vanishes. This should be 
true as long as there exists a solution which takes the 
designated values at the given point x. It is also clear 
that we can allow f", and g '" to be functions of x instead 
of x, because xO, if it appears inf", andga , acts simply 
as a parameter and has no consequence for the proof 
given here. 

Now, we combine the results obtained above to prove 
the theorem stated at the beginning: 

Proof of theorem: In the following, we assume, that 
the index i runs from 1 to 3. First we show DoA +D;Ji 
= 0 - A is a generator. Under condition (1), we have 
HA + 0xoA =DoA, hence, by the hypothesis 

HA + 0xoA = -Di]i. (t) 

Because we may assume that neither A nor ]i contains 
time derivatives of p" and q", this relation must hold at 
initial time XO = t where arbitrary initial values may be 
imposed on p", and q ",' Consequently, the equation (t) 
holds not only for solutions POI and q", but also for arbi
trary functions f",(x') and g",(x'). Thus, noticing that the 
left-hand side of the equation (t) is the K2 of (**), we 
have K2 = - Di]i. This implies that oK/op", and oK/oq '" 
vanish identically, and, as a result, [H,Aj + Axo= 0 by 
(**). In view of Lemmas 1 and 2, we see that this is 
the necessary and sufficient condition for A to be a 
generator of an invariance group of Eq. (1). Conversely, 
if A is a generator of an invariance group, in view of 
Lemma 1 we obtain two equations oK/op" = 0 
and oK/ oq a = O. According to Lemma 2, these vanish 
identically. This implies that the density K in (**) must 
have a divergent form; for instance, K2 = (H + iJxo)A 
=-Di]i with]i=]i(x,p,q). Now if we letp" andq", 
be solutions of Eq. (1), the quantity in the middle of 
this equation becomes equal to DoA, and the equation 
leads to the desired result DoA +D;Ji =0. 

III. INTEGRABILITY OF GENERATORS TO 
CONSERVED DENSITIES 

We have proved that with every conservation law 
obeyed by the Hamiltonian fields one invariance group 
is always associated. In the present formulation, the 
converse of this is true only if the coefficients of the 
generator U take the spec ial form Fa: = oAf &p a:' G a 
= &A/ &q ",' Because there exists a systematic algorithm 
for finding generators of invariance groups, it is 
important to know whether the generators found are 
integrable to conserved densities. For simplicity, we 
adopt the following notation: 

f",(x)=qa:(x), f",.tfx)=p",(x) with <1'= 1,2, ... ,N, 
. (17) 

S",U).)=F", S",+NUxl=Ga: WIth a=1,2, ... ,N. 

In this notation, our problem is to tell whether a given 
set of S", have the property S '" = oAf 15f", for some func
tional A[f).j = J A (x ,jxl dx'. As a general property of a 
functional, we have 

where E=(Eu E2, ... ,E2Nl. If Sa: has the desired property, 
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then, because of the definition {(d/ ddA[j~ + E~ ¢J},=o 
= f(oA/oIv)¢vdx' (v fixed), this relation is written for 
fixed a and {3 as, 

{d~afs6U~ +E~¢~)¢6dX}=o 
={dd fsaUx +EI.¢X)¢/,dX'} 

E 8 '=0' 

(18) 

This is the integrability condition of the set Sa to a con
served density A. It is not difficult to obtain from this 
a condition which does not involve integration: Using 
the fact that the functions ¢a and ¢8 are arbitrary, we 
can reduce (18) to 

(~D;"'j (¢'i3 f 6,i00.} Sah/;i) ¢, i ... j'i3 f cr., i • •• j
S6' (19) 

¢(x) = arbitrary function 

whereD~"'J=(-Di)"'(-D), ¢'i ... }='i3 xi···'i3 xJ cp(x), 
and the notation h( ij) a i ... } = a + 0i + ail + •• '. All the 
Roman indices run from 1 to 3. Because ¢ is arbitrary, 
the coefficients of each ¢,; ... ! on both sides of (20) must 
match. 

Example: sine-Gordon equation 

To illustrate the results obtained above, we study the 
sine-Gordon equation, using t=xo, x=x1 , 

Utt - U xx + sinu = O. (20) 

A canonical form qt = oH/op, Pt = - oH/oq for this equa
tion is obtained by letting q = It, H = ~p2 + ~q; - cosq: 

qt=P, Pt=-qxx+ sinq . (21 ) 

In the previous paper, 1 we have shown the equation u xt 
= sinu admits an infinite number of invariance groups, 
and it is straightforward to adapt these results to Eq. 
(21); four of the generators of invariance groups of 
Eq. (21) are 

U1 =q/J. + P)J p, U2=p'i3. - (- qxx + sinq)op' 

U3 = (4q xxx - 3qxcosq + ~q~ + tqjJ2)'i3. - (- 4pxxx 

+ 3px cosq - tq;px - tpjJ2 - 3q xq xjJ )op, 

U4 = (4p xx - pcosq +tq;p + ~p3)a. - (- 4qxxx 

+ 5q xx cosq - ~q; sinq - sinq cosq 

-~q~qxx + ~p2 sinq - 3qjJjJ - tp2qx.}2p. 

Using a theorem given in the previous paper, 8 we see 
that U1 and U2 are equivalent to the space and time 
translation operators a x and i'\. To find conserved den
sities from these operators we must check condition 
(19). All of them satisfy the equation, and the conserved 
density A associated with each of the generators is 
found to be: 

A 1 =pqx=momentum denSity, 

A 2 = ~p2 + ~q~ - cosq = energy density, 

A3 = 4pq xxx - 3pqxcosq + tq'Jy + tqjJ3, 

A 4 = - 2p~ - 2q~x - ~p2 cosq + tq;p2 

+ ip4 - %q; cosq + t cos2q + iq!. 

These conserved densities are related to those obtained 
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by Lamb, 12 and their group theoretic aspects have been 
studied by the authorl and by Steudel. 13 

In the previous paper, 2 we also have shown that a 
series of conservation laws admitted by the nonlinear 
Shrodinger equation are related to invariance groups of 
the equation, where we have made use of a speCial prop
erty of the equation. The present results provide a uni
fied view to the previous results. 

CONCLUSION 

In this paper, we have developed a new group theoretic 
way of looking at conservation laws associated with 
field equations in Hamilton's canonical form, and we 
have proved that the existence of N independent con
servation laws necessarily implies the existence of at 
least N local one-parameter Lie groups which leave the 
field equations invariant. The condition that a given 
invariance group is integrable to a conserved denSity 
also has been given. Because there exists a well 
established algorithm for finding generators of invari
ance groups of differential equations, and because many 
Euler-Lagrange equations can be put into Hamilton's 
canonical form, the present results should be useful 
in finding conservation laws for a variety of systems. 14 

Clearly, the present approach to conservation laws 
via a Lie bracket formalism is quite different from con
ventional approachs which make use of Noether's 
theorem; Noether's theorem as originally derived is too 
restrictive to give rise to conservation laws such as 
those dealt with here. However, as this work was being 
completed, the author learned in a personal communica
tion from N. H. Ibragimov that he has been able to 
generalized Noether's theorem and with the aid of Lie
Backlund contact transformations he has obtained re
sults similar in part to those obtained here. 10 
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APPENDIX: PROOF OF THE PROPOSITION 

To simplify expressions, we use notations Di ... Dj 
=Di-J and (-Di )··· (-Dj)=Di_ j : Pcr.,i ... j =Pcr.;-J and 
qcr.,i ... j=qod-j' We represent a sum of the formI+ Ii 
+ i;} + •.• by one term ii-i' For instance, Eq. (2) and 
Eq. (8) become U = (Di_i F" )'i3'''i_J - (Di-JG")?Pcr.i_} and 
oJ/op =D~_j() . " We first prove the following 

a t d'POtt-J 
relations: 

(All 

(A2) 

This relationship is entirely independent from Eq. (1). 
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We prove the first relation: the second follows similarly. 
To prove (Al), we assume that functions p", and q '" 
decay sufficiently fast as [(Xl )2 + (X2)2 + (X3)2Jl/2 - 00 so 
that all the surface integrals which appear in the pro
cess vanish. Let us consider an integral fv(x')U(oM/oQ8) 
dx' where v is some arbitrary function except that it 
does not diverge at infinity. If we write axi " 'o""v=1';_j' 
then integrating over the whole space 

jvU(OM)dX' 
oq/l 

= jvUDj_/Y1.8i _jdx' = JvD i-P!YJ.8i_ j dx' 

= jvi-jU!YJ.lli_J dx' 

= jv i-J[ (D i'_JE '" )!YJ.lli_iO", i'.i' - (D i,.j.e '" )!YJ.lli_jPOd '.rJ dx' 

= j[F ",Dj,_J' (Vi-j!YJ.Ili-iqal'-j') 

- C aDi,.J'(v i.j!YJ.8i.jPa i'_) J dx' 

= j(F "v i• ja.lli _pi,.}';)1.",;'_i' 

- C",Vi- jO.8i.Pj'-r!YJpo<i'_i') dx' 

(using [D;, Vi-jOQ6;_J==O) 

= j f"Vi-iOQlli'JG~)- C"'VI'iOqlli-J(~:~)]dX' 
=jvDj /F/

OM
\ _cJOM) ]dX" . l \OQ"}.6i.J \op", q/lf-j 

Now, we have the right hand quantity of Eq. (Al) in the 
last integrand. Both in the starting and in this final form 
of the integral the function v appears as a factor. 
Because v is arbitrary, this equation necessarily 
implies (Al). Next, by definition, [B, AJ = Cq"'a Qa 
- CP"'o with POi 

In view of the equalities (A2), we obtain 

Similarly, we obtain Cp" = D~ [C J . Thus we have 
'-J ."i'J ' 

proved the assertion for C l' To prove it for C 2 and C 3' 

we simply note that they are related to C1 byC2 =C
1 
+D./ 

and C 3 = C 1 + D igi where f i and gi are functions of x, ' 
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p"" q "" and of their derivatives and the index i runs 
from 1 to 3. The fact that functional derivatives of the 
functional fdivh(x,p,q)dx' always vanish leads to the 
desired results. 

1S. Kumei, J. Math. Phys. 16, 2461 (1975). 
2S. Kumei, J. Math. Phys. 18, 256 (1977). 
3N. H. Ibragimov and R. L. Anderson, Sovi.et Math. Dokl. 17, 
437 0.976); N.H. lbragimov and R.L. Anderson, "Lie
Backlund Tangent Transformations," to appear in J. Math. 
Anal. Appl. As these authors have clearly shown, the trans
formations which have been considered in previous papers 
(R.L. Anderson, S. Kumei, andC.E. Wulfman, Phys. Rev. 
Lett. 28, 988 (1972), and Ref. 1 and 2 above] form groups of 
infinite order contact transformations; for instance, if we 
take our present problem as an example, the operator U de
fined by Eq. (2) is a tangent vector and generates a transfor
mation e"u which is a local one-parameter group of contact 
transformations defined in a vector space of infinite dimen
sion with coordinates ip",qOl.,POI.,i' qOl.,i ,P""ij' q""ij' •• oJ. In 
this space, no finite dimensional subspace exists which closes 
under the transformation e"u except for special cases where 
the transformati.on becomes an ordinary point transformation 
or a first order contact transformation. The basic idea of the 
method of calculating group generators is the same as the one 
due to Lie; for instance, see G. W. Bluman and J. D. Cole, 
Similarity Methods for Differential Equations (Springer, New 
York, 1974). 

4For instance, see R. M. Miura, Ed., Backlund Transforma
tions, The Inverse Scattering Methods, Solutions, and Their 
Applications (Springer, New York, 1976). 

5A method of casting Euler-Lagrange equations into Hamil
ton's canonical form is well known for the case where 
Lagrangian densities involve no derivatives of fields whose 
orders are higher than one. The case where Lagrangian den
sities depend on higher derivatives has been studied by T.S. 
Chang; Proc. Cambridge Philos. Soc. 42, 132 (1945); 44, 76 
(1948). 

6D.R. Peterson, M.S. theSiS, University of the PaCific, 1976 
(unpubl ishedJ . 

7R. Abraham and J.E. Marsden, Fourulations of Mechanics 
(Benjamin, New York, 1967). 

BThese operators, as they appear, do not generate transfor
mations in independent variables x. However, such transfor
mations are contained in them in disguise as stated in the 
previous paper (Lemma 2 in Ref. 2 above], and we are not 
excluding any of such transformations. See the example in 
Sec. ITI for instance. 

9H.H. Johnson, Proe. Am. Math. Soc. 15, 433, 675 (1964). 
10N.H. Ibragimov, Dokl. Akad. Nauk SSSR 230,26 (1976). 
11 For instance, see L. V. Ovsjanikov, "Group properties of 

differential equations," Ozdat. Sibirsk. OtdeI. Akad. Nauk 
SSSR, Novosivirsk, 1962 (in Russian). 

12G. W. Lamb, Jr., Phys. Lett. A 32, 251 (1970). 
13H. Steudel, Ann. der Phys. 32, 205 (1975). 
14Note added in proof: Recently, it has been shown that many 

of the time evolution equations which are solvable by an in
verse scattering method are written in Hamilton's canonical 
form; Y. Kodama, Prog. Theor. Phys. 54, 669 (1975); H. 
Flasehka and A. C. Newell, in Dynamical Systems: Theory 
and Applications, edited by J. Moser (Springer New York 
1975). , , 

Sukeyuki Kumei 199 



                                                                                                                                    

Symmetry and separation of variables for the 
Hamilton-Jacobi equation W~-W~-W~ = 0 

c. P. Boyer 

Instituto de Investigaciones en Matemtiticas Aplicadas y en Sistemas, Universidad Nacional Autonoma de 
Mexico, Mexico 20, D. F., Mexico 

E. G. Kalnins 

Mathematics Department, University of Waikato. Hamilton, New Zealand 

W. Miller, Jr. 

School of Mathematics, University of Minnesota, Minneapolis. Minnesota 
(Received 3 December 1976) 

We present a detailed group theoretical study of the problem of separation of variables for the 
characteristic equation of the wave equation in one time and two space dimensions. Using the well-known 
Lie algebra isomorphism between canonical vector fields under the Lie bracket operation and functions 
(modulo constants) under Poisson brackets, we associate, with each R -separable coordinate system of the 
equation, an orbit of commuting constants of the motion which are quadratic members of the universal 
enveloping algebra of the symmetry algebra 0 (3,2). In this, the first of two papers, we essentially restrict 
ourselves to those orbits where one of the constants of the motion can be split ofT, giving rise to a reduced 
equation with a nontrivial symmetry algebra. Our analysis includes several of the better known two-body 
problems, including the harmonic oscillator and Kepler problems, as special cases. 

INTRODUCTION 

This is the first of two papers in which we study the 
problem of separation of variables for solutions of 

W;- W;- W~=O, (0.1) 

the characteristic equation of the wave equation 

'lttt-'ltlCX-'lt~y=O. (0.2) 

As is well known1,2 the symmetry algebra of (0. 1) de
fined in terms of operators acting on t,x,y is 0(3,2). 
Furthermore, there is an isomorphism between the 
symmetry algebras of (0.1) and (0.2). 

In Refs. 3- 5 it was shown that every R-separable 
coordinate system for (0.2) is characterized by a pair 
of commuting second order symmetric differential 
operators in the enveloping algebra of 0(3,2). Further
more, coordinates whose operators lie on the same 
orbit under the adjoint action of 0(3,2) can be consid
ered as equivalent. The separated special function solu
tions are eigenfunctions of the commuting symmetry 
operators and this relationship is a powerful tool for 
the derivation of special function identities. 

In Ref. 2 it was shown that the symmetry algebra of 
the Hamilton-Jacobi equation for the free particle 

(0.3) 

(acting in t,x,S space) was also isomorphic to 0(3,2). 
The problem of additive R-separation of variables for 
(0.3) was studied in Ref. 6. There all solutions of the 
form 

S= R(u, v) + U(ll) + V(v) (0.4) 

were classified where u, v is a new coordinate system, 
either R == 0 or R, 0 and is not expressible as a sum of 
a function of 11 alone and a function of valone, and U, V 
are arbitrary solutions of first order ordinary differen-

tial equations. It was shown that the separable co
ordinates agree exactly with the separable coordinates 
for the free-particle Schrodinger equation 

(0.5) 

as derived in Ref. 7. There coordinates are all asso
ciated with the Schrodinger subalgebra of 0(3,2). 
Furthermore, the other elements of 0(3,2) lead to sym
metry adapted solutions which do not separate additively 
as in (0.4) but in some more complicated fashion. In 
exact analogy with the linear results in Ref. 7 it was 
also shown that the Hamilton-Jacobi equations for the 
harmonic oscillator, repulsive oscillator, and linear 
potential are equivalent to (0.3). Finally, it was pointed 
out that all these equations are equivalent to (0.1) in the 
sense that (0.1) is the equation of the graph of each of 
the considered Hamilton-Jacobi equations. 

Here, we look for additive R-separable solutions of 
(0 0 1) in the form 

3 

W=R(u k ) + 0 UJ(u,). ,.1 (0.6) 

We show by example that the separable systems are the 
same as those derived in Refso 3- 5 for (0.2) and, 
properly interpreted the Lie algebraic characteriza
tions of the systems are the same. The proper inter
pretation of the symmetry algebra of (001) is that it is 
an algebra of functions in the six-dimensional phase 
space. {t,x,y;po=Wt , P1=Wx, P2=Wy}, linear in the 
p" where the commutator is the Poisson brackeL The 
second order symmetries are formed by taking linear 
combinations of products of these functions. For the 
linear case, separable solutions are eigenfunctions of 
commuting second order differential operators. For 
the Hamilton-Jacobi case, separable solutions are 
those for which the corresponding second order func
tions, commuting under the Poisson bracket operation, 
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take constant values. The orbit analysis for the classi
fication of separable systems is identical to that in the 
linear case. 

We follow closely the procedure of Ref. 3 and concen
trate here on those systems where one coordinate can 
be split off by diagonalizing a first order symmetry, 
leaving a reduced equation in two variables, The addi
tively separable coordinates for the reduced equations 
(Hamilton-Jacobi equations for the free particle, 
harmonic oscillator, repulsive oscillator, linear poten
tial, the equation of geometrical optics, etc.) corre
spond to proper subalgebras of 0(3,2). However, utiliz
ing the full symmetry algebra, we find many solutions 
of these reduced equations which separate nonadditively, 
On one hand each reduced equation is a special case of 
(0. 1), but also (0. 1) is the equation of the graph of the 
reduced equation, Thus each reduced equation is equiv
alent to (0.1) and admits the symmetry algebra 0(3,2), 

We show that the passage from a Hamilton-Jacobi 
equation to the associated Hamiltonian system provides 
us with the analogy of a momentum space mOdel in the 
linear theory. We also indicate how the results of Ref. 
4 concerning cyclidic R- separable coordinates for 
(0,2), in which it is impossible to split off one variable 
at a time, carryover directly to (0, I), In the second 
paper we will provide complete proofs concerning the 
identity of separable coordinates for these two equa
tions, Finally, due to the fact that Lie algebra compu
tations are much easier (though equivalent) for (0,1) 
than for (0,2), we have been able to find and correct 
some computational errors in Refs, 3 and 8. 

Although this paper concerns only the nonlinear equa
tion (0.1), it should be obvious to the reader that our 
Lie algebraic procedure can be applied with little change 
to more general Hamilton-Jacobi equations. Indeed 
there has been a recent revival of interest in separation 
of variables 9,10 for general Hamilton-Jacobi equations 
owning to its usefulness as a solution technique for the 
Einstein and Einstein-Maxwell equations. 11 (For the 
claSSical literature see Ref. 12, and the book by 
Hagihara, 13 where many applications to celestial me
chanics are given. ) Of the recent literature dealing with 
separation of variables for the Hamilton-Jacobi and 
related second order differential equations in general 
Riemannian (and pseudo-Riemannian) spaces we men
tion the works of Havas, 9 Dietz,10 and Woodhouse. 10 
Havas 9 has given the general form of the metric tensor 
for coordinates which admit complete or partial sep
aration. He also gives the general form of linear and 
quadratic integrals of motion, Dietz lO and Woodhouse lO 

consider a much more restrictive definition of separa
tion of variables; they additively split off a single varia
ble at a time. In this way one cannot obtain the more 
general type separable coordinates. 14 None of the above 
authors allows nontrivial R separation or considers 
nonadditive separation such as appears here. Further
more, this and our subsequent paper are the only ones 
to associate with separable systems orbits of second 
order members of the enveloping algebra of the sym
metry algebra as the correspondings integrals of the 
motions, thus allowing us to give explicit lists of sep
arable coordinates classified in equivalence classes. 
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It is our hope that this treatment of a most interesting 
example will aid in the establishment of more general 
results for Hamilton-Jacobi equations. 

1. BASIC PRINCIPLES 

We begin with the equation 

W;o - W;l- W;2 == 0, W~" == a"" W(x) (1.1) 

for the characteristics of the wave equation. As is well 
known1,2 the space-time symmetry algebra of (1. 1) is 
0(3,2). That is, the set of Lie derivatives 

2 

L= 0 a"(x)a~,, 
".0 

such that L W is a solution of (1, 1) whenever W is a 
solution forms the Lie algebra 0(3,2) under the opera
tions of addition of Lie derivatives and commutator 
bracket. A basis for 0(3,2) is provided by the elements 

(1.2) 

K"=2x,,x.a,,-x2a"",0'""I1,v,",,2, 

where Xo =xo, Xi = - xi for j = 1, 2, x 2 =x"x" and the 
Einstein summation convention for repeated indices is 
adopted, The commutation relations are 

[M"v, M...l =g ".M.a + g""l\f,.. - g "aM •• - g •• M"a, 

[M"., Pal =g.aP " - g"aP., 

[p", pvl = [K", K.l = [M"., D] = 0, 

[D,P"]=-P,,, [D,K"]=K,,, 
(1. 3) 

[M,,", ~ 1 = g .aK" - g "aK., 
[K", p.] = - 2(M"v + g ,,»), 

where goo=- g,,= 1, gl'V=O for 11 * v. 

These operators can be exponentiated to yield a local 
Lie transformation group2 of symmetries of (1.1). in
deed the operator M"., P" generate the Poincare sym
metry group 

W(x) - W(A -1 (x - a)), a = (ao, al> a2), A EO SO(I, 2), 

(1, 4) 

the dilatation operator generates the symmetry 

(expill) W(x) =X (e~x) 

and the K" generate the special conformal 
transformations 

" ( x.- a"x2 ) exp(a K,,)W(x.)=W 1 2 + 22 • 
- a·x a x 

(1.6) 

We shall also consider the inverSion, space reflec
tion, and time reflection symmetries of (1.1), 

IW(x) = W(- x/x2), RW(x) = W(xo, xl> - X2), 

TW(x) = W(-XO,Xl>X2), 

which are not generated by the Lie derivatives (1. 2). 

In Ref. 6 the full infinite-dimensional symmetry 
algebra of an arbitrary first order partial differential 
equation was computed and shown that this algebra 
splits into symmetries which are contact transforma-
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tions and an ideal of characteristics. Now there is a 
well-known Lie algebra isomorphism between canonical 
vector fields on phase space with the usual Lie brackets 
and functions on phase space (modulo constants) with the 
Poisson brackets. j Explicitly, given phase space with 
coordinates (x'", p ,J we have the canonical 2-form w 
=dP,,/\ rb:", Then with each vector field X on phase 
space which leaves w invariant, we can associate a 
function F(x",pv) such that 

X Jw=dF, (10 7) 

where J denotes the inner product between vector fields 
and forms, To tl;le Lie brackets for vector fieldS there 
correspond the Poisson brackets 

toG of of OG) 
{F(x, P), G(x,P)}= 2.: ,ax" ap" - ox" 'iJP .. (108) 

for functions, Explicitly for the Lie derivatives (1. 2) we 
have, using (1. 7), 

M"v=x"Pv-x"p", P"=P,,, D=x"P", 

K" = 2x" (XVpv) - x 2p IJ" 

(1. 9) 

One can easily check that the basis functions (L 9) 
satisfy relations (L 3) under the Poisson bracket opera
tion, From the point of view of separation of variables 
of (10 1), the Lie algebraic characterization (L 9) in 
terms of functions on phase space is superior to that of 
Lie derivatives. 

By taking all possible products of operators (10 2) we 
can generate an enveloping algebra15 of so(3, 2). 
Furthermore, we can identify the subspace S~ of homo
geneous symmetric kth-order elements in the envelop
ing algebra with the space 5 k of kth- order polynomials 
in the basis functions (L 9), That is, the two subspaces 
are isomorphic as vector spaces and the adjoint action 
of so(3, 2) on 5~ induced by the commutator [, , .J 
agrees with the adjoint action on S k induced by the 
Poisson bracket, In particular, 5f is spanned by ele
ments of the form [LI> L2J.= L1L2 + L2LI> where the L j 

are Lie derivatives belonging to the symmetry algebra, 
Let L1, L2 be the corresponding functions in the Lie 
algebra (1. 9), Then the correspondence 

(1.10) 

extended by linearity provides the stated isomorphism 
between 52 and S2. 

As is well known there is an intimate relationship be
tween a first- order partial differential equation 

oW 
H(x",P,,)=O, p,,=ox'" O~J-L~n, (1.11) 

and the Hamiltonian system of ordinary differential 
equations 16 

op" dx" 
a:r=-Hx'" --;;:r=Hp", O~J-L~n, (L 12) 

Indeed, consider the n-dimensional surface x" 
=x"(t1, •• ,, tn) and prescribe initial data on this surface: 

(1. 13) 
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subject to the requirements 

oW ox" 
at;=p"at;, j=1, ... ,n, 

H(x"(t, ••. ,tn),P" (tl> .•• , tn» = 0, 

Then, provided 

det 

Hpo'" HPn 

oXo oXn at; ... at; 

oXo aXn at
n 

' .. 3t; 

on the surface, the solutions of (1.12) with initial data 
(1. 13) generate a local solution of (L 11). The function 
W can be obtained either from the equation 

dW --p H dT - " p .. 

or the defining relations Pv = W xV. 

Conversely, let 

W=f(x", al,'" ,an) +ao 

(1.14) 

(1. 15) 

be a complete integral of (1 0 11), 1. e" W is a solution 
of (1.11) for each choice of the n + 1 real constants {l" 

and the n x (n + 1) matrix 

(oa,o""f) = (fa},e") 

has rank n. Then (1. 15) and relations 

faj(x",a,)=II." j=1,oo.,n 

Pv=f"v(x",a,), v=O" .. ,n 
(1. 16) 

with ao, ' , , ,am 11.1>"" An fixed, define a solution of the 
characteristic system (L 12), 

It is also well known that the canonical transforma
tion generated by (1. 12) preserves Poisson brackets, 1 
Thus, if 

Fj(x", Pv) = F,(x"(T),Pv(T», j = 1,2, 

where 

X"(T) =X"(T, x"',Pv'), Pv(T) = Pv(T,X"',Pv')' (1.17) 

are solutions of (1,12) such thatx"(O)=x", Pv(O)=Pv, 
then 

(L 18) 

Furthermore, 

:TF'=F""Hp" -Fp"H",,={nr, FT} 

so that r = F if F commutes with H, 

Applying this theory to Eqo (L 1), we find 

H=P5- pi - pL 
so that the associated Hamiltonian system is 

dp" dx" l • .IV 0 2 - = 0 - = -g p ~ /I V ~ dT 'dT 2 v, r-, ' 
(1,20) 

Thus we can obtain a solution of (L 1) by prescribing 
initial data for W, x", and P" on a two-dimensional 
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surface in x-space and solving Eqs. (1. 20). For some 
of our computations we shall choose this surface and 
data in the special form 

xO=O, Po=(Pi+pW /2 , xl=tf, X2=t2' 

PI =Pl(tf, t2), P2 =P2(tl , t2). 
(1.21) 

Note that the basis functions (1. 8) restricted to this 
surface become 

Po= (pi +p~)1/2=PO' P,=Ph 1YiI,=xtPrXjP/> 

lYioJ=x'Po, Ko=[(xd+(X2)2]pO' D=XiPI, (1.22) 

K, = 2x,(x1p;) + [(Xl)2 + (X2)2]PJ, i,j = 1, 2. 

Model (1. 22) and its relationship to (1. 1) via integration 
of the Hamiltonian system (1. 20) is an analogy of the 
Fourier transform model for the solution space of the 
wave equation (0.2) which was treated in Ref. 3. 

We now introduce another basis for the symmetry 
algebra which makes explicit the isomorphism with the 
usual matrix realization of 0(3,2). The matrix algebra 
0(3,2) is usually defined as the ten-dimensional Lie 
algebra of 5 x 5 matrices A such that AG + GA t = 0, 
where 0 is the zero matrix and 

(1.23) 

Let C I, be the 5 x 5 matrix with a 1 in row i, column j 
and zeros elsewhere. Then the matrices 

If'.b=Cab-Cba=-Irb., a*b, 

If'.B={.B+{Ba=-If'B., l~a,b~3, 

If'45=C54 -(:45=-If'54, B=4,5 

(1. 24) 

form a basis for 0(3,2) with commutation relations 

[If' "'B, If'yc] = GByIf' ",c + G"CIrBY+ Gy",il'CB + GCBil'y",. 

(1.25) 

This basis is related to our basis (1. 2) by the 
identifications 

Po = r 14 + r 45 , PI = r 25 + r t2 , P2 = r35 + r 13 , 

~=r45-rt4' Kl =r25 -r12 , K2=r35-rt3, (1.26) 

Mt2 =r32 , Mot=r24 , Mo2=r34 , D=r51 . 

Here and hereafter we denote by r(r) the vector field 
(func tion) which corresponds to the matrix If'. 

Returning to our Poisson bracket model (1. 9), we 
note that if we impose the relation 

(1. 27) 

to obtain solutions of (1. 1), we introduce linear depen
dencies among the elements of 52. Although there are 
formally 35 independent terms LjLj where the L/ run 
over a basis for 0(3,2), among the explicit functions 
(1.9) subject to (1.27) there are 20 independent rela
tions obeyed by the LIL j • Hence, if.!h is the subspace 
of 52 which is mapped to zero under this identification, 
thenj2 is actually an ideal under the adjoint action of 
0(3,2) and the factor space 32 == 52/.!h is 15-dimension-
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al. In particular, on 32 we have the relations 

K~ - Ki - K~ = 0, ri2 + ri3 + r~3 =r15, 

Mi2 - M%1 - M%2 = - D2, r15 - r~t - r;1 = r~3' 
(1.28) 

[Of course, these relations also hold in the model 
(1. 22). 1 

We shall now classify all separable solutions of (1.1) 
which are analogous to the separable solutions of the 
wave equation (1.23), studied in Refs. 3-5. In these 
references each (R -) separable solution of (1. 23) was 
characterized by the fact that the corresponding sep
arated solutions were common eigenfunctions of a com
muting pair 51,52 of second-order differential symmetry 
operators from the enveloping algebra of so(3, 2). 
Analogously we will characterize separated solutions 
W of (1. 1) by the conditions Fl (X" ,P~) = A, F2 (x", Pv) = !J., 
where Ft , F2 E32 and {Ff, F2}= O. Here P.,= Wx" and 
A, !J. are the separation constants. For all cases treated 
in this paper we shall see that coordinates which yield 
separation for (1. 23), corresponding to commuting 
operators 51> 52> also yield separation for (1.1) corre
sponding to commuting functions Ff, F2 E 3 2. Here,S, 
and F J are related by (1. 10). We also mention, although 
we will not make use of it, that corresponding to each 
commuting pair (Ff, F2) there is via (1. 7) a commuting 
pair of vector fields (X j ,X2) on phase space and hence a 
two-parameter local Abelian group of symmetries. 

In analogy with Ref. 3 we shall begin by studying 
separable systems which can be characterized by com
muting functions Ff, F2 such that Ft =A2 for some 
A E so(3, 2) with {A, F2}= O-and where A has a non
trivial centralizer. 

In Ref. 3 the corresponding systems were called 
"semi-subgroup" coordinates. However, as has been 
pOinted out by Winternitz, this name is not appropriate 
because many coordinate systems which correspond to 
the restriction of so(3, 2) to a subalgebra are not "semi
subgroup" systems. Thus, we Shall now call these sys
tems "semi- split" coordinates. 

In the following seven sections we shall study systems 
of the form A 2, F2 by first splitting off the coordinate 
associated with A to obtain a reduced equation (t) such 
that F2 belongs to the space of second- order elements in 
the enveloping algebra of the symmetry algebra (cen
tralizer of A) of (t). We shall then investigate the co
ordinate systems in which (t) separates. In the last 
section we shall give an example of a completely non
splitting type coordinate. In the study of separable co
ordinates it is common to associate with each coordinate 
system x"=x"(y,,) a metric tensor g"v and a quadratic 
differential form 

(1.29) 

then the Hamilton-Jacobi equation (1.1) takes the form 

(1.30) 

in the new coordinate system, where g"" is the inverse 
tensor to g "V given by 

g"" = (- 1)" ..... cofg !!~ 
detg" .. 
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We also mention for convenience that for orthogonal 
coordinates (1. 29) takes the form 

ds2 = '0 h~(d~i)2 (1. 32) 
/ 

and the relation between the canonical moment in p" in 
Cartesian coordinates and arbitrary curvalinear co
ordinates ~i is 

ax" 
p" = 1 hj23£1 P(i. (1. 33) 

The above relations will be used throughout our com
putations without further mention. 

2. THE SPHERE 

For our case we consider the function A = r 45 
= ~(Po + Ko), Setting r 45 = A, A const, we see from 
(1.29) that (1. 1) reduces to 

ri2+ri3+r~3=A2, (2,1) 

Since the centralizer of r 45 in 0(3,2) is {r45}(l) 0(3), 
where 0(3) is the subalgebra with basis r 12 , r 13 , r 23 , it 
follows that 0(3) is a symmetry algebra for (2. lL We 
call it the reduced symmetry algebra, 

Equation (2,1) can be viewed as the result of separat
ing off one variable 1/! in W, Indeed, we choose new 
coordinates such that r 45 = - a". Standard Lie theory 
gives 

o sin1/! x = , 
YI - cos1/! 

Xl- Y2 x2 _ Y3 
- YI - cos1/! ' - YI - cos1/! ' 

yi +y~ +y~= L (2.2) 

Thus, choosing any parametrization Y i (a, a) of the unit 
sphere 52, we obtain a new set of coordinates for space 
time, In these coordinates we have r 23 = Y2al'3 - Y3a:.>.!, 

r l2 = Yla:.>.! - Y2a~I' r l3 = YI aY3 - Y3aYI' 

The equation r 45 =A or, what is the same thing, r 45 w 
= A implies 

W=- A<p+5(a, 0), 

Substituting this expression into (1.1), we obtain the 
reduced Eq, (2,1) for 5, 

As is well knownl7 the space of second order sym
metry operators in 0(3), modulo the invariant ri2 + rI3 
+ r~3' splits into exactly two orbit types under the ad
jOint action of 0(3). A representative on each orbit type 
is given by the assignment 

(1) r~5' r~3' 
(2) r~5' ri2 + a2ri3, 1:> a:> 0, 

For the orbit of type (1) we introduce spherical co
ordinates on 52 

YI = cosa, Y2 = sina cosa, Y3 = sina sina, (2,4a) 

Then (2, 1) becomes 

and the requirement r 23 = P a = m yields the separated 
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solution 

5= ma + j(m2 csc 2a _ A2)1/2da, 

= Ina + il
2
n In(A + cosa)_ iAln(~ cosa + A) + c, 

A- cosa In 

A=[I- (A2/m 2)sin2aj1/2. (2.4c) 

For the orbit of type (2) we introduce elliptic co
ordinates on 52: 

.1'1 = k,-I dn(o, k) dn(a, a), Y2 = ikk,-I cn(o, k) cn(a, k), 

Y3=ksn(o,k)sn(a,k), (2,5a) 

where k' = (1- k2)1 /2 and dn(a), cn(o), sn(a) are Jacobi 
elliptic functions, 18 Then (2,1) becomes 

p~ - p~= _ A2k2 (sn2
Q1 _ sn2a) 

and the condition 

rI2 +k2ri3= (sn2a- sn2arl(sn2op~- sn2ap~)= /J. 

leads to the separated solution 

5=J (-A2a 2sn2a+/J.)I/zdQl+ J (-AzaZ sn2a+/J.)1/2da, 

(2,5c) 

There is a close relationship between our own study 
of r 45 and the Hamilton-Jacobi equation for the Kepler 
problem with closed orbits in two-dimensional space, 
Indeed, on the surface (1,21) the condition r 45 = A for a 
solution of (1," 1) becomes 

Performing the canonical transformation Pi - xi, xi 
- - Pi' which preserves Poisson brackets, we trans
form (2,6) to the Hamilton-Jacobi equation for the 
Kepler problem with energy normalized to - 1 (bound 
orbits), viz" 

Moreover, the 0(3) symmetry algebra for (2,6) gen
erated by r 12 , r 13 , r Z3 is mapped to an 0(3) symmetry 
algebra for (2,7), If <P(~b ~z) is a solution of (2,7) (with 
xl = ~b X

Z = ~2)' then by prescribing the initial data xi 

= <p( , Pi = ~i on the surface (1,21) and integrating along 
chaiacteriStics, we find a solution of (L 1) with r 45 = A. 
Conversely, if W(x") is a solution of (L 1) with r 45 = A, 
then a function <P(~b ~2) such that 

with det(W,.ixl) *- 0 is a solution of (2 .. 7)0 This relation
ship is a classical analogy of Fock's treatment of the 
quantum mechanical hydrogen atom, 19 and underlies the 
group theoretical approach to the Kepler problem, 20 

We have obtained the reduced equation (2,1) from 
(L 1) by additively separating off dependence on the 
variable <P, However, (101) can also be viewed as the 
equation for the graph of (201). Indeed, set A = 1 for 
Simplicity and let 5(a, a) be a solution of (2,1). A graph 
of 5 is a function W(a, a, 5) such that W(a, (), 5(a, a») = 0, 
Since Wa + Ws5a = 0, W" + Ws5" = 0 it follows from 
(2.2)- (2. 4) that W satisfies Eq, (1.1) with <P replaced 
by 5, In this sense Eqso (L 1) and (2,1) are equivalenL 
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Since (1.1) admits the symmetry algebra 0(3,2), it 
induces an action of 0(3,2) as a symmetry algebra2

•
6 

of (2.1). Now, however, 0(3,2) acts not only on a, Ci but 
also on S. We have used only the 0(3) subgroup of 0(3,2) 
to explain the two systems in which (2.1) admits an 
additive separation of variables. (We believe that there 
are only two such systems and will settle this point in a 
future publication. ) However, we can use commuting 
pairs of second-order elements in the enveloping alge
bra of 0(3,2) to distinguish many other symmetry 
adapted solutions of (2. I). [For example, some other 
solutions may correspond to a product separation in 
(2. I). 1 Indeed, every separable solution of (1. 1) cor
responds via the graph to some symmetry adapted solu
tion of (2.1). OIr restriction to the subalgebra 0(3) 
merely picks out those solutions which are additively 
separable for (2.1). 

3. THE EQUATION OF GEOMETRICAL OPTICS 

In this section we consider the equation obtained from 
(1. 1) by partial separation via the operator Po, i. e. , 
we treat the usual equation of geometrical optics ob
tained from (1.1) by putting P~ = ),2, viz., 

w= >..x0 + S(X I ,x2), 

S;l + S;2 = Pi + 11 = ),2. 

(3.1a) 

(3.1b) 

It is easy to check that the centralizer of Po in 0(3,2) 
is {Po}l"e(2), where e(2) is generated by {MI2 , PI, P 2}. 
However, in this case Po has a normalizer which is 
bigger than its centralizer, and for the purpose of 
separation of variables it is convenient to classify 
orbits using the full normalizer group D ~ E(2), where 
D is the one- parameter group of dilatations generated 
by D. For (3. Ib) there are four separable orthogonal 
coordinate systems corresponding precisely to the four 
orbit types21 of the quadratic members of the universal 
enveloping algebra e(2) (modulo pi +~) under the ad
joint action of Dzy E(2). The list of pairs of orbit 
representatives is 

(3) P6, Pi, Cartesian, 

(4) P6, Mi2, polar, 

(5) P~, M 12P2, parabOlic, 

(6) P~, J1i2 +~, elliptic. 

The coordinate systems and corresponding solutions 
(3. la) are now given for each of the above cases: 

(3) Cartesian: The coordinates are the usual CarteSian 
coordinates 

with the solution 

s= J.LX + (>.2 _ J.L)1/ 2y , 

whose separation constant is 

(4) Polar: The coordinates are 
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(3.2a) 

(3.2b) 

(3.3a) 

and the well-known solution 

S=J.L8+ J dr(),2- J.L 2/r2)1/2 

with the constant of the motion 

Mi2 =p~= J.L 2• 

(5) Parabolic: The coordinates are 

x o = t, xl = (~2 _ 1]2)/2, x2 = ~1] 

with - 00 < ~ < 00, 0'-':: 1] < 00. The solution is 

5=1 (>.2e-J.L)1I2d~+J (>..2712+J.L)1/2d1] 

with separation constant 

2.'112 P2 = (~2 + 712tl(ep~ - 712p~) = J.L. 

(6) Elliptic: The coordinates are 

xo = t, Xl = coshp cosa, x 2 = sinhp sina, 

with - 00 < p < 00, 0"" a < 27T. The solution is 

with constant of the motion 

(3.3b) 

(3. 3c) 

(3.4b) 

(3.5a) 

(3.5b) 

"'li2 + Pi = (coSh2p - cos2at1 (cos2ap~ + cosh2pP;) = J.L. 

(3.5c) 

Just as in the previous section, we can also interpret 
(1. 1) as the equation for the graph of a solution of 
(3.1b). In this sense (3. Ib) admits the full symmetry 
algebra and any separable system for (1. 1) gives rise to 
a symmetry adapted solution of (3.1b). 

4. THE FREE RELATIVISTIC PARTICLE 

By separating off one space variable, say x 2
, via the 

operator Ph Eq. (1.1) reduces to the equation for a 
free relativistic particle in one space and one time 
dimension. Explicitly, putting P~ = >..2, we find 

(4.1a) 

(4.1b) 

Again a straightforward calculation shows that the cen
tralizer of P2 in 0(3,2) is {P2}EBe(l, I). A basis for the 
subalgebra e(l, 1) is given by {Mol> Po, PI}. The orbit 
analysis of the quadratic members of the universal en
veloping algebra of e(l, 1) (modulo pij - pi) under the 
adjoint action of the normalizer group D;i9 E(l, 1) 
extended by certain discrete transformations was given 
in Ref. 22. There it was also seen that there is a non
uniqueness for the orbit corresponding to the separation 
of the Klein-Gordon equation in the usual Cartesian 
coordinates. This nonuniqueness was resolved by con
sidering nonorthogonal coordinates. Here, however, 
only orthogonal coordinates are considered. Further
more, there is one orbit for which the Klein-Gordon 
equation (Laplace operator) does not admit a separa
tion of variables. The question as to whether there is 
also no separable coordinate system for (3. 6b) corre
sponding to this orbit representative [Mol (Po + PI) J will 
be answered in Paper II, 
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The list of orbits representatives is 

(3') pL POPI , Cartesian, 

(7) pL ;v[61> polar, 

(8) pL 2MoI P I> parabolic-type 1, 

(9) P~, M61 - (Po + P I )2, hyperbolic-type 3, 

(10) ~, ;1,161 + (Po + P I )2, hyperbolic-type 2, 

(11)~, 2Mol(PO+PI)+(PO-PI)2, parabolic-type 2, 

(12) ~, ,\161 - POP2 , hyperbolic-type 1, 

(13) pL Af51 + Pi, elliptic-type 1, 

(14) ~, ,\161 - Pi, elliptic-type 2, 

From the point of view of separable coordinates (3') 
is equivalent to (3), The remainder of the coordinates 
and solutions are: 

(7) Polar: The coordinates for the region (xO)2 _ (X 1)2 

'> 0 are 

xO=±YCOSh1), x l =rsinh1), 

o ~ r < 00, - co < 1) < 00. The solutions are 

5=±/l1)+ }dr()...2+/l2/r2)1/2, 

(4,2a) 

(4,2b) 

For the region (x0)2 - (xl)2 < 0, interchange XO and Xl and 
find (4, 2b) with :\2 - - :\2, The separation constant is 

A[61 =pr == /l2o 

(8) Parabolic- type 1: The coordinates are 

xO=±i(e+1)2), xl=~1), 

(4,2c) 

(4,3a) 

with - 00 < ~ < 00, 0 ~ 1) < 00. This parametrizes the region 
(XO)2 - (xl)2 '> 0, The solutions are 

5=} d~(/l + :\2e)1!2 + } d1)(/l + )...21)2)1/2 (4,3b) 

with separation constant 

(4,3c) 

The spacelike region (xO)2 - (Xl)2 <: 0 can be parametrized 
by interchanging X O and xl; however, the orbit represen
tative then changes (see ReL 22 for further discussion). 

(9) Hyperbolic-type 3: The coordinates are 

XO = cosh (1) - n + exp(1) + ~), Xl = cosh(1) - n - exp(1) + ~) 

(4.4a) 

with - co < 1], ~ < 00 0 The solutions are 

5= J d1](/l + 2Q:\2e2")1/2 + } d~(/l + 2Q)...2eU )I/2 (4.4b) 

and separation constant 

:VIEI - (Po + P I )2 = (e2n - e2t)"1 (e2np~ - e2tp~) = /l, (4.4c) 

The coordinates (4,4a) parametrize the region xO + xl 

'> 2, xO - xl '> 00 In this case we can introduce similar 
parametrizations for all region except the strip Ixo + xII 
< 2, For this strip there appear to be no separable co
ordinates of this type for (4, 1b), 

(10) Hyperbolic-type 2: The coordinates are 

206 

XO = sinh (1) - ~) + exp(1] +~) Xl = sinh (1] - ~) - exp(1) + ~), 

(4,5a) 
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where - 00 < 1], ~ < 00, These coordinates parametrize the 
region X O - xl,> 0, By interchanging xO and xl we can 
parametrize the region xO - xl < 0, The solutions are 

5=} d1](/l+2:\2e2n )I/2+} d~(/l_2)...2e2t)1/2 

with constant of the motion 

(4,5b) 

M61 + (Po + P I )2 = (e 2n + e2t)"l(e2tp~ + e2"p~) = /l. (4,5c) 

(11) Parabolic-type 2: The coordinates are 

x O = i(1) - ~)2 + (1) + 0, xl = i(1) - ~)2 - (1) + 0 (4,6a) 

with - 00 < ~ < 00 and 0 ~ 1) < 00, These coordinates cover 
the half-plane Xo + xl> 0, Similarly we can parametrize 
the remaining half-plane. The solutions are 

with separation constant 

221101 (Po + PI) + (Po - P I )2 

=(1)-O-l(1)p~_~P~)=/l. 

(12) Hyperbolic-type 1: 

xo = Hcoshi(1] - ~) + sinhi(1) + ~)l, 

Xl = H coshi(1) - ~) - sinhi(1) + ~)], 

(4.6b) 

(4.6c) 

(4,7a) 

where 0 ~ 1) <: 00, - 00 < ~ < 00 and (4.7a) parametrizes the 
half-plane Xo +x1 >- 10 By taking (xO,x l ) - (xo, 'fXl) we 
can parametrize the remaining portion, The solutions 
are 

5= i} d1)(/l + iA2 sinh1))l /2 + i} d~(/l + ~)...2 sinh~)1 /2 

(4,7b) 

with separation constant 

21161 - 4POP I = 4 (sinh1) - sinh~)"I(sinh1)p~ - sinh~P;) = /l, 

(4,7c) 

(13) Elliptic-type 1: The coordinates are 

XO = sinhp cosha, xl = coshp sinha, (4.8a) 

where the full plane is parametrized with - 00 <: p, a <: co. 
The solutions are 

5=} dp(/l +:\2cosh2p)1/2+ } da(/l-)...2 s inh2a)1!2 

(4.8b) 

with separation constant 

,"161 + pi = (cosh2p + sinh2a)"1 (sinh2ap; + COSh2pp~) = /l, 

(4.8c) 

(14) Elliptic-type 2: For the last case we have dif
ferent coordinates for different regions of Minkowski 
space, viz" 

Xo = coshp cosha, xl = sinhp sinha, (4.9a) 

with - co < p < co, 0 ~ a <co for the region xO >- 10 If we 
let (XO,xl) - (_xO,x l ), we can treat the region xO ~ - I, 
However, for the region - 1 ~ XO ~ 1 we have 

XO = cos</> cos!/!, xl = sin</> sin!/! (4,9b) 

with 0 ~ </> <21T, 0 ~ (3 <1T, With (4, 9a) and (4. 9b) we 
still miss the region - 1 <: xO < 1, 1 < lxII, This region 
can be handled by interchanging xO and xl; hence, we 
can cover the full plane with elliptic-type 2 coordinates, 
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The solution corresponding to (4, 9a) is 

s= I dp(1J. + ,\2 sinh2p)1 /2 + I da (IJ. + ,\2 sinh2a)1 /2 

(4,9c) 

while for (4,9b) 

S=I d1>(,\2 s in21>-IJ.)I/2+ I d</J(,\2 s in2</J-IJ.)1!2 (4,9d) 

with constants of the motion in the corresponding 
regions 

M61 -pi = (cosh2p - cosh2arl(sinh2pp~ - sinh2ap~) = IJ., 

(4, ge) 

M~1 -Pi = (cos2</J- cos2¢ r 1(sin2</Jp; - sin21>P~) = IJ.. 

5. THE HYPERBOLOIDS (DOUBLE AND SINGLE 
SHEETED) 

In this case we consider the function D given in (1 0 9), 
Putting D=,\ and using (1, 28), we see that (1,1) re
duces to 

:W~l + M62 - Mi2 = ,\2, (5,1) 

Now the centralizer of D in 0(3,2) is {D}ED 0(2,1), where 
0(2,1) is the subalgebra of 0(3,2) with basis !VIOl> M 02 , 
M 12 ; hence, 0(2,1) is the reduced symmetry algebra for 
(5. 1). Introducing the real variable 0 < P = (x. x)1/ 2

, 

x· x'> 0, for which D= pPp , we obtain 

XO=PVo, xl =PYl> X2=PY2, 

.1'6 - yi - y~= L 

Thus we have separated off one variable in such a way 
that we are left with a double-sheeted hyperboloid, We 
will hereafter restrict ourselves to the upper sheet 
(Yo> 0). Furthermore, for the region x ,x < 0 with p 
= (- X. X)l /2" 0, we obtain the single-sheeted hyper
bolOid, viz., 

XO=PYo, Xl =PYl, X2=PY2, 

Y5 - yi - y§ = - 1. 

We note that, on the light-cone x ·X= 0, (5.1) reduces 
to an ordinary differential equation and the problem of 
separation does not exist. 

Now using the coordinates (5.2) or (5.3) it is straight
forward to show that M" .. =Y"ilv-yvil,,; thus by diagonal
izing D, i. e., DW=,\ we have 

W= Alnp + S(y") (5,4) 

and (1.1) reduces to (4.1) where the :V1's in (5,1) are 
interpreted now as M" .. S, L e" M "V - M"", 

It was shown by Winternitz, Lukac, and Smoro
dinskir23 that the space of second order members of the 
universal enveloping algebra of 0(2,1) modulo its center 
splits into nine orbits under the adjoint action of 0(2, I), 
Furthermore, the connection with the separation of 
variables for the Laplace-Beltrami operator was estab
lished, Here, we list the pairs of commuting functions 
which separate variables in (1. 1) keeping with the nota
tion used previously3.23 

(15) D2, Mi2, spherical, 

(16) DZ, AJ~2' equidistant, 
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(7') D2, (M12 - .1\1102)2, horocycle , 

(17) D2, :IJI2 + a2M~l> elliptic, 0< a < 1, 

(18) D2, M~l - a2MI2' hyperbolic, O<a<l, 

(19) D2, 2aMijl - M02M 12 , semihyperbolic, 0 < a < 00, 

(20) D2, (MOl + M12)2 + a:V1~2' elliptic-parabolic, 

O<a<oo, 

O<a<oo, 

(22) D2, t1\1102 (MOl - AJI2 ), semicircular-parabolic, 

We now give the solutions for the above orbit rep
resentatives on the upper sheet of the double-sheeted 
hyperboloid, The coordinates on the single- sheeted 
hyperboloid can be obtained by .1''' - iy" with the ap
propriate change of parametrization; however, different 
parametrizations are sometimes needed for different 
regions, There is also no guarantee that Eq, (5.1) is 
separable in all regions (see Ret 24). Each of the sep
arated solutions is found by solving (4,1) (i, e" D2 = ,\) 
and taking one of the above orbit representatives as 
constant of the motion, 

(15) Spherical' The coordinates are 

(5.5a) 

with 0 < 1'/ < 00 and 0 '" 1> < 21T and the separated solution is 

S= 1J.1> + I (,\2-1J. 2/sinh21))1/2dr] (5,5b) 

with separation constant 

MI2 =P~ = 1J.2, (5,5c) 

(16) Equidistant: The coordinates are 

yO = coshp cosha, .1'1 = sinhp, y2 = coshp sinha (5,6a) 

with - 00 < p, (J < 00, and separated solution 

S= lJ.a + I (Q2 - 1J.2/coSh2p)1 /2 rip 

with separation constant 

:VI~2 = p~ = IJ. 2, 

(7') is the same as (7), 

(17) Elliptic: The coordinates are 

yO = (k')"! dnu dnv, )'1 = k(k'r1 cnu cnv, 

y2 = _ ik snu snv 

(5.6b) 

(5,6c) 

with u E (0, 4K) and v E: (0, iK'). The separated solution 
of (4,1) is 

(5,7b) 

and separation constant is 

k,2MI2 + k2M61 = (cn2u - cn2v)"1(cn2up~ - cn2vp~) = IJ., 

(18) Hyperbolic: The coordinates are 

yO=ik(k,)"1 cnucnv, yl =ik snu sm', 

y2 = i (k,)-l dnu dnv 
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with 1/ '" (iK', iK + 2K) and 1) c::: (- iK', iK)o The separated 
solutions are 

5= (1/1?2) I rl1/(J.,2}?2 sn2u _ fl)1/2 

+ (l/l?2) I dV(A2k 2 sn2
1) - fl)l /2 

with constant of the motion 

(5.8b) 

:1l~1 - J?2 :vrI2 = J?4(sn2
1/ - sn211r l (sn2vp~ - sn2up~) = fl, 

(5.8c) 

(19) 5emilz:l'per/JOlic- The coordinates are 

v2 _ - v1) 
. 1 - (]It + (32 , 

,2 _ V1) _ 1. + ~ [«(v - 0)2 + (32)«(1) - 0)2 + (32>J1I2 
12- 2 ((]I2+{32) 2 2{3L (]I2+{32 , 

(5,9a) 

L - v1) + 1: + ~ r((v- 0)2 + (32)«(1)- 0)2 + (32>Jl/2 
YO- 2 ((]I2+{32) 2 2{3L 02+{32 

with 0 ~ 1) < 00, - ex; < v < 0, and 0, {3 reaL The separated 
solutions are 

5=J dV(fl + iJ.,2v)1/2v- l / 2[(v_ 0)2 + {321-1I2 

+ J d1)(fl + tA21))1/21)-1/2[ (1) - cd + (32]1 /2 (5,9b) 

with separation constant 

oM61 - 2{3M12 :lI02 

== 1)V(V - 1)rl[ ((1) - U)2 + (32)p; - ((v - 0)2 + (32)p~1 = flo 

(5,9c) 

(20) Elliptic-parabolic: For simplicity we consider 
the nondegenerate point a = 1; the coordinates are 

1,0:= 1. (COShZp + cos
2 

E!) 
. 2 coshp cosE! ' 

Vi = - tanhp tanE! (5, lOa) 

with - 00 < P < 00 and - 7T/2 < E! ~ 7T/2 0 The solutions are 

5= J dp(fl + >,2/ COsh2p)1 /2 + J ([B(- fl- >,Y cos2E!)1 /2 

with constant of the motion 

.H~z + (;1101 + NliZ)2 

== (coshZp - cos2 Btl (coshZpp~ + cos2 BP~) = flo 

(50 lOb) 

(5,10c) 

(22) Semicircular-parabolic: The coordinates are 

0_ (~2 + 1)2)2 + 4 1_ 1)2 - e 2 _ (~2 + 1)2)2 - 4 
Y - 8~1) ,Y - 2~1) , Y - 81;1) 

with 0 ~ 1;,1) < 00 0 The solutions are 

s= J d1)(fl + ,\.2/1)2)112 + J d~(,\.2/~2 - fl)1/2 

with the constant of the motion 

~,\I02(A101 - ;1[12) = (1;2 + 1)2rl(1)2p~ - ep~) = flo 

(5,12a) 

(5,12b) 

(50 12c) 

As with the sphere in Sec. 2 there is a close relation
ship between our model on the hyperboloid and the 
Hamilton-Jacobi equation for the Kepler problem with 
unbounded orbits (positive energies), Indeed the opera
tor D = r 15 is conformally equivalent to r 14 = t(Po - Ko)o 
Explicitly, Adexp(trrr45)r15=r14o Thus r 14 ='\', and on 
the surface (1,21) we have 

(5,13) 

Again implementing the canonical transformation Pj 
- x

j, xi - - Pj, we obtain 

(5.14) 

1. e., the positive energy Kepler problemo It is clear 
that under the above canonical transformation the re
duced symmetry algebra 0(2,1) is preserved, 

Again, we emphasize that Eqo (1. 1) can also be in
terpreted as the equation for the graph of a solution 
5(1),0/) of (5.1), here parametrized by the spherical 
coordinates (5,5a)o Thus 0(3,2) is the full symmetry 
group of (5.1) and every separated solution of (L 1) 
gives rise via the graph to a symmetry adapted solution 
of (5. I), 

6, THE NONRELATIVISTIC FREE PARTICLE 

We now look at the only partial separation of (L 1) 
which involves nonorthogonal coordinates, Since this 
case waS already treated in detail in Ret 6, we will be 
brief here o ConSidering the reduced equation corre
sponding to the operator Po + Pj, we set Po + PI = A; then 
(1, 1) reduces to 

ASt - S;= 0, 

where 

f=(x O_x l ), y=x 2 

(6, la) 

(21) Hyperbolic-parabolic: Again for a = 1 the co- and 
ordinates are 

,II = 1. (COSh2p + cos
2

E!) 
} 2 sinhp sinB ' 

.v l = cothp cotE! 

with 0 "-. p < 00 and 0 ~ E! < 7T 0 The separated solutions are 

S= J ([P(fl- A2/sinh2p)1I2 + J dB(- fl- ,\,z/sin2B)1I2 

(5,lIb) 

with separation constant 

- (.HOI + ,\112)2 + M~2 

== (sinh2p + sin2 B)-1 (sinh2pp; - sin2 BP~) =flo 
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(5. lIc) 

(6,lc) 

Clearly (6. 1) is equivalent to the equation studied in 
Ref, 6 (take t - - A-It and y - x), Its reduced symmetry 
algebra is the Schrodinger algebra sl generated by 
{po - Pj, Ko + Kj, D + MOb P 2, M02 - Mi2' Po + Pi}' Notice 
that in this case we no longer have a Lie algebra direct 
sum of the operator corresponding to the partial separa
tion (here E = Po + PI) and its centralizer. However, 
since E is in the center of sj, we can consider the factor 
algebra S/Eo Because the partial separation in this case 
involves nonorthogonal coordinates, the R-separable 
coordinates of the reduced equation (6. 1a) are non
orthogonal and are characterized by orbits in the factor 
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algebra StiE. The list of representatives is: 

(3") Po + Pi> P 2, free particle, 

(23) Po + Pi> Po - PI - t(Ko + K l ), attractive oscillator, 

(24) Po + Pi> Po - PI ± (M12 - M02 ), free fall (linear 

potential) , 

(25) Po + Pi> D + MOi> repulsive oscillator. 

In Ref. 6 orbits in sl were classified by equivalence 
under the full conformal group. It is easy to see from 
those results that the orbits in StiE under the conformal 
group are precisely those listed above, Moreover, be
cause all of the above are members of the Lie algebra, 
one can construct constants of the motion via functions 
on phase space as done here or equivalently construct 
relative invariants of vector fields as done in Ret 6. 
One can easily check by using the Lie algebra iso
morphism (1.7) that the two methods are indeed equiv
alent, keeping in mind that orbits of relative invariants 
in s 1 considered as vector fields correspond to orbits in 
s tiE considered as functions to be set equal to constants. 

Again as shown in Refs o 2 and 6, 0(3,2) is the full 
symmetry algebra of (60 1a) corresponding to the fact 
that Eq. (10 1) can be interpreted as the equation for the 
graph of a solution of (6.1a). Thus all separated solu
tions of (1. 1) give rise to symmetry adapted solutions 
of (6. 1a), Indeed all those corresponding to first order 
operators have been given, up to equivalence, in Ret 6. 

7. A NONLINEAR EPD EQUATION 

Now we look for coordinate systems yielding separa
tion of variables in (1.1) such that A = r S2 = m, m con
stant. Setting X O = t, x = rcos¢, x2 = r sin¢, we have 
r 32 =- P0 so 

w= - m¢ + S(t, r), 

where 

S~- S;- m 2/r2=0 

or, from (10 29), 

r~5 - ri4 - ri5= r52=m2. 

(7.1a) 

(7.1b) 

(7.2) 

Since the centralizer of r 32 in 0(3,2) is {r32}EBo(2,1), 
where 0(2,1) is the subalgebra with basis r 45 , r 14 , r 15, 
we see that 0(2,1) is a symmetry algebra for the re
duced equation (6.1)0 Here, 

r 45 = i(1 + t2 + y2)P t + trPr , 

(7.3) 

r I5 =-tp t -rPn Pt=St> Pr=Sr. 

It is well known23 that the space of second order sym
metry operators in 0(2,1), modulo the invariant 
r~5 - ri4 - ri5, splits into exactly nine orbits types under 
the adjoint action of 0(2, I). A representative of each 
orbit type is given by the assignment 

(1') r~2' r~5 ' 

(4') r~2' (r4S + r 14)2 , 

(15') r~2' ris , 

(26) r~2' ri4+r14r45-aris, 
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(27) r~2' r~s + r 14r 4S +arrs, a> - i, 
(28) r~2' arts + r 14 r 4S , 

(29) r~2' rts + a2r~s, O<a<l, 

(30) r~2' rts - a2r~s, O<a<l, 

(31) r~2' (r14 + r 4S)rlS ' 

We shall show explicitly that (10 1), hence (7.1), 
admits an additive separation of variables correspond
ing to each of these orbits. The separable coordinate 
systems are exactly those studied in Ret 8. 

Orbits (1'), (4'), and (15') have been treated above. 

(26) We consider for simplicity the nondegenerate 
pOint a = 0 and 

t=cosBcosa, r=sinBsina. 

Then (7. 1) yields the separated solutions 

S(e, a) = f (2/12 - m2 cot2e)1 /2 dB 

+ f (2/12- m 2cot2Q)I/2da 

with constant of the motion 

rt4 + r 14r 45 

(7.4a) 

(7.4b) 

= i(sin2a - sin2 e)"1 (cos2B sin2aP~ - sin2e cos2aP~) 

=- /1 2, (7.4c) 

The coordinates e, a are valid only for It I +r'" 1. As 
shown in Refs. 4 and 8 there are similar separable 
parametrizations for I t I ;?c r + 1 and I t I '" r - 1, but not 
all regions of the r- t plane with r> 0 are covered with 
parametrizations which permit separation of variables. 

(27) With a = 0 the separable coordinates are 

t::::coshesinha, r::::sinhecosha (7.5a) 

and the solutions have a form similar to (7. 4b). 

Solutions corresponding to orbits (28)- (30) are rather 
similar. For (28) the separable coordinates are 

t = 2(kk,)1 /2 (k + ik') sn(e, l) sn(a, l)/R, 

r=2(kk,)1/2/R, 

R == (k - ik') dn(e, l) dn(a, I) + (k + ik') cn(e, I) cn(a, l), 

4a=k'/k - k/k', k'= (1- k2)1/2, 

1 = (k + ik')/(k - ik'), 

(7.6) 

for (29) the coordinates are 

t::::dn(e,a)dn(a,a)/a'R, r=l/R, 

R == a sn(B, a) sn(a, a) + a cn(B, a) cn(Q, aVa', (7.7) 

a' = (1 _ a2)1 /2, 

and for (30) they are 

t=ksn(e,k)sn(a,k)/R, r==1/R, 

R = (k'tl dn(e, k) dn(a, k) + (k/k') cn(B, k) cn(a, k), (7. 8) 

a=k', k'= (1- k2)1/2, 

(For a discussion of the ranges of the variables e, a, 
see Ret 8.) 
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As an example of the form of the solutions we insert 
coordinates (7.6) in (7.1) to obtain 

(7.9a) 

with separated solutions 

50:=1 (jl2+m 2dn2e)1/2de+ J (jl2 + m2k2dn2a)1/2dO'o 

(7 0 9b) 

Here, rt5- (k')2r~5= iJ.2• (Some errors in the corre
sponding list of elliptic coordinates for the EPD equa
tion, contained in Ref. 8, have been corrected here. ) 

(31) For this orbit we set 

t=± (e2 + 0 2
), r==28O', t"" Irl, 

in which case (701) becomes 

p~- p~ - m2(1/O'2 -1/e2) == 0 0 

The condition 

(70 lOa) 

(7 0 lOb) 

- (r14 + r 45)r15 == i(e2- (2)-1(e2p~_ a2p~)== f12 (70 IDe) 

yields the separated solution 

S(e,a)==J (4/1 2 _m2/e2)1/2de+ J (4/12_m2/aZ)I/2dao 

(7 0 10d) 

(Contrary to the statement in ReL 8, variables do not 
separate for y>- I t 10 ) 

In analogy with the previous reduced equations it is 
easy to show that (1.1) is the equation of the graph of 
(701). Thus, 0(3,2) is the full symmetry algebra of 
(70 It 

8. THE SYMMETRY r 23 - r 45 

We next separate a variable from (10 1) by requiring 
L=~(r23- r 4s)=K In terms of the coordinates (20 2), 
(204) with (3= a + 1jJ, rp = a -1jJ we have L =P8' so 

W=:K{3+S(rp,a), 

where 

cot2aS~ + 2K(csc2a + I)S~ + S; + K2 cot2a = O. (801) 

The centralizer of L in 0(3,2) is {L}EB 0(2, 1), where 
0(2,1) is the subalgebra with basis A,B, C such that 

A=i(r23 +r45 ), B=t(r24 +r35 ), c=i(r25 -r34), 

(802) 

[A,Bl=C, [C,A]=B, [C,Bl==Ao 

Thus 0(2,1) is a symmetry algebra for the reduced 
equation (801). Here 

A == Sib' - B = sinrp5e + cothz cos¢S~ + K cos¢/ sinhz 

C = - cos¢Se + cothz sinrpSq, + K sin¢/sinhz, (80 3) 

sina == tanh(z/2), 

and in terms of these symmetries equation (801) reads 

(8.4) 

Note: The simple computation leading to this identity 
shows that the corresponding identity for the wave equa
tion as given in Refs. 3 and 5 is in error. The correct 
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result for the wave equation is 

A2_ B2_ C2==-&. (8.5) 

Indeed, the eigenvalues of - iL are As= ~(s + i), 
s = 0, 1, 2,···. The eigenspace V. corresponding to 
eigenvalue ~s is irreducible under 0(2,1) and trans
forms according to the unitary representation Dj where 
1=-[(-1)s+21/4. 

As usual we try to associate separable coordinates 
for (8.4) with the nine orbits of second order sym
metries in the enveloping algebra for 0(2,1). It is 
guaranteed that there are separable coordinates corre
sponding to the three orbits which correspond to 
squares of first order symmetries: 

(1/) L2, A 2, 

(32) L2, C2, 

(33) L2, (A-B)20 

In particular, (1/) is equivalent to (1)0 To obtain the 
remaining systems, we note that for K = 0 the operators 
and coordinates (8,3) agree with system (15) on the 
hyperboloid, i. eo, coordinates (5.5a). Since the sep
arable coordinates for (8.4) must be independent of K 
it follows that a separable system for (804) must be 
one of the systems (7/), (15)-(22). However, one of 
the latter systems need not necessarily yield separa
tion for (8 0 4L 

We are guaranteed success for systems (32) and (33). 
For (32) we set coshz = cosh~ cosh?), tan!/> = tanh~/ sinh7J 
to obtain 

__ 1 __ ~ i- 52 + ___ -=1,.--_~-
cosh2 ~" { (1 - cosh2 ~ cosh21]) 

x (2K cosh~ sinh7J cosh7JS~ - 2K sinh~ cosh27JS" + K2) = 0, 

(8.6a) 

The condition 

C = - 5" + K sinh~/ (cosh2 ~ cosh27J - 1) = iJ. 

yields the R- separated solution 

S=-Ktan-l(sinh~coth7J)- fl7J 

+ 1 (K2-1J. 2 - 2iJ.Ksinh~)1/2/coSh~ld~0 

(806b) 

For (33) we set coshz = H e-~ + (1]2 + l)e~], tanrp = - 21]e~ / 
[e-~ + (7)2 - 1 )ell and use the condition 

A - B=5"- 2K[e-1 + (1J2-1)e~1I{[e-~ + (r? +l)e~f- 4} 

=IJ. (8.7a) 

to obtain the R-separated solution 

5 = - K tan-{e~ (1 ;~2) _ e-~] + 1111) 

+ f [- (2Ke-~m + m2e-2/) 11/2 d ~~ (8.7b) 

We have carefully studied the coordinates correspond
ing to system (17) and have found that they do not lead to 
R separation of variables for (804), It appears that only 
the subgroups systems (15/), (32) and (33) yield additive 
variable separation for this equation, although we have 
not explicitly checked this for all systems (15)- (22). 
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Just as for the other reduced equations it is easy to 
show that (1. 1) is the equation of the graph of (8.4). 
Thus 0(3,2) is the full symmetry algebra of (8.4) and 
all of the additively separated solutions of (1.1) lead to 
symmetry adapted solutions of (8.4). 

9. NONSPLIT COORDINATES 

In analogy with Ret 3 for the wave equation, we have 
listed, with the exception of some degenerate non
orthogonal systems, 5 all separable systems for (1. 1) in 
which it is possible to additively split off one variable. 
In Ret 4 a classification of all orthogonal R- separable 
coordinates systems for the wave equation was given 
for which the coordinate surfaces were families of 
confocal cyclides. 53 such systems were found, and, 
except for degenerate cases, it was shown that the 
variables intertwine in such a complicated fashion that 
it is necessary to separate them simultaneously, L e. , 
it is not possible to split off a single variable. Each 
such system was shown to be characterized by a com
muting pair of second order symmetric operators in 
the enveloping algebra of 0(3,2). 

The results of Ref. 4 can be applied directly to ob
tain orthogonal separable coordinates for (L 1) simply 
by interpreting the Lie algebra of differential operators 
0(3,2) as a Lie algebra of functions under the Poisson 
bracket. 

For example, the system [311] (i) of Ret 4 leads to 
coordinates 

Xo == - t(cos2a + cos2f:l + COs2y), xl = sinO' sinj3 siny, 

x 2 = cOSO' cos/3 cosy, 

In these coordinates (L 1) reduces to 

(sin2/3 - sin2y)p~ + (sin2y - sin2a)p~ + (sin2Q - sin2!3)p; = O. 

It is not possible to additively separate one of these 
variables from the other two, However, use of the 
defining symmetry elements 

2 (Po - Pt)M02 + Po + Ii 
sin2ap ~ 

= (sin2a - sin2/3)(sin2(J1 - sin2y) 

sin2/3:p2 + B 
(sin2/3 - sin2

(J1) (sin2/3 - sin2y) 

• 2 p2 + SIn Y r _ 
(sin2y- sin2Q)(sin2y- sin2!3) - Il 

2P2Mo2 - 2HI2 + Pz 

= (sin2Q - sin2/3)(sin2O' - sin2y) 

+ sin2 Q sin2yp~ 
(sin2/3- sin2O')(sin2/3- sin2y) 

+ sin2
Q sin2/3P~ 

(sin2y- sin2a)(sin2y- sin2/3) = lJ 
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(9.3a) 

(9.3b) 

leads to the separated solution 

w= J (Il sin2a + lI)t /2 dO' + J (Il sin2{'i + lJ)t /2 

d{3 + J (M sin2y + lJ)t /2 dy, 

In a similar fashion each of the orthogonal R-separable 
coordinate systems for the wave equation is additively 
separable for (1, I). In Paper II we shall examine the 
relationship between the wave equation and (1. 1) more 
closely and provide proofs of own assertions concerning 
variable separation. 
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Symmetries in gauge theories8
) 

Peter G. Bergmann and Edward J. Flaherty, Jr. 

Department of Physics, Syracuse University, Syracuse, New York 13210 
(Received 26 April 1977) 

A general definition of symmetry for solutions of the field equations of gauge theories is prop(}sed, and 
some of its properties and consequences are discussed. 

Gauge theories have enjoyed a surge of popularity in 
recent years, chiefly in the context of elementary parti
cle physics. Gauge theories of the Yang-Mills type 
playa central role in unified models of the weak and 
electromagnetic interactions and in theories of the 
strong interactions. There has also been interest 
generated by the realization that general relativity is a 
gauge theory, in a well-defined sense, and this fact has 
provided a point of departure for several alternative 
theories of gravity. When the gauge group of a theory is 
non-Abelian, the field equations are necessarily non
linear, and exact solutions are notoriously hard to come 
by. Experience with the field equations of general rela
tivity has shown that searching for solutions with speci
fic symmetries (e. g., isometries) often simplifies the 
field equations to the extent that exact solutions can be 
found, such as the class of all static, axially symmetric 
spacetimes. The corresponding concepts of static, and 
of spherically symmetric SU(2) Yang-Mills fields have 
also been formulated. 1.2 [Throughout this paper the 
term "symmetry" refers to properties of solutions 
(e. g., isometry), not of the field equations. 1 However, 
a general definition of symmetry or isometry for gauge 
theories is so far lacking in the literature; in this note 
we shall provide what we believe to be a reasonable and 
useful definition of symmetry for such theories. For 
special cases of this definition, see Refs. 1 and 2. 

In order to introduce our notation and conventions, 
we shall present a very brief sketch, or review, of 
gauge theories. By a gauge theory we mean a relativis
tic field theory in which at least one of the physical 
fields is represented by the curvature matrix of a con
nection on a vector bundle over a (flat or curved) 
spacetime M. The "gauge group" of the theory is then 
the general linear group, or one of its subgroups, acting 
on the fibres of the bundle. A (local) "gauge transforma
tion" corresponds to a change of frame field in the 
vector bundle over some open subset N of the base 
space 111, together with the associated transformation 
of the connection matrix or "gauge potential. ,. Let 
(' == (e 1 ••• (' n) be a frame field over N, L e., if the 
dimension of the fibres is n, (' consists of n linearly 
independent local cross se ctions of the bundle over N. 
Relative to this frame field, the connection is repre
sented by an n x 11 matrix of I-forms B. This defines a 
covariant derivative operator for cross sections of the 
bundle: If V = e ;l'i is represented by the column vector 
l' =, (I'J ... . "n)tT, then we have 

DI!=dn +B1i. (1) 

a) Supported in part by NSF Grant #MPS74-15246. 

Under a change of frame field given bye' = cU- 1, we 
have 

U'=Ul1, B'=UBU-1-dUU-1=(UB-dU)U-1
• (2) 

The physical field is represented by the curvature 
matrix F associated with B; with respect to the frame 
field c, it is given by an 11 Xu matrix of 2-forms: 

F=dB+B!\B, (3) 

where d denotes the exterior derivative of the entries 
(elements) of the matrix B. Under the change of frame 
c' = eU- 1

, it is easy to show that 

F' = UFU- 1 • (4) 

Thus, the components of F transform as a "tensor" 
under U, whereas those of B do not. 

The simplest gauge theory is electromagnetism, in 
which the fibres are one -dimensional complex vector 
spaces, and the gauge group is taken as the unitary 
group U(I) C GL(l, C) (or as the additive group RL In 
this case the connection matrix is Simply a I-form 
B = A, the ordinary vector potential of electromagnetism 
(but only locally defined for a non-trivial line bundle); 
and the curvature matrix is simply the (globally defined) 
2 -form F == dA, representing the electromagnetic field o 

The Lagrangian density for Maxwell-Lorentz theory is 
given by (_g)1/2FmnFrs!{mrgns, where gmn is the space
time metric. Yang-Mills theories3 are a straightfor
ward generalization of electromagnetism, in the follow
ing sense: The fibres are allowed to be vector spaces 
(real or complex) of any dimension, the group of the 
bundle being any semi simple Lie group which acts 
linearly on the fibres; the Lagrangian density is 
usually chosen to be tr(_g)J/2 F mnFrsgmrgns. It is also 
ordinarily required that ~he physical fields F be re
stricted to being real in an appropriate sense: In the 
complex case with SU(71) as gauge group, this is accom
plished by considering only frame fields which are uni
tary with respect to some Hermitian inner product on 
the bundle, and by requiring the connection matrix B to 
be anti-Hermitian with respect to each such frame; it 
then follows that the matrix F is also anti-Hermitian 
for such frames. 

It can be argued that general relativity is the "most 
natural" gauge theory, 4 insofar as the vector bundle in
volved is the "most natural" bundle associated with a 
manifold, the tangent bundle; the connection is the 
Riemannian connection, also in some sense the "most 
natural" choice, and the group is the Lorentz group 
SO(3, 1) with only orthonormal frame fields with respect 
to the Riemannian metric being considered. However, 
standard general relativity is not a Yang -Mills theory, 
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because the Lagrangian density (_g)1/2Rmnrsgmr,f('s is 
linear rather than quadratic in the curvature. 

What we have described so far are "free-field" gauge 
theories. Of course, other fields may be introduced 
and interaction terms added to the Lagrangian. A good 
example is Einstein-Maxwell-Dirac theory, featuring 
gravity represented by the Riemannian connection on 
the tangent bundle, electromagnetism represented by 
a connection on a complex line bundle, and a Dirac 
matter field represented by a cross section of the line 
bundle. 

We now proceed to the question of symmetries. Recall 
that the Lie derivative T~::: of a tensor field T~::: with 
respect to a vector field ~m is defined, in term of coor
dinates, as follows: 

-1:.1 T~::: = T~::: ,m C - 7'7:::: ~~m - ••• + T~'::'~~b +"', 

(5) 

In intrinsic terms, the Lie derivative has the following 
meaning. The vector field ~m gives rise (under suitable 
assumptions such as compact support or restriction to 
local considerations) to a one -parameter family of 
diffeomorphisms 6(E) of the manifold M (or a subset 
thereof) onto itself. Each diffeomorphism gives rise to 
a bundle map 6*(E) : E - E for each tensor bundle E de
fined over M. To every local cross section T of E there 
corresponds a cross section T(E) of E for each diffeo
morphism 6(E). The Lie derivative of T can then be 
defined as 

(6) 

Less formally, the vector field ~m gives rise to a set of 
transformations x'm = xm + E~m, which can be thought of 
as active point transformations (point -to -point map
pings) of the manifold M. Then with every tensor field 
T~::: there is associated a tensor field T~::: (E)(x') 
= ax,a/axm , •• ax"/ax'b .. 'T~:::(x), and the Lie derivative 
at p of T is the limit of l/E times the difference T - T(E) 
evaluated at p, 

Since the connection matrix B with respect to some 
frame field over N~M is a matrix of I-forms, it makes 
sense to consider the matrix whose entries are the Lie 
derivatives of the entries of B, i, e., of covariant vector 
fields. We shall denote this object by tlB, and refer to 
it as the ordinary Lie derivative of B with respect to 
~m. 

Now, again in informal terms, consider an infinitesi
mal change of frame field given by U = I + as, where a 
is infinitesimal. Consulting Eq. (2) and neglecting terms 
of order a 2

, we find 

B' = B + a[S, B]- adS. (7) 

We define the Lie derivative of B with respect to the one 
parameter family of gauge transformations U = I + as as 

t Boo lim(l/a)(B' - B) = [S, BJ-dS. 
s Q!-O 

(8) 

In analogy to the ordinary Lie derivative, the intrinsic 
interpretation is as follows. We think of the gauge 
transformation U not as a passive change of frame, but 
rather as an active bundle isomorphism, defined 
locally, by specifying a U for a local chart of the bun-
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dIe. For each connection B defined for the chart over 
N ~ M, there is a one -parameter family of connections 
defined by Eq. (7), and the Lie derivative of B with 
respect to S is the limit of 1/ a times the difference 
B(a) - B. Under a passive change of frame field e' 
= e U- I

, a straightforward computation reveals that 

ts·B'= U(tsB)U- I
, 

where S' = USU- I
• 

(9) 

We now have two types of Lie derivative defined for 
a connection on a vector bundle, and it is natural to 
combine these to obtain the concept of the Lie derivative 
of a connection with respect to the vector field ~m and 
the infinitesimal isomorphism S: 

(10) 

(Note that we could easily define an operator t l , s on 
cross sections of the vector bundle itself: 

\11) 

The Lie derivative of B would then have the following 
natural-looking property: 

(12) 

However, the Lie derivative of a cross section would 
appear to have very little relevance for the type of 
applications we have in mind, since for any cross sec
tion v it would be possible to find many pairs ~m and S 
for which £1,511= 0.) 

Incidentally, considerations analogous to those above 
lead to the following definition for a generalized Lie 
derivative of a curvature matrix: 

(13) 

The absence of a term involving dS comes from the fact 
that F transforms by Eq. (4) rather than Eq. (2) under 
a gauge transformation. A lengthy but straightforward 
computation confirms the following relationship: 

ii, sF= dt l , s B + (ic sB)I\B + B 1\ (tl,sB). (14) 

In deriving this result, use has been made of the fact 
that the action of the operator t I on forms or matrices 
of forms can be expressed as 

(15) 

where d is the exterior derivative operator and LI is 
contraction on the first index with the vector ~ m. Note 
that Eq. (14) insures that 

tl,sF= 0 whenever tl,sB= 0; 

but the converse of this is not true in general. 

We list here a pair of alternative expressions for 

il,sB and il,sF, 

which are of some interest. First, again making use of 
Eq. (15), it can be shown that 

(16) 

Secondly, we have 

(17) 
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where D is the "gauge covariant curl" operator, defined 
by 

DM = diVI + B 1\['11 + (- l)k M 1\ B, 

where A1 is an n Xll matrix of 1?-forms whose trans
formation law under a gauge change is given by l\d' 

= UMU- 1
• (This is the operator which appears in the 

"Bianchi identities" DF= 0, which hold true for any 
curvature matrix F.) 

(18) 

Using Eqs. (16) and (17), we can derive the following 
properties of our Lie derivative operators: 

(19) 

(20) 

Since, under the passive change of frame, the repre
sentation of the active isomorphism S changes according 
to S' = USU- 1

, we must for consistency have 

f(, s,B' "'- U(f, .sB)U- 1 

(21) 

and 

(22) 

under a change of frame. Because of this complicated 
transformation law, 

t.(.sB~~O does not imply t(,S,B'=O, 

and likewise for t(,sF. However, from Eqs. (19) and 
(20), we see that if C,sB=O 

f e• s B= 0 in one frame, 

there is a ditfcycn/ infinitesimal isomorphism T' 
= USU- 1 + L(dUU- ' such that 

t ( . T' B' = 0 in the transform ed frame, 

and likewise for t (. sF = O. 

We are now prepared to state the proposed definition 
of symmetry for a gauge theory. We say that a gauge 
potential B admits an (infinitesimal) symmetry, if there 
exists a vector field ~m and a matrix of scalars 5 for 
each allowable frame field, for which t ( , sB = 0, with 
5 - USU- 1 + L(dUU- 1 for a change of frame; similarly, 
we say that a gauge field F admits an infinitesimal 
symmetry if t (. sF = 0 for some ~m and S. As mentioned 
above, tllis definition can be thought of as a generaliza
tion of (the infinitesimal versions of) certain special 
cases of symmetries which have appeared in the 
literature. 

It is worthwhile to examine our definitions in the 
case of two familiar gauge theories, electromagnetism, 
and general relativity. In the case of electromagnetism, 
we are dealing with "1 x 1 matrices" so that expressions 
involving commutators of matrices vanish and our 
definitions of the generalized Lie derivatives reduce to 
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(23) 

and 

(24) 

Note that in this very special Abelian case, i.e,sF is 
independent of 5 (since F itself is) and 

t(F=O implies t(,sA=O for some S. 

Neither of these statements is true in general in the 
non-Abelian case. 

In the case of general relativity, there is already a 
natural definition of symmetry at hand, by virtue of the 
fact that the vector bundle involved is the tangent bundle 
of the spacetime. The natural definition for a symmetry 
of the gravitational field is the notion of an (infinitesi
mal) isometry, i. e., the existence of a Killing vector 
field C for which 

Our proposed definition of symmetry in this case is 
considerably more general than the notion of isometry, 
but the latter is contained as a special case: It is 
straightforward to show that 

t,gmn=O implies t."or~n=O and f<.oR~ns=O, 

where the Christoffel symbol r~r plays the role of the 
11111 entry of the connection matrix with respect to a 
coordinate frame, and the Riemann tensor plays the 
role of the curvature matrix. Our definition of symme
try is equivalent to the requirement that there exists a 
chart (local coordinate system) in which the Christoffel 
symbols r~r are independent of one of the coordinates, 
whereas in a true isometry this is also true of the 
metric tensor components f[mn' Obviously, the latter 
condition is sufficient, but not necessary for fulfilling 
the former. In fact, the condition 

t ( , or = t (r = 0, 
which states that the parallelism of the spacetime is 
invariant under the infinitesimal diffeomorphisms asso
ciated with ~m, is a well-known one; and the vector 
fie ld ~m is said to generate an affine motion of the space
time. Such a ~m is referred to as an affine Killing 
vector. 
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Coherent electromagnetic waves in pair-correlated random 
distributions of aligned scatterersa) 

Victor Twersky 

Department of Mathematics. University of Illinois. Chicago. Illinois 60680 
(Received 18 April 1977) 

Recent results for the corresponding scalar problem are generalized to coherent electromagnetic waves in 
random distribution of pair-correlated obstacles (aligned or averaged over alignment). Proceeding 
essentially as before. we obtain dispersion equations by averaging the vector-dyadic functional equation 
relating the multiple and single scattered amplitudes of the obstacles. In general. for aligned nonradially 
symmetric scatterers, the resulting bulk indices of refraction specify anisotropic media; the anisotropy 
arises either from the scatterers' properties (physical parameters or shape, or both) or from their 
distribution, or from both. The illustrations include both isotropic and anisotropic cases, and the explicit 
results generalize earlier ones. 

1. INTRODUCTION 

In a recent paper, 1 we considered scattering of a 
scalar wave exp(ik. r) by a slab region of randomly 
distributed pair-correlated obstacles, and determined 
the average wave, and the associated bulk index of 
refraction (1]) in terms of the scattering amplitude 
g(r, it) for one isolated obstacle. Now, we extend the 
development to the analogous electromagnetic problems 
for incident a exp(ik. r) by using vector forms2 of the 
multiple scattered field and amplitude (G), and vector 
and tensor representations (g, g) for the single obstacle. 
Relationships with earlier resultsl-15 are mentioned in 
context. 

Essentially as before, 1 we average the functional 
equation2 G = G(g(r, k)] (with the ensemble average for 
two fixed scatterers replaced by that for one, 6,7 a 
procedure which may be interpreted by alternative ap
proaches8,9,11) to obtain dispersion equations for 1/. In 
general, for aligned nonradially symmetric scatterers, 
TJ specifies an anisotropic medium; the anisotropy arises 
either from the scatterers' properties (physical param
eters or shape, or both) or from their distribution, or 
from both. 

For spherically symmetric pair correlations, we use 
vector spherical harmonics to consider spherically sym
metric scatterers, and also to develop corresponding 
forms for ellipsoidal scatterers which we apply to elec
tric plus magnetic dipoles. The earlier scalar develop
ment in terms of Mathieu functions for the two-dimen
sional problems of elliptic cylinders and elliptic corre
lations (with nonconfocal, nonsimilar, and nonparallel 
scatterer and exclusion surfaces) suffices for the elec
tromagnetic cases, and as before we generalize the 
low-frequency results directly to the analogous prob
lems for triaxial ellipsoids. 

We begin with several definitions and representations, 
and use (1 :34) for Eq. (34) of Ref. 1, etc., as well as 
essentially the same notation as before. 1,2 

a)Work supported in part by National Science Foundation 
Grants GP-3:l368X and MPS 75-07391. 

2. DEFINITIONS AND REPRESENTATIONS 

We write Maxwell's equations (after factoring 
exp(- iwt)] in an anisotropic medium imbedded in free 
space as 

VXH=- ikD=- ike· E, VXE = ikB = ikji .H, 

k=iki=21T/A, (1) 

from which V • B = V • D = O. The relative parameters 
e and [i are pieceWise constant dyadics, which reduce 
to the identity dyadic! in free space, and to EI, J.l.! in 
an isotropic medium. At discontinuities (interfaces of 
different media), in terms of the unit normal ft, we 
require continuity of fiXE, fiXH, fi.D and ii.B. 
Equivalently, we work with 

{ 
E l ~ { e } - { 7J. -1 } 

W = H ~' ~ = fi ' 18 = e-1 ; 

Y - - - --"=----:-;-..::.. M {if} sB·VXw 
- - E - ik (2) 

from which 

VX(~.VXW)=k2~.W, v·(i.w)=~:vw=O (3) 

with interface continuity of 

nXw, fiX~. (VXw), ii'lI 'Y, a· (v x.). (4) 

We emphasize w (which, for detailed applications, we 
identify with E, in general) but refer to its mate wM 

when convenient. For some purposes we also consider 
the polarizabilities (electric P and magnetic M) such 
that 

(~-i)·w=~ = {~}, 
_ (~_ I). VX wlik= ~M = {_Mp} , 
v·w= -V.~. 

Plane wave solutions of (3) correspond to 

w=A exp(iK. r), (KXsaXK + k2~).A =N.A = 0, 

K=KK, K=k1], K.~ .A=O 

(5) 

(6) 

~ith 1/ as the complex relative index of refraction, and 
K as the unit propagation vector. The eigenvalues of the 
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determinantal equation IN(1) 1= ° (the dispersion equa
tion) are the pair (i = 1,2) of indices 1); (Kl ) with corre
sponding unit eigenvectors determined by N(1);). Ai = 0. 
From (2) and (5) with \"! = L exp(iK - r), etc., we also 
have 1)KXA=AM +LM

, -1)KXAM=A+L; 
consequently, 

-1)2KX (iXA) - A = (1)2 - 1) AT - AK = L -1)KX LM, 

AT=A -AK = (I - KK) -A=IT 'A, 

(1)2 - 1) AT = LT -1)KX LM = (1)2 - 1)IT - (ii - 1)-1. L 

with IT(:K) as the planar identity transverse to K. 
(7) 

In an isotropic medium, ii =(H, s8 =58 I, (3) reduces 
to 

VXVX'lt= 'ltk2(£/58='ltK2, (V2 +K2)'It=0, V -+"=0. 

(8) 

The plane wave solutions A exp(iK - r) satisfy 

[- K258IT (:K) + k2(£fl. A = k2(£KK. A = 0, 

A =IT °A=A T , 1)2 =(£/58=EIl, 

where 1) is independent of K and the only constraint on 
A is that it be transverse to K. 

The special case (£ =58=1) = 1 represents free space, 
the isotropic imbedding medium for the scatterers. For 
a plane wave 

(9) 

incident on a Single obstacle, with center (the center 
of the smallest circumscribing sphere, a sphere of 
radius a) at the phase origin (r=O), the external field 
satisfies 

VXVX!/!=k2!/!, !/!=!/!(k)=cp+u. (10) 

The scattered wave u is the radiative function2 

u(r) = - Co J[(iix n) -(VXu) - (VXh) - (nx u)] d IS (r') 

:= {liCk I r - r' I), u(r')}, 

h=VXVXlh/k2 = (l+VV /k2)h(k[r - r' I), 
h(x)=exp(ix)/ix, Co = k/i47r, (11) 

with IS as the obstacle's surface, n as the outward nor
mal, and V = V r" In the scatterer's interior lB (charac
terized by the scalars (£',58'), the field is a nonsingular 
solution of 

VXVX!/!=K,2!/!, K'=k1)', 

1),2 =(£'/58' =E'Il', !/!(K') =!/!'. (12) 

On IS we require 

aX!/! = l'!.X!/!', nX (V X!/!) =18'l'!.x (V x !/!'), (13) 

as well as n-!/!=(£'n'l/J', ft. (VX!/!) =n. (VXl/J'). Since 
{Ii, tP} = 0 for r outside of lB, we also have u = {Ii, !/!}, and 
from (13), 
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u = - Co J [18' (iix a). (VX !/!') - (V xii). (aX !/!')] d IS:= [ii, !/!]. 

(14) 
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Then from Gauss' theorem and (12), 
u=!/!- tP 

= CO J[ (~' - 1) k2h .!/!, - (18' - 1)(V Xh). (V x l/J)] dlB(r') 

:=[h,!/!], (15) 

which also holds for l/!' - cp at r in lB as a principal value 
with singularity excluded by I r - r' I - 00 

For a perfect conductor, we take !/!' = 0 in lB and con
sider either nX(cp+u)=O or aXVx(cp+u)=O onlSo For 
this case we use only the brace operation in the form 
u = {ii, cp + uY with the integrand containing the surviving 
termo 

Asymptotically, for kr» 1 and r» a ~ r', 

h(k I r - r' I) - h(lu) ~(- k,.), ~:= (l + VV /k2) ¢, 

¢(- kr) =IT(r) ¢(- kr ), kr = kr, (16) 

with ITcrJ =1 - rr = 99 + CpCp. Consequently, 

u-h(kr)g(r,k.:6), r. g(r)=o, g(r)=IT(r).g(r). 

(17) 

Corresponding to the representations (11), (14), (15), 
we write the scattering amplitude g as 

g{k" k: O} = g{kr} = {cp(- kr ), u}, 

g[kr ] = [CP (- kT ), !/!], g[k,.] = [cp(- kr ), !/!]. (18) 

In terms of g we have [at least for r> a for all r, and 
for r> (r· r')max for given r]2, 

u(r) = ~ exp(ikc ' r) g(r c), kc = krc = 1.'r(8 c' CPc), 

(19) 

with contours as for hP). 
Writing !/!i for the fielq, result}ng}rom CPi = 6;c/>(ki ), 

the reciprocity relation °1 ' g(- kt, k2 : 02) 
= 82 , g(-~, k! : 8t ) follows from {!/!t. l/J2}= O. Decomposing 
{iP*, iP} yields the energy theorem in the form 

~ ~ ~ ~ a A + as 41T a A I {* } 
- ReO· g(k, k: 0) = ---, ao = -;T, ' - =" l/! ,l/! , ao ? a o 

(20) 

with a A and as as the absorption and scattering cross 
sections and m as the mean over direction of 
observation. 

For a dyadic incident wave2 

~(k) = r T(k) cp(k), i T(k) =1 - kk.= aa + 00, a = OXk, 

(21) 

the resulting ii, l/! are linear combinatiops~ of lJle ap
propriatevectors, i.e., ii=u(a)a +u(O) O={h,u}, etc. 
The corresponding dyadic scattering amplitude 

g(r, k) =g(r, k: a) a +g(r,k: 0) O=IT(r) 'g(r, k) . IT(k) , 

r 'g(r, k) =g(r, k)' k= 0 

(22) 

Victor Twersky 216 



                                                                                                                                    

satisfies g(i\ it) = gC(_ it, - i) with gC as the transpose 
(Gibbs' conjugate). We may represent g in any of the 
forms in (18), e. g. , 

g[k,., k] = [~(- k,.), ~(K'; k)] 

=co f [(~'_1)k2¢(_ k,.)'~ - (m' -l)(VX ¢). (vx~)J, 
m 

1!lJ= 1 dlE(r'). (23) 

For a fixed configuration of N obstacles with centers 
located by r., we write the net field as2,5-9 

N 

V=rf>+6Us(r-r.), Us(r-rs)=Us(r-rs;r1,r2, ..• ,rN), 
s=l 

(24) 

withUs-h(klr-rsl)Gsfor Ir-rsl- oo , and Gs-gs 
x exp(ik • r.) as I r t - r s I - 00 for fixed r s' Equivalently, 
with reference to scatterer t, 

v=vt=Wt+Ut> Wt=rf> +6~Us' 6: =6, (25) 
sl'! 

where {t)t may be regarded as the net excitation, The 
functions vt> {t)t, U t satisfy the same relations (10)-(15) 
at scatterer t as !/!, rf>, u for the single obstacle. 

The corresponding multiple scattered amplitude Gt 

may be expressed in any of the forms in (18), e. g" as 
the volume integral over lEt (r') with r' as the local 
vector from r t , 

Gt(i~)= [(t' - rr) exp(- ikr 'r'), vt(rt +r')] 

=[¢(-k,.),Vt] (26) 

or as Gt = {¢, U t} over the surface @:it, etc. The analog 
of (19) is 

(27) 

The requirement that Vt and !/!a = rf>a + ua (for arbitrary 
ka and perpendicular 3.) satisfy the same conditions on 

@:it and in lEt corresponds to {!/!., Vt}t = 0 over@:it(r'); 
consequently 0 •• Gt(- ka) = {rf>a, uth = {{t)t, uah, Similarly 
from {ijla, vth = 0, we have Gt(- ka) = {¢a, uth = {Wt, iia}~, 
which reduces t02 

G t (i) = gt(r, it) • 0 exp(ik' r t) 

+ 6~ 1 gt(i, i c)' Gs(rc)exp(ikc ' R ts ), 

Rts=rt - r s , (28) 

on expressin~ {t)t of (25) in terms of (27), and using 
g(r, k) =gC(_ k, - r). 

In Secs. 3 and 4 we average (24) and (28) over an 
ensemble of configurations to derive representations 
(from v) and dispersion equations (from G) for the bulk 
index 7). As before, t the obstacles (with centers within 
the slab region 0"" z "" d) may be assymetrical, and 
either similarly aligned, or averaged over alignment; 
if symmetrized by averaging, the distribution of align
ments is uniform and uncorrelated with position or 
separation, For the ensemble of configurations, we 
specify the one-particle statistics by the average num
ber (P) of scatterers in unit VOlume, and the two-parti
cle statistics by p f{R) with f(R) as the distribution func
tion for the separation (Rts=rt - rs) of pairs. The mini
mum separation of centers as a function of R specifies 
the exclusion surface R = b(R); we require f(R) = 0 for 
R < b(R), and f(R) -1 for R - 00. If b= bR is a sphere with 
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radius b ~ 2a, then f(R) is the usual radial distribution 
function. The general case we consider corresponds to 
differently aligned nonsimilar scatterer (a) and exclu
sion (b) surfaces, 

3. THE AVERAGE WAVE 

We write the average of v over a statistically homo
geneous ensemble of configurations of N identical, 
aligned obstacles with center rs uniformly distributed 
in Vas 

(v(r» = ¢ + p Iv (Us(r - rs; r.»s drs, 

p=N/V, (Us)s=(-vs)s-({t)s)., 

and use the radiative form (Us(1?»s if r is outside of 

(29) 

IEs =IE, and (vs(K'»s - ({t)s(k»s if inside. We take V as 
the slab region 0 "" z "" d, and without loss of generality 
write the incident wave as 

¢=Yr/J(k), r/J(k) =exp(iko r), 

k= kk(a) = lz(z COSet + x sinO') = z'Y + XT, 0"" a < 1T/2. 

(30) 

From Snell's law (preservation of phase parallel to 
planar boundaries), we have 

(v(r» = (v(z» exp(iTx), 

(vs(rs + r'»s = (vs(zs + r/»s exp(iTxs), 
(31) 

and we may write the average multiple scattering ampli
tude (Gs)s= [$, (-vs).] as 

(Gs(r»s =G(rs; 1') = exp(iTxs) G(zs: i), 

G(zs: 1') = [¢(- kr), (vs (zs + r/»s]' 
(32) 

Using (27) for (Us)s and substituting (32), we reduce 
the external form of (29) by integrating over Xs and Ys 
(to obtain 6 functions). Thus for the transmitted field, 
at least for z > d + a, 

(v) = rf>[y + C fod exp(- iTZ s) G(zs : k) dz s ] = r/J'1:, 

c = 21Tp/Yk. 
(33) 

Similarly, for the reflected field, at least for z < - a, 

(\)f) - ¢ = r/J/c fad exp(irz.) G(zs: it') dz s = r/J' In, 
(34) 

r/J' = exp(ik' • r), k' = k(1T - a) = - z'Y + XT. 

The corresponding internal field, at least for a < Z 

< d - a, consists in general of essentially four waves 

(\)f) =6 Ai exp(iKi ' r) =6 vi(r), 

Ki=Zri+XT=k7)iKi=KiKi, Im7)i>O. 
(35) 

At least for r s not within boundary layers (say, at least 
for [< Zs < d _[I), the functions ( )s consist of corre
sponding terms with translational property fi (zs + r/) 
= fi (r/) exp{ir iZs)' For the simplest cases (e. g. , 
spherically symmetric scatterers and statistics), the 
set of K's reduces to two which are images in z = 0, 
with 7) independent of 0'. 

Proceeding essentially as for (1 : 48), we write the 
average field at a fixed point r within the distribution 
asto 

(\)f(r»=¢(r) +p 1 (Us (k»s drs v-m 
+p 1m [(Vs(K'»s- ({t)sUl)s] drs (36) 
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with arguments r - rs suppressed in the integrands. The 
second term represents the radiative contributions to 
r from scatterers whose centers (rs) are excluded from 
the region m (the volume of one scatterer) around r, 
and the last term represents the contributions of the 
scatterers with centers within m. Similarly, for the 
mate 'ltM as in (2); equivalently, with m now represent
ing the bulk parameter associated with the coherent 
wave, 

m· V x ('It) == V X <1> + p r V x (U s) s drs J
V

_
18 

+ P, fm [IB'V x <'lts)s - V x (~s)s) drs, (37) 

with V acting on r in the suppressed arguments r - r s' 
The curl of (36) equals 

V x ('It> == V x <1> + p J V x <U s) s drs v-m 

(38) 

where the surface integrals ± fnx ('lts)sdfi5 that arose in 
the interchange of V x and f drs canceled by continuity 
of Iix <'Its> s on fi5 (the surface traced by the centers of the 
scatterers closest to r, with r - r s = r' as the full 
set of scatterer's surface points). Similarly, from the 
curl of (37), 

1?-2V X (m· V x ('It» = ~ . ('It> 

=<1> +p I v_
18 

(Us>sdrs 

+p J'2JC1'('lts>S- (~S>sJdrs> (39) 

where the surface integrals that arose in the inter
change of V x and f drs canceled by continuity of 
fix ('It~l)s onif8. If ('It> ==E in (36), then (37)-(39) with 
m= jI-t, Ii =E correspond to H, B, D in terms of E; 
alternatively if ('It> = H, then (37)- (39) with m= E'-t and 
~ = 11 correspond to E, D, B in terms of H. All follow 
directly from the form, say F[<'It» in (36), which ap
plies for ('It) equal to any of the four electromagnetic 
field vectors, e. g., (36)- (39) correspond to the se
quence F[E], il?F[H) =F[J,t-t 'VXE), ikF[B) =F[VXE], 
F[D]=F[r·E). 

From (36) and (39) 

(Ii - I) . <'It) = p (~' - 1) I \ll ('Its> s drs = >.! , 

and from (37) and (38) 

08 - D . V x ('It) = p (18 ' - 1) J V x ('Its) s dr s = - ik 'i! M, m 
with 'i!, 'i! M essentially as for (5). 

From the first equality in (39) we observe that 

(40) 

(41) 

V • (Ii . ('It» = 0; the result follows from the divergence 
of the final form, since the divergence of ct> and of the 
integrands vanish and the additional surface contribu
tions that arise in the interchange of V· and f drs cancel 
by Ii· «Us>s + (IPs>s) = (1/n· ('lts)s onif8. Similarly from (38), 
V • V x ('It> is identically zero, as is the divergence of the 
various curls on the right, and the surface integrals 
± jfi.vx(its)s dfi5cancel by continuit~. On the other hand, 
the divergence of ('It) of (36), or of 18' V x ('It) of (37), 
equals the nonvanishing difference of the surface inte
grals that arise in the interchange of V 0 and f drs; 
equivalently, from (40) and (41), respectively 

V·('It)=p(~'-1)ln·('lts)sdif8(rs)=-Vo'i!, (42) 
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V· (~o vx (+» =p(IB' - 1) I Ii· V x ('lts>sdif8(rs) 

=-il?V''i!M. ()3) 

To reduce (40) and (41), we use (35) for ('It>, i. e., 
2: Ai exp(iK;' r), and 'i! =2: Li exp(iK/' r); Similarly we 
express ('lts(r - rs»s as a corresponding set of terms, 
each with the appropriate translation prope rty fi (r.) 
=fi(O) exp(iKi ' r s), 

('lts(r - r s). = 0 iti (r - rs) exp(iKj 'r s) 

=6 +i (r/) exp(- iKi 0 r/) exp(iKi 0 r), (44 ) 

where r - r s = r' is the local vector from the center r r 
Substituting into (40), we obtain 

(Ii - 1). Ai = p(~' - 1) II)'. exp(- iKi ' r/) 'lti (r/) = L j , 

1m = f dm(r / ), K/'Ii' Ai = 0, (;5) 

where the transversality condition K' (£ • A = 0 follows 
from V· «(£. ('It» ==0. Similarly from (41), and 
VrX'lti(r- r.) =Vr'X 'lti (r'), we have 

i(sa-D 'K;XAi =[i(~-I)XKi]'Ai 
=p(IB' - 1) JiB exp(- iKi • r/) V x 'lti (r'l 
==-ihL;l, V=Vr" (,16) 

Operating on (45) with k2 (I - KiKi)', and on (46) with 
- iKi X and adding the results, we obtain in terms of 
¢T(- K) == (1 - KK) exp(- iK' r) ==IT(K) cp(- K), IT (Ki ) 0 Ai 

=ATi, 

+ (18'-l)(VX¢T)' (V X 'lti)] 

= h2 (L Ti -1)Ki x Lt/) 

=- (plco)[¢T(-Ki),'lti]=-(plc o) ®[K i ], (P) 

where the final form is the volume representation of !l 
transverse vector scattering amplitude, K '®ITK] = O. 
From (45) in terms of ¢K(- K) =KKcp(- K), KjK j ' Ai 
=AKi , we also have 

h2AKi == -p(~' -1) ,,21m ¢K(- K i )' 'lti = (plco)[¢K(- K i ), i], 
(18) 

where the last form, a longitudinal scattering amplitl1de, 
follows from V X Cj) K = O. 

If we add AT of (47) and AK of (48), we obtain 

(K2 _ 1?2) A = - (pI co) [;p(- K), 'lti ], 

¢(- K) = U + VV Ik2 ) </>(- K) 0;= (I -1)'KK) </> 

= [IT - (1)2 - 1) KK] cp, (49) 

corresponding to (1)' - 1) A = LT - (1)2 - 1) LK +1)KX VII. 
Alternatively, if we subtract (48) from (47), we have 

(1\2 _ k2) A T - k2A K =- (plco)[Icp(- K), itiTI 

=k2(L+1]KXL'II). (50) 

The [, ] forms in (49) and (50) correspond to scattering 
amplitudes having both longitudinal and transverse 
components. 

We may write Vi == ~i. AI, etc., corresponding to 

('Its> s = 2:; 'It; exp(iK' r s) =0 ~j • AI exp(iK; • rs) 
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=0 '$i(r') ·+i(r.), 

<w.) .. =0¢1. "i'i(r.), (Us). =0 iii • Wi (r.) , 

such that ~i,4>/,UI satisfy (10)-(15) as for an equivalent 
single obstacle (but although V' ~i = 0, etc., it is not 
necessary that '¢i • Ki vanish). Similarly 

G(r.;r)=~ G/(r.;r)=0 gl·w/(r.), 

GI (z.: r) =@I(k,.) exp(ir IZ.) = gl(k,.I~) • Ai exp(ir,z.) 

(51) 

with gl (k,.1 K) = {t;5(- k,.), a l}= [4> (- k,.), ~I], etc. (trans
verse left, but not necessarily right), as well as 
g(- k.1 K)= {4> (k.), al} = - {iia , 4>'} with cP (k.) + ua as the 
dyadic solution for a conventional isolated scatterer 
and arbitrary k. as in (21)ff. 

Thus, substituting Wi = ¢I • AI in (47)- (50), we obtain 

[(1)2 - 1) IT+ c gT]' A= 0, gT= [t;5 T(- K), ~'], 

c=l4rrp/k3,4>T=(I-KK)cp=Icp-cPK, 

[

A A - J.I 
-KK+cg1(]'A=O, gK=[cf>K''/'], 

[(1)2-1)f+cg] 'A=O, g=[t;5T- (1)2-1)4>K,'$I], 

[1)2 IT-r+Cg']'A=O, g'=[Icp,~I]. (52) 

The forms (47)- (50) and (52) are vector and tensor 
analogs of the scalar form (1 : 28), and of related rep
resentations. 3_11 As for the scalar case, they do not 
lead directly to determinate dispersion equations but 
are of interest for interpretation and for constructing 
approximations. We may also obtain (47)- (50) and the 
associated extinction and cancelation relations analogous 
to the scalar forms in (1 : 27) by Gauss-Green pro
cedures applied directly to (36), essentially as dis
cussed in the paragraph after (1 : 55). We decompose 
the integral over V - m into integrals over the boundary 
layers (say V" V,,), and over the remainder VB in which 
(U.>. = L; U'(r - r.) exp(iKj • r.). Then we reduce the 
integrals 

(53) 

to surface integrals over the layer surfaces (z.=l,d-l') 
and over e; (centered on r). We have 

J =J ¢ • Uidr 
T VB T • 

= is [(¢ Txn) • (V XU') - (V X¢ T)' (nXU1)] dS(rs )/(K
2 - k2), 

J K = 1, ~ K' ut dr. 
VB 

=KJv CPK'U'drs=(K!iK)j (Vcp)'Uidrs 
B 

= (K;iK) J n· Ulcp dS, (54) 

for which we used (Vrj»' u = V· (cp U) with V· U = O. The 
integrals over the layer surfaces plus cf>/p give the ex
tinction (cpF = 0) and cancellation (cp'F' = 0) relations 

219 

F(l)=O=y+c i' G(z.:k)exp(-iyzs)dz s 
o 
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. (. l)" Gt(l :k) +xc exp -xy l..J -r--
1- y 

!! 

F'(l') = 0 = c f G(z.: k') exp(iyzs) dz. 

11-" 

. ['(d l,)]"GI(d-l':k') (55) 
- xc exp xY - uri + y 

which also follow more directly from a Cartesian de
composition of Ui . The terms fI;/p, the integrals over 
e and the corresponding volume integrals in (36) 

J'll[+1 - ~jJ exp(iK' r.) dr. = l(WI) - I(~I) 

combine to give the boundary independent coefficients 
of exp(iK' r) as in (49). Thus writing Ul = ~i - ~I in 
(54) and indicating the corresponding surface integrals 
by J(W') - J(w i), we obtain J(~i) + l(41 i) = 0 on converting 
J(~') to the corresponding volume integral over m and 
using the continuity of j)X~I, fixvx4l' and fi'411 one; (as 
appopriate for a free-space source term). Converting 
J(+I) from a exterior integral over e to an interior 
surface integral by using (13) as well as j).+I(k) 
=~'n' 'lr1(K'), and then to the corresponding internal 
volume integral, we reduce (36) to the set 

A;/p = JI(Wi ) + 11(+/) 

1 
=~ Kj-k 

xl [1)f' +;(~'k2 -Ki) + (lB' -1)(VX¢~)' (VX+i)] 
'll 

-1 ~'¢I.+I+l (¢~+1)~).+i, 
III III 

cPl=cP(- ~), 

which is equivalent to (49). 

From (33), (34), and (51) we obtain ~ and lR, and 
after using (55) 

d 

~=cf G(zs:k)exp(-iyz.)dz. 
d_I' 

_ ic exp[- iy(d -l')]?; G1(d -l' :k) 
'...J (rj- y) , 

lR=c f' G(zs:k')exp(iyz.)dz. 
o 

(56) 

(57) 

If the translational property holds for all 0 "'" z. "'" d, 
then we set l = l' = 0 in (55) and (57) and obtain a deter
minate system for lR and ~ and AI once 1); and Ai are 
known [from a dispersion equation as indicated after 
(6)]. In particular, for a semi-infinite distribution 
z ~ 0, we obtain the reflection coefficient in the term 
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9l=Ry+R'a'= icilij(k') + icili2(k') 
rj+y r 2 +y' 

ilii(k')=g(k' 1~)'Ah c= ~~, a'=yxk', (58) 

and the extinction relation 

y+ icilij(k) + iC@:2(k) =0, ilij(k)=g(k IKj)'A" (59) 
rj-y r 2 -y 

which are the vector analogs of (1 : 40), We could com
pare these forms with results for reflection from a 
uniform anisotropic half-space [based on (6)] to specify 
~ and 18 in terms of g. We discussed this procedure 
for the simpler scalar problem, j and the existing ex
plicit forms (1 : 37)ff apply not only for scalar bulk 
parameters, but also for the case ~ = (£ I and 
sB=L;znzmS8nm with Zj,Z2,Z3=Z,X,y, provided that 
S8n3=S83n=S8303n' Thus if one bulk parameter is a scalar, 
and the other is a dyadic with a principal axis perpen
dicular to the plane of incidence, then we can work with 
(+> = N) y; a scalar development suffices for (\[I) and 
the mate (+M) follows from (2). We discuss this further 
after we have obtained and applied dispersion equations 
based on the average of G of (28). 

4. DISPERSION RELATION 

Essentially as before, 1 we start with the ensemble 
average of (28) with scatterer t fixed, 

+ p J drs j(Rts) ~ gt (r, re) • (Gs(re) st exp(ike • Rts), 

Rts=rt-r., (60) 

where j(R) is zero for R < b (it), say for R in v(b) with l' 

the exclusion volume. We replace (Gs)st, the average 
over all variables except rs and r l , by (Gs ) .. and for 
identical scatterers, we use 

(61) 

As indicated for the scalar case (1: 58), more complete 
forms may be obtained by alternative procedures. See 
particularly Vezzetti and Kellerll for detailed discussion 
of electromagnetic dipoles. 

Proceeding as for (1: 59), we write Iv-J= I + I(f-1); 
for I we take boundary layers (VL , VL ,) into account and 
us e V - v = V L + V L' + V'; for I (f - 1), bec aus e j - 1 as 
R - 00, we replace V by V ~ (all space) and integrate over 
V~-v=V". In V' and V" we use (51), Le., G(rs;rc) 
= 2: ilil (kc) exp(i~ • r s), and apply Green's theorem to the 
Cartesian components to reduce Iv' to integrals over 
the layer surfaces (zs = L, d - L') and exclusion surface 
S(b). The coefficients of t/>(r t ) and t/>'(r t ), L e., the 
resulting terms g(r, k) . Ft/> (r t) = 0 and g(r, k') 0 F't/>'(rt ) 

= 0, correspond to extinction and cancellation as in (55). 
The coefficients of exp(iI{, 0 r I) provide dispersion equa
tions that determine K;; we express these in terms of 
integrals over the exclusion surface S(b) and the de
pleted volume V~ - v(b), such that S(b) = sn with fi out
ward from v(b). 
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Essentially as before j we identify 

U(k,., kR;~) = Uj = ~ g(r, rc) 'ili(kc I~) exp(ikc • R) 

= J F(k,., kc I Ki ) exp(ikc ' R) (62) 
c 

as a radiative solution of (v1 + k 2
) U = 0 with F as the 

associated radiation amplitude. [In distinction to the 
vector solutions of (10), in general, V R • U * 0.1 In terms 
of the conventional Green's surface integral form, we 
have 

F(k,., ka I Ki ) = g(r, raj 'ili(k,,) 

= coJ~ (~) [exp(- ik" 'R) GnU. - Uian exp(- ik" • Rll dS(b) 

={f exp(- ika 0 R), U;l}., 

and we introduce an analog 

F{k,., Kl K}= {[exp(- iK' R), U;]h. 

For either case, we have r' F = O. In terms of U we 
write the dispersion equation as 

ili(kr I Kj ) = - [pI(K~ _ll2) col{[exp(- iKj -R), U;]} 

+ P J [J(R) - 11 exp(- iKj 'R) Ui dR. 
v oo-v 

Equivalently, in terms of F, we have 

ili(k,.l K;) = - [pF{k,., ~ I ~}I (K~ - k2
) col 

+ J J!(ke, Kj ) F(k,., kc, I ~), 
c 

(63) 

(64) 

(65) 

J1;I(k, K) = p 1, [J(R) - 11 exp[i(k - K) 'R] dR. (66) 
v <:o-v 

Equations (65) and (66) are vector analogs of (1 : 60) and 
(1 : 64), and the corresponding versions of the earlier 
approximations (1 : 65)- (1 : 68) may be developed 
directly, 

Thus the analog of (1 : 65), appropriate for p '" 0, 
jJ = 0 is 

[(K2 - k2) IT(k) + (p/ co) g(k, k) l' ili= N 'ili = 0, 

IT(k) =1- kk= ojaj + a2a2, kXoj = a2' (67) 

Since g(r,k) is transverse left and right, the dispersion 
equation I N(1]) I = 0, in general, involves a 2 x 2 deter
minant. The result obtained originally by Reiche4 corre
sponds to g=gIT(k) withg as the value for a spherical 
dipole, If the scatterers preserve the incident polariza
tion in the sense g(k, k) = L;gi(k) a.a. = 2: g(k, k: 01) 0:;, 
then I NI = N j N2 is a product of two factors, each of the 
form NI = K~ - k 2 + (pI col.~i (k) = 0 discussed for (1 : 65). 
To take more implicit account of the anisotropy, we 
replace (67) by 

[(K2 - k2) IT(K) + (pI co) g(K, K) l'ili(K I K) = 0, 

!T(K) = 1- KK= ~j~l + ~2~2' KX~l = ~2 (68) 

If the scatterers preserve polarization, g(K, K) 
= 2: gj(K) ~i~i' then 

Ki - k 2 =- (pic 0) g. (K) = - pikaogl> 

2ImKi"'-paoRegi=p((J~ +(J~) 
(69) 

and similarly ReK/l? '" 1 + (pa o/2l?) Img.; these general-
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ize the leading term results for spherical dipoles ob
tained by Rayleigh. 3 To include correlations, for 
Img» Reg, essentially as in (1: 66), we use 

2 ImK j "'poi + pOo IDl[!g(r, K: ~1)12 W(r, K)], 
W(r, K) = 1 + p J (f(R) -1] exp[ik(r - K)' R] dR, 

(70) 

which for average spacing between centers small com
pared to A reduces to12 

2ImKi"'p(o~+o~W), W=l+pj(f(R)-l]dR (71) 

to lowest order in I? 

Similarly, starting from 

~(kK) '" - (1/~) g(K, K) '~(kK) + 1 Mg(K, re) '~(ke), 
c 

kK=kK, ~= (1(2 - k2) cjp, 

we use ~(ke) = g(ke I K) • A=g(ke I K)' g-l(kKI K) '~(kK) to 
construct the analog of (1 : 68), 

{~f + [1-1 ,Hg(K, rc) • g(ke I K) • g-l(kK I K)]-I. 
e 

• g(K, Iq} '~(kK) = 0, (72) 

which we may reduce further if g(k,.1 K) "" g(r, K). The 
leading terms 

[~r + g(K, K) + 1 M(ke , K) g(K, rc)' g(re, Iq] '~(kK) "'0 
e 

give the results in (68)- (71) under the same 
restrictions. 

(73) 

In the following, we separate variables in (66) to ob
tain more complete results for 1J for special cases. To 
facilitate using existing results, we identify >V with E 
in general, and as before2 we refer to functions and co
efficients labeled by B, b as electric (e) and by C, c as 
magnetic (m). 

5. APPLICATIONS 

In terms of vector spherical harmonics 

B~(r) = (eo s + cpa /p/ sin8) ynm(r) = r xc:(r), 
Yn"'(r) =Pn"'(cos8) exp(imcp), Pn-

m = PnmDnm, 

Dr;: = (- l)"'(n - m) !I(n + m)! 

we write the dyadic isolated scattering amplitude, 
essentially in the notation of (2 : 86)ff as 

(74) 

Cnm(k) = '0 [a;:':C~';(k)+i3::':B~"(k)]=c(O',m, (75) 
"" 

where the four sets of scalar coefficients O!, (3, Y, 0 are 
independent of directions. From the reciprocity theo
rem g-(r it) = g-e(_ it - r) we have a-"-m - (- 1)"+" a"''' , " vn - nv, 
y~~-m = (_ l)n+~+I{3~: with a = O! or a = O. The vector 
multiple scattered amplitude has the form 
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We substitute (75) and (76) into (62) and proceed as for 
(2 : 136) to parallel the development (1 : 146)ff. 

We rewrite the scalar products of the vector spheri
cal harmonics that arise in Ie as finite sets of scalar 
harmonics, 

C-q • C t - B-<l • Bt = "d (- q. t) yt"" 
~ r- ~ r y 11 P 'r I, 

B-<l • C t - _ C-.' Bt =" d (- q . t) yl-. (77) 
~ r - ~ r y 12 P 'r ,. 

The present coefficients d l1 , d l2 may be constructed from 
the known coefficients13 d l in the expansion 

y-.yl =" d (- q . t) yt-. 
~ s LJ, I P 's " 

where p + s + l is even and l changes by steps of 2 from 
lp-si (or from It-ql if it is the larger) top+s. 
Thus, the dl1 follow from 

c~m 'C;= mt Yn-my;- i(r- t + l)(r + t) yn-m+ly;+1 

- ten + m + 1)(n - m) Yn-m-Iy;+I, (78) 

and the d'2 from 

B;m. C; 
= (i/2)(n - ml[ (n - m + 1) y;_7-1y;+1 + (r - t) Yn:7 Y;] 

- (i/2)(r+ t)[(r+ t-l) y;m+1Y;:f + (n +m) y:zy;.tl, 

such that all terms of (78) and (79) depend on 
exp[i(t - m)cp]. We construct (78) and (79) from 

(79) 

c~m 'C;=D~ [S~~;8 P;:'P; + osP;:'osp:]exp[i(t- m) cp], 

B~m 'C;= i~;:8 [mP~osP; + tP;osP;:] exp[i(t- m) cp], 
sm 

by successive applications of the recursive relations 
for P::'. 

USing (77) within U of (65) for radially symmetric 
statisticS, we generate the corresponding pair of lattice
function analogs 

(~q I:) i =~i (~q U) =0, d li (~q ; :) Yi-<l(K) T I , 

Tn=1Jn/ ~-.p", ~= (112 -1)/c, c=i47TP/l?3, 

~n = 47TP 1"" (f(R) - 1]j n(1(R) h~1)(kR) R2 dR, 
o 

(80) 

with Tn as discussed for (1: 148). As before, 1 we con
sider situations where the role of 1) in,\)n is minor and 
isolate major contributions in forms 1J(.p) which may 
then be refined by iteration. We rule out 1)2 = 1 from the 
start, as well as special eigenfunction solutions of 
systems which do not yield a leading term of order one 
(plus corrections) for 1). Thus, the analog of the alge
braic system (1 : 150) is the coupled pair 

Cnm = - 6 {O!::': [(il (-,/l/:) Cst - (i2Bst 

+ {3((i2C + (!IB]} = C(a, 13), B = C(y, 0), (81) 

where the scheme for the indices is shown only once. 
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Radially symmetric scatterers 

For radially symmetric obstacles the {3, y coefficients 
vanish, and a:," =cn(-l)monvom,,; similarly for o~: in 
terms of bm with, e. g., c n and bn as in (2: 98). The 
isolated scattering amplitude reduces to 

g(i\ k):::: ~ [cnC~(r) c~m(k) + bnB~(r) B~m(k)](_l)m 
nm 

::::~ [cnCn(r, k) + bnBn(Y, k)], 
n 

Bo(r, k):::: (1- rr) ·Qn· (f- kk), en:::: - rXQnxk, 

Qn=(Ia+kra2)Pn(k'r), a=a/ak'r, 

a~ d __ 2n + 1 b 
an= 1-d;'!dn ' n n(n+1) ' an= n'Cn' 

g(k, k) = (1- kkH-~ n(n + 1)(c n + bn), 

such that for loss less scatterers, - dnRean= lanl 2• 

Then (81) simplifies to 

Cnm = - (- l)mcn~ [~1 (-r:n I:) Cst - ~2 BstJ, 

(82) 

B nm =-(-l)m bn0 [~2 (-n
m

/:) Cst+~IBst], (83) 

where (except for special eigenvalues which we dis
count), Cnm=Cn(-l)mc~m(fq'A and Bnm=Bn(-l)mB~mCK) 
• A, i. e., g(kr I K) of ~= g' A in (76) is the same form 
as g(r,k) of (82) with c m bn replaced by Cn,B n and k by 
It Thus 

g(kr I K) =~ [CnCn(r, k) + Bn Bn(i\ K)], 

g(kKI K) = (1- KK) to n(n + l)(C n + Bn). (84) 

This forward scattered amplitude preserves the incident 
polarization; the internal field is transverse, and the 
dispersion equation involves a single factor in T/2 with 1) 

independent of direction. 

If we take K= Zl as the axis of the spherical har
monics, then from (74) and 

20 8 Ynm = [(n - In + 1)(n + 111) p~-1 - p~+I] exp(imcp), 

(2 cote) a. y n
m = i[ (n - 111 + l)(n + m) p~-1 + p~+11 

Xexp(imcp), 

with Y:(z')=P:(l)=o"o, we see that the only nonvan
ishing harmonics are 

C~1 (z') = (iX' + yl)/2 = - i B~I(Z'), 

C~(Z') =n(n + 1) (ix' - yl)/2 =i B~(Z'). 
(85) 

Thus the only coupling symbols of (80) that can arise 
are t"; I";), and ("; 1 ";)il and the second set vanishes (be
cause its terms are proportional to phl) = 0 J. Conse
quently, (83) simplifies to 

i. e., to essentially one form. 
equal 

i-l\l) 1 \1 11 =-3(2To+T2), 

The leading symbols 

(-111) . 1 1 2 = - t T 1, 
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(86) 

( - 1/1) 3 (- 111) 1 2 1 = - 5" (3 T 1 + 2 T 3) = 3 2 1 l' 

( -1/1) . (-1/1) 1 2 2 =-13Tz=3 2 1 2' 

(-/ I!) 1 = - 3(~To + i T2 + ~~ T4), 

(-211~)2 = - it(TI +4T3), (87) 

such that (-; I !)l = (-nil ~)I s(s + l)/n(n + 1), 

For pure electric or magnetic dipoles, with a l equal 
to either b1 or ct. we have 

(-/ I ~ \ = :1 + t(2To + T 2) 

= [..1 - t(2c + 2-Po +~2) ] + ~ aj 1) - 1 

1 C1)2 
=-+~=O. 
~t 1) - 1 

Thus 

T/2 
- 1 - atc 

112 + 2 = 3[1- aH-(2.po +.p2)} 

_~ I_I I at - 1 12' aj - bt. Ct. -an 

which, with 7],2=(£, equal tOE ' or J-l', and at 
::;i(ka)3«(£1 - 1)/«(£' + 2), gives the Maxwell-Clausius 
resultforspheresandk~O, i.e., «(£-1)/«(£+2) 
- pm «(£' -1)/«(£1 + 2), m = t'Tfa3

• We rewrite (88) as 

T/-2=1+c~1> ~j=atl(l-ajS)l1)' 

.p11 =t(2c + 2-Po +.1)2), '172 
- 1= - C~ITJZ, 

_ ~=_ (TJ2~ 1) =~jTJ2=g[KIK], 

(88) 

(89) 

which differs from the corresponding result (1 : 157) for 
the scalar problem in that .p11 is a different linear com
bination of c, .po, .p2. 

Similarly for pure electric or magnetic quadrupoles, 
with a2 = bz, C2 we have 1- a2(-ll t)1 = 0; from (87), we 
write (-llt)1=-3(114A-1--pzz), and essentially as for 
(1 : 58), 

T/2 -1=- C~21)43, ~ -~-
2 - 1 - a23 -P22 ' 

-P22= ;5 [c(14 + 19172) + 14-Po + 5-P2 + 16-P41. (90) 

More generally for pure 2'17 poles, 

1 (-1[1) 1 [TJ
2n 

] - = =- 2n (n+1) --.p 
an n n 1 A nn, 
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If we integrate the equalities in (77) over the unit sphere, 
and use the orthogonality relations (2: 33), we obtain 
do;(-:;~) = (- l)m 0Il 0nvom,,/dn with 

d (- m . m) = (- l)m = (_ l)m n(n + 1) 
01 \ n 'n d n 2n + 1 

as the only nonvanishing coefficients of order zero. 
Thus, as illustrated in the above by 4)11 = Hu and 34)22 
=H22 , in all cases Hnn includes (c +4)o)/dn• In terms 
of the radiationless coefficients a~ of (82), we write 
the analog of (1: 159) as 

a' 
~n= 1 _ a' (C; + n1 + H' )/ d 

n Ve-'O ntt n 

(92) 

For lossless scatterers (Rea~=O), -dnRe~n= l~nI2Wnn' 
Wnn = 1 + Re(.fJo + H~n)' For dipoles and W11 '" W, with W 
as in (71), we reduce (89) to 

172 
- 1 = C ~1 '" carl (1 - ~can, 

(89') 

If each scatterer is both an electric plus magnetic 
dipole, then, from (86), 

== (1.. +.t) (1.. + 17
2

) _ 1]2 (1. _ ~) 2 = 0 
~1 2> 581 A 2> 17 ' 

(94) 

from which 

(95) 

In particular, if we neglec t 4) 1 (or retain only .po '" W - 1), 
then 

1 1 1 
::2 "'(1+c581)(1+c~1)=~'~ (96) 
1'/ 11e 11m 

with 1]e and 11m as in (89) or (89'). An alternative devel
opment for small spheres is given by Mathur and Yeh. 14 

More general dipoles are analyzed by Vezzetti and 
Keller. 11 

For subsequent generalizations, we rewrite the 
original system (93) as 

.s 1]2 ( 2-
~1 + -:l C1 + B t ) - B l7J h11 = 0, 

:!!.J 112 2-
581 + -:l (C1 + B 1) - C 111 h11 == 0, (97) 
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Introducing ml = T72~t. Pt = 7J25810 MJC1 = PJBt 
= - 2>/ (C t + B t ), (essentially as before for the scalar 
case) we obtain 

P t ==Pt(1 + MlhU) , M t ==ml(l + P 1k11 ) , 

- c ~ (98) 
hl1 =-( -1-)+ 2", - 2>=M j +Pt 

1] 1]+ 17 

in the form (1 : 89). Thus 

and 

Pt =Pt(l + mlh11)/D, Ml = In j (l + Ptku)/D, 

D= 1- n11PlhIh 

_ A- PI + 1111 +2Pl 11Z 1k l1 =P
1 

+Al
t 
=g[KIK]. 

- 1- mlPtTill 

(99) 

(100) 

Similarly, if each scatterer is an electric dipole plus 
electric quadrupole, then from (86) and (87) 

[;1 - (-/ I~) J B t - (-/ ID j B 2 =0, 

- (~1ID/l+[;2 - (-211~)JB2=0, 

-~ (~lIDl=- (-//Dl=: -4)12, 

, -P12=i(3c17+ 3.pl +24)3)' 

(101) 

Thus with 58; in the form ~i of (89) and (90), we have 

B t (r -.p12) + B2 (~2 + 3~4) = O. 
(102) 

In terms of PI = 5817J2 
, P2=358 21]4, 1I31 =B11'/, 1I32=3B2112, 

h12 =-P12/113
, we obtain 

~ + 1131 + 1132 - 113 h = 0 
P2 A 1 12 . 

(103) 

Introducing P j = - 2>113/(1131 + 1132), we have essentially 
as for (98) 

PI =Pl(l + P2h12 ), P2 =P2(1 + P1h12 ), 

1 (C; (104) 
hI2=s;r 3C11+34)1+2'l,13), P 1+P2=-2>, 

and consequently 

PI =Pl (1 + P2h12)/D, P2 = P2(1 + Plh12)/D, 

D = 1 - PI P2h12 , 

_ A = PI + Pz + 2Plg2h12 = P + P = [KI K] 
1 - PtP2h12 1 2 g • (105) 

The dominant term of h12 is 3c/57J2 and for some pur
poses (e. g., b2 near resonance) we may use 

(106) 

The corresponding results for the case of magnetic 
dipoles plus magnetic quadrupoles are obtained on re
placing b,58,P by c,~,m. 
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If each scatterer is a magnetic dipole (el) plus elec
tric quadrupole (b2), we proceed essentially as for (95) 
to obtain 

~ ~I + 31232112 +~131232112(C + 2-PJ112) -rr = 1 - ~11232 3 .p~ 

The analog of (100) is 

_ ml + P2 + 2ml P2h12 
- ~ - 1- mlplil~ 

Similarly for b1 and c2 we obtain the same forms in 
terms of 12310 ~2 and Pi> m2. 

If each scatterer is an electric plus magnetic 
quadrupole, we obtain 

(107) 

(108) 

~ _ 3114
[ 1232 + ~2 + 31232~2112 (c + 2{?2J 113

)] 

- - 1 - 91232~2 -Pl2 '(109) 

~22 = t(C11 +-Pl + 4 -P3) 

or , equivalently, 

m2 + P2 + 2m2P/i22 - ~= 2, 
1- m2P2h22 

h22 = 11(11\ 1) +, • (110) 

To generalize the developments that led to (100), 
(104), (108), and (110), we rewrite (86) in terms of 
block matrices as 

ftC-I ~1) _ ( ~1 -i~2 )~(C) = 0, 
L \ 0 b - l ~2 ~1 ~ B 

c-l=[c~l<5n"l, b-l=[b~l<5n"l, ~l= [(-n11~)J (111) 

with C=[Cv ], B=[B"l as column matrices. In terms of 

!!!:..rJ.. _& _ 2n n(n+1) ~= ~ = 11nn(n+1) 
~n - I23 n -11 2' C n Bn 2 

we have 

<rn (~ + r~n) + 6' <rv(~ - hnv) +6 18" (~- hnv) =0, 

l8n (~ + ;J + 6'18" (~- hn,,) +6<r" (i -hnv) =00 

(112) 

Introducing M/<r n =P/l8n=- ~/Z;(<rm+l8m)' we obtain 

Mn = m n[l + 6~ 1V1"hnv + 6"P"hnv1, 

P n=pn[1 + 6' Pvhnv + 6 Mvhnv1, (113) 

:0 (Pn+Mn)=- ~, 

which provides the generalization of (1 : 89). 

The present h's may be constructed by procedures 
similar to that in (1: 160). Thus from 

B~1 (z) • C~(z) = - (i/2) lJ(lJ + 1) =:0 d 12 (-1 1) 
n 'lJ ' 

we write 
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2 (-1/1) = nnw --P 
n lJ 1 ~ ny, lJ(lJ + 1) 

-P i2 (- 1/1) 11 n
",,-1 -

hn"=~; lJ(lJ+1) n lJ 2 =-~---Pnv' 

- 2i:0 (-1 
-Pnv= lJ(lJ+1) d l2 n 

(114) 

Aligned nonspherical scatterers 

For aligned triaxial ellipsoids (or for other scatter
ers having the same reflection and inversion symme
tries) with major axes :lj along /;; (in an orthogonal 
basis £10 £2, £3= t, i,~) we take '1 as the axis of the 
spherical harmonics Y;:'. If the scatterers are either 
purely electric (0: = b, /3 = <5 = 0) or purely magnetic 
(<5=c, a=/3=y=O), we proceed essentially as before 
for the scalar case. Then, with A = B or C and with 
a=borc, (81) reduces to 

A~=-6 a~: (-:f:)1 A!, 

(115) 

which is the full analog of (1: 150). Similarly g of (75) 
involves only either CC or BB, and ~ of (76) only C or 
B. The isolated scattering coefficients b;;': or cr;:;' 
satisfy 

D;;' = (- l)m(n - 111)! / (n + 111) ! , 
(116) 

where n - lJ and 111- Jl are even. These relations follow 
from reciprocity and inversion symmetry, i. e., from 
g(- 17, - k) =g(r, it), and from reflection symmetry. If 
we reflect in z = 0, we replace r = r( e, cp), k = r(/3, y) by 
r' = r(1T - e, cp), k' = r(1T - /3, y), and require (f- 2zz) 
• g(? ,k')' (I- 2zz) = g(r, k); similarly, if we reflect in 
y = 0, we replace r, k by r" = r(e, - cp), k" = r(/3, - y) 
and require (I- 2yy) • g(i.~II, k')' (1 - 2y9) = g(r, k). 

Thus, with X!n = ReB;;', X~ = 1mB;;' (or similarly for 
C~), we proceed as for the scalar case and reduce the 
scattering dyadic to 

g-(r k) = "[am". X' (r) X· (k) + am,,- X Q XO 1 , L..J nil nm nm nil nm vu., 

(117) 

Similarly, the corresponding multiple scattered ampli
tude is 

~(k,.) = 6 [A;;'+X:m(r)+ A;;'- X:m(r) 1, 

A~"= {i} (A;;'±A~mD::'hml2. 
(118) 

Using X~n=Pnmcosrncp, X~=Pnmsinmcp for the corre
sponding scalar harmonics, we rewrite (115) in terms 
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of xt t~I-'(K) with i = e, 0 as 

-A~=10a~:· {A!Z [t:I:» (~I:):J 
+A!~ [± (-v~I:): + (~I:):]}, 

(~I:): =0,dl1 (~ ;:) X;,t+I-' T" 

(-/ /:)11 D~=0 dl1 (-/ ; :) X;,t_" T" (119) 

which differs from (1 : 164) only in that dJi replaces the 
earlier d/. 

In particular, if we retain only dipole terms, the 
initial forms follow by inspection of (1 : 165), i. e., with 

00 11+ + 11- - h a 11 =a~, a11 =a~ =a1> a11 =a~=a1> we ave 

- AVac = A~ (~I~) 1 + Ai (~I D: + Aj (~ I D ~ , 
-AVat=A~ (~I~); +AH [(-/ ID> G ID:] 

+Aa (~ID:, (120) 

where Ai=Al+AjlDl, Aj=i(Al-AjlDl) andDl=-t The 
present special symbols follow from 

In terms of direction cosines O!I = K' tj , we write 

Ii = H3 cos2 {3 -1) =1(3ai -1), 

Y~ = 3 sin{3 cos{3 exp(iy) = 30'1(0'2 + i0'3), 

Y~ = 3 sin2J3 exp(i2y) = 3 (O'~ - O'~ + i20'20'3) = 3 (0'2 + i0'3)2, 

to obtain 

- AVa~ =AH[To - T2 1(30'i - 1)] - AiO'I<l2 T2 - AjO'I 0'3T2' 

-Ail a~ = - A~0'1a2T2 + Aj{M2To + 1T2(30'~ - 1)] 

-1(0'~ - O'~) T2} - Aj0'20'3 T2, 

- Atla~ = - A~0'10'3T2 - Ai0'20'3 

+ AiU[2To + i(3ai -1) T2] + 1(<l~ - O'~) T2}. 

Introducing simpler notation Al and a j (with i = 1,2,3) 
for the coefficients, we reduce the system to 

Ai [;1 + HTo - T2) + T2 ] 

= A.i [~l + T2J = T2a.0 AJO'J = T20'1 ,A·i, 

1<:=0 al t., 
TJ2 - 1 i41TP 

A=-c-' c=7' 
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where a: =a/(1 + tal)' If we multiply through by i/T2 

and sum over i, then in terms of ! = L ~I 'I '" 

0( W.'~2 +1) A",=[(iT2r 1
+ i}A 

= (f + !T2)' !-I·A./T2= KK' A, 

(123) 

(1- KK)' A=IT'A=- (~T2rl'A, K·i-1 ·A=0. 

From the last equality in (123) we form i-I 'A/T2 

= (1+ i T2tl • K(K' A), and use (124) to obtain .. 
K' (r+ iT2r1'K= 0, 

aj _ _ r?c 
0 1 +w./T2- O, T2--:;r:l--P2' 

(124) 

(125) 

where the sum form is essentially a generalization of 
Fresnel's equation for wave normals in anisotropic 
media. The form K' :&-1. K= 0 with N = i + iT2 is 
equivalent to I IT' N' ITI = 0 obtained directly from (124). 

For small k we use Ho + 1 ,., Wand drop Hz, Then 

a 2 

6TJ2(1+C~I)_1=0' 
a" a' 

(126) 
w.- i "- / 

/ - 1 - ta1 c al - 1 - ta~ W ' 

where ar"'a~(1 + ia:W) includes the reduction in radia
tion losses compared to the isolated value al = ail(1 - tan 
,., aj(! + ~a,); to lowest order in k, a: = 0 (k 3) is imaginary 
for lossless scatterers, For electric dipoles i=!(b"), 
we write 

(127) 

If k - 0, or if radiation losses are negligible, then for 
lossless scatterers (127) reduces to Fresnel's equation, 
and the standard optical development is fully applicable. 
We may also obtain e directly from (124) in the form 

IT' [1+ (c !)-I(TJ2 - 1)/TJ2] • A 

= IT' {[f + (c !)-1 ](1]2 - 1) + i}· AI 1]2 = 0 (128) 

by comparison with the corresponding form in (7) for 
L=P, LM=O: 

IT' [- (E" -n-1(TJ2 - 1) + Ij. P = 0, (129) 

Thus f + (c it1 = (1 - E)-I, from which f = (1 + c ~I)-1 as in 
(127). Similarly for magnetic dipoles i(~II), we use 
L=Mand obtain 1l==[I+ci(c")j-l, 

If the scatters are ellipsoids with parameter €', or 
f'=LEj '/~I for greater generality, then to order k 3

, 

b'-b'( ')_ ik
3m 

1- jE; - 41T [ 
Ej- 1 ] 

1 + qj(d -1) 

(130) 

with m as the ellipsoid's volume and q~ as the usual 
elliptic integral depolarization factor, Thus, in the low
frequency limit, 
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(131) 

which reduces to Maxwell's form for spheres if q~ = to 
Similarly for the magnetic case, c~ = b~(/lj} and /ljl 
= Ejl(/lj} in terms of the forms in (130), (131). To include 
radiation losses and the packing effects for spherically 
symmetric correlations, we use (126) in terms of b1 (b~) 
as in (130), and approximate W byl2 

(1- w)4 4 (Ill) 3 
W"'(1+2w)2, W=3'7T 2" (132) 

with b as the radius of the exclusion sphere (i. e., b is 
the minmum separation of scatterer centers). 

To obtain forms for 172 with -P2 retained, we rewrite 
(123) and (124) as 

[IT' iT2 + I]' (iT2)-I'A=0, tT, (1+ T2 il:) 'IT'A=O, 

IT=I - KK= J3J3+ yy, 
(133) 

where AT a: i-I, A corresponds to A of (6), e. g., for 
Aa: P', we have A= E. With i as a dipole dyadic, 
IT' i ' IT = g( if) = gr represents a fully transverse for
ward scattered electromagnetic dyadic amplitude. Thus 
we may write [IT + (1726.-1 - -P2) gr ] 'A = 0, from which we 
factor 6.,1 (I - -P2 gr ) , to obtain 

[IT 6. + 172 (I - -P2 g )"1. g r ] , A 

=[IT6.+g[KIK]]·A=O, 6.=(172-1)/C (134) 

and thereby isolate gITKI K] = g T as in (52). For spheri
cal symmetry (1- -P2 it1 , i with i = ~ I and ~ in the 
form (122), reduces to r&/(l- &-P2) =~If where ~1 is 
the form (89) for a spherical dipole. 

We reduce the sum form in (125) by a different 
procedure to facilitate subsequent developments. 
Clearing the denominator yields 

1 + T 26(1- ai)~, + T~6 ai~'+1 ~'+2 
'" 1 + T2 S(i{) + T~D(i) = 0, (135) 

where i, i + 1, i + 2 follow cyclically. Thus, 

6.2 (1 - -P2S +-P~D) + 6.172(S - 2-P2D) + 174D = 0, (136) 

which, to lowest order in k, is a quadratic for 
(1 _17-2). 

To display the results (135) and (136) in terms of 
scattering amplitudes, for an isolated electric dipole 
(0) we introduce2 

ib(r, k) = (1- rr)' b' (t-;- Kfq = (88+ fPfP) 'b' (M + yy), 
(137) 

and for a magnetic dipole (C!), 

gC(r, it) = - (txt) 'c' (IXK) 

= - (- 8$ + ~6)' c' (- ~y+ y~). (138) 

In the forward direction, r = K, 
i(K, K) = ~~gBB + (~y+ y~)gB~ + yygy" 

= I T(K) • i' I T(K), (139) 

where, e. g" rlB = ~ , gb • ~ = ~ 'b· ~ but raB = ~ • gC • ~ 
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= y' C • 'Y, etc, With K= L a j /;" we have 
~ 2 ~ ~ ~ / 2 1/2 /3=[- (1- O't) /;1 + 0'10'2 /;2 + 0'10'3 /;3] (1- 0'1) 

y= (- 0'3 ~2 + 0'2 ~3)/(1- O'I)I/2 , 

and consequently 

~. Ii> ~ + Y' a' Y=6 (1- ai) a j =gBB + g"" = S(a) , 

(~, a:- ~)(Y' Ii' y) - (~. Ii' y)2 =6 aia;+la'+2 =gBllg"" - ~/l'r 

= I~I =D(Ii) 

(140) 

with Ii=b or C, and g=~b or ge. 

Thus (135) may be rewritten in terms of g(i)=gr =g 
as 

6.2 1 IT --P2 g 1 + 6.172 [ g BB(l --P2 g",,) + g ",,(1 - -P2 g BB) 

+ 2-P2.rl,,]+174 Igl =0, 

1 IT 6. + (172 - 6.-P2) gr 1 = 0, 

or equivalently as 

1 f T 6. + 172 (1 - -P2 ir )"1 • g r 1 = 0 

as obtained directly from (134). 

(141) 

(142) 

In general, the low frequency result is a quadratic 
for 17-2. If fj = y and one of the axes of the ellipsoid is 
perpendicular to the plane of incidence (z, x or !;', ~) for 
the slab distribution discussed for (30)ff, then with 
k=zcosao+xsinO'o, we have K=zcOS!3o+xsin!3o 
= 0'1 /;1 + a2 /;2, i. e., i. e., 0'3 = 0 and the correspond
ing polarization vectors are ~=- 0'2 ,+ al~' y=y. 
Thus gB"=O and (135) and (141) reduce to the uncoupled 
form 

[1 + T2(0'~~1 + aI~2)](1 + T2 ~3) 

= (1 + T2g BB)(1 + T2g yy ) = 0. (143) 

For the wave polarized along y, i. e., for E =Ey, 
i= i6,) , 

(144) 

For the other case, we have essentially the same struc
ture as in (1 : 120)ff with K' B' K replaced by ~. e-1 .~, 
i. e., with ai + O'~ ==1, E = E(z, i), 

1 -1 + c(a~~l + ai~2) -;r- D 

=a~ (1+ C!l) +ai (1+ C~2) ==~'e-l,~, 
D= 1--P2(a~~1 + ai~2)' (145) 

Proceeding as before, we obtain the same forms for 
~ and K cosi3o as in (1 : 123)ff with B lj = Zj • 13' Zo re
placed by EiJ/1fpl =EI}/(El1E22-EI2), ZI=Z, z2=i, 

If each scatterer has both electric and magnetic prop
erties, we work with the coupled equations for the C's 
and B's as in (81), When symmetrized for ellipsoids 
each set contains term analogous to (119) as well as 
cross terms. We write the corresponding isolated scat
tering amplitude as 
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g,.=66 ({3!" C~ B~1l + Y"": B:'C;Il), (146) 

where go is the form (117) in terms of band B, and gc in
volves c, C. Reciprocity and inversion symmetry require 
{3::':(-l)"+v+l={3!" and similarly for y:::,"; thus n-I/ is 
odd. From reflection symmetry in z = 0, it follows that 
m + J.1. is even, and from reflection symmetry in y = 0, 
we have f3!"=- (3;;-1l D~/D~, (3:'-Il=-f';;1l D'::D~. Using 
(3. and -I for the same form as a" of (117), we obtain 

g,. = i'6 ({3::':+ ImC::' ReB~ - (3- ReC 1mB) 

+i6 (,nmBReC - y-ReBImC), (147) 

which excludes (3~ and y~ (because C~ and B~ are real). 
Thus the leading terms involve j3~~, (3g, etc., i. e. , 
there are no pure dipole effects. 

If the individual scatterers are characterized sVlely 
by 0' = c and Ii = b coefficients, the appropriate form of 
(81) is 

- c::,=I;c::': [~1 (-: I:) C!-~2 B!] , 

-B~='6b::': ~lB!+~2C!J' ~,= (-:1:) ,. 
(148) 

Retaining only dipole terms n = 1/ = 1, we generalize 
(120) by using the values of the symbols in (121) and the 
additional values 

(~ I !) 2 = T 1 (- i yl) , 
(149) 

(11-1) . 0 1 1 2 = T11Pl 

with yl = pI exp(iy) = sinS exp(iy) = 0'2 + i0'3, and ~ 
= cos(3 = 0'1. Thus with (120) representing Cr, the equa
tion for - cV Cc has the additional terms 

and that for - Gil ct now includes 

-~ {it {~ [B~ (-/ I~\ +Bl (-/ ID J 
± ~~ Gln/ Bi1 GI-ll)J} 

= - ~ {:}T1{BH (lyl)* ± iyn + 20'1 Tli(BI l' Bi1Dl)} 

(150) 

=- ('fB~Q3±BIO'l) T1• (151) 
2 

The analogs for Bib contain the corresponding terms of 
(150) and (151) with B replaced by - C, 

Thus, in terms of a,=c~,q,Ci and IB,=B~,Bi,Bi, 
etc., as before, we obtain the generalization of (122) 

a,(~it + T 2) - T 2Cl,6 a JCl J - (IB'.l 0',.2 - IBI+20'.1) Tl = 0, 

IB,(!lBi l + T2) - T2o,6 IBJo J + (a'.l Cl'.2 - a,.20".1) Tl = 0, 

(152) 
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where ~,(Cj) and !lB1(b,) correspo~d to the form ~l(a,) 
of (122). Multiplying through by t, and introducing 

i=L:~j " 'll ~=L:S8; t"1> and a=L:a, tl, lB=L:lBj '" 
we obtain the generalization of (124), 

i-1 .a+T2(I-Kiq·a+T1(IxK)·]8=0, K·i-1 ·a=0, 
sa-I 'lB + T2(1- Kiq .JB- T1(lxKj. a = 0, K' B-1, 13= 0, 

(153) 

where the Tl terms couple the electric and magnetic 
effects. 

At low frequencies with ~(C") and ~(b") in the form 
~(a") as in (126), we drop@2 and @1 to obtain 

(172 - 1) (c (~)-1 • a + 172CC T + 17KxlB = 0, 

(112 - l)(e ~rl 'lB + 1]2 lBT - 11 KXcr = 0, 

a T= (1- iciq -cr=fT,cr, lBT=IT-E. 

Equivalently, 

(1]2 -1) fT' [(c (~,>-1 + f], a + a T+ 1] KXE= 0, 

(112 - 1) r T ,[ (c sa)"l + I] -IB + lB T - 11 KXcr = 0, 

(154) 

(155) 

which corresponds to the L, LM form in (7) with IB = P 
= (E' - i) . E, cr = M = (jL - I) • H as the polarizabilities, 
and the parameters specified by 

E = (I + c 18)"1, il = (I + c ~)-1 . (156) 

Thus corresponding to (6) in the form (112KX jl-l XK 
+IT-i)'E=O, we have 

i1J2[KX(1 + c~) XK] • (1+ csa) + ITi = ° (157) 

in terms of a 2 x 2 determinant in the plane transverse 
to K, 

Reverting to (153), we clear the inverses to obtain the 
form 

(1+ T2 i' IT)' L- Tl §i' (KxLM) = 0, 

i={~}, L={:} {~}, LM={_~} (158) 

where if we regard the braces after L as enclosing a 
1 x 2 column matrix, then LM = SL with S11 = S22 = 0, 
S12 =-S21 =1. Explicitly, we write 

cr+ T2i'lT'<r+ Tl(~XK) ·lB=O, 

IB+ T2 sa'IT 'JB- T 1 sa' (Kxcr)=O. 
(159) 

Operating on the first equation with KX= (IXK)', and on 
the second with IT = (1- Kfq = - (lXK) , (1xKj, we re
write the result in terms of scattering amplitudes, gill 
=- KX~xK, ge=IT'sa'IT as 

(I + T2 gill) '(Kxa) - Tl gill' IBT = 0, 

- Tl ge' (Kxcr) + (I + T2 g.) 'JB T = 0. 

The low-frequency form of (160) is 

(~IT + 112 gIll) , (Kxa) - 11 gIll '1B T = 0, 

-11g., (Kxa) +(~IT+112g.) 'lBT=O, 

and we may eliminate Kxa, 

1'/-1 ~[~rT+ 112 (g. + gm + C gill' ge)] , (g;l, E T ) = 0, 

(160) 

(161) 

(162) 

and identify gT[KI K] as 112 (g. + gIll + C gm ,ge). Rewriting 
(162) as 
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- (TJil/ e)[1 T1)-2 - (1+ e gm) • (f + e gel] 0 (g;l • B T ) = 0, 

(163) 

we obtain the dispersion equation in the form 

II T71-
2 

- (1+ egm)' (1+ ege) 1= II T71-2 + (:K X W1 xI<) 'e-1 1= 00 

(164) 

To include the .p, terms of Th we may recast (160) in 
tensor versions of the forms that led to (95) and (100)0 
Thus with ®t = (1-.p2 gt >-1. gt for r = m, e, we eliminate 
Kxa to obtain the analog of (95), 

I il f T+ 712(1- .pi~m '®e)-1 

• [®e +®m +®m • <ie(e + 2.pJTJ)] 1=0. (165) 

(166) 

The determinantal equation corresponding to (160), 
i. e., I (g;l + T2 ij , cg;.; + T 2 l) - Ti II = 0, may be rewrit
ten as 

( I f + T 2 gm 1- I T 1 gm I )( I 1+ T 2 g.l- I T 1 g. I ) 
+ I T 1(g.- gm) 1=0, (167) 

where, e. g., the function within the initial parenthesis 
equals 1 + T2(gB~ + gy~) + (T~ - Ti) I gm I, I gm I =gBegr~ 
- (gB~)2. For low frequencies, we replace T2 and Tl by 
112 I A= el (1 - 11-2) and 111 il = e/11(l - 11-2) to obtain 

[11-2-lr+egmll[-'f2-II+cg.ll+11-2e2Ige-gml =0. 

(168) 

Thus, (168) or (164) corresponds to a quadratic for 11-2 

with 

11j21122 = I r + e gm II 1+ e g.1 , 

11j2 + 1122 = I 1+ e gm I + I f + c gel - c21 ge - gm I 

= 2 + C(g~B +g~r +g~ +gr~) 

+c2(g~BgJa+g~yg~y- 2ga,gif,.), (169) 

From (167) for ()i3 = 0, 11 =y, for which case ge 
AA 2 2 AA _ AA AA 2 

= J3J3(~1 a2 +~al) + yym3 and gm = (3{3 (£3 + YY«£1 a2 
+(£ 2ail are diagonal, we obtain two equations of the 
form 

(l/g,ffi + T 2)(ljg: + T2) - 'Ii = 0, i = (3,Y, gt = f'gt a 1. 

(170) 

where the second form with iit =g, /(1-.p2gt) facilitates 
comparison with (95), the analog for spherical sym
metry. For low frequencies, 1)j2 = (1 + e gt)(l + c gil, 
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1d = [1 + c(m1 Q'~ +~2ai) ][1 + e(£3] = ~ 'E-1 
0 ~/ J1.3 

=K·E·~Ie,.IJ1.3' H=H9, 
11;2 = [1 + cS83][1 +e«£1 a~ + (£2a1)] = ~. 11-1 • ~/E3 

=K·Il.K/ltr,.IE3, E=Ey (171) 

where i;,=IT(y) ae'IT@) as indicated for (145). Thus the 
earlier scalar development (1 : 128)ff applies for Hy 
~ith_C=l!-3' B=E;,I IE;, I and for Ey with C=E3, 
B=J1.jlJ1.,.I. 

Non~pherical correlations 

For aligned elliptic cylinders and elliptic correlations 
(with nonconfocal, nonsimilar, and nonparallel scatter
er and exclusion surfaces) the earlier1 scalar develop
ment in terms of Mathieu functions also covers the elec
tromagnetic problems for incident H or E parallel to 
the cylinders axes (Y=~) and K= alt+a2t We indicate 
the essentials for the low frequency case, and then gen
eralize the results to ellipsoids by inspection. 

For the two-dimensional scalar problem of the dipole 
a=a1H+a2H with semiaxes Il, along " and physical 
parameter B'=L;B~"f" the isolated forward scattering 
amplitude to lowest order in k is 

AA A_A 2 2 A A A 

g(K, K) = K' a' K=a1al + a2a2, K= al'+ a2~' 

a "'a'=- i1Tk
2

1l1 12(Bi- 1) 
,I 4[1+qHB;-1)] ' 

(172) 

where the depolarization factors equal qf = 112/ (111 +112), 
qf = IJ (Ill + .2) = 1 - qi. For the analogous electromag
netic problem specified bye' = L; EI fJ, with H parallel 
to y, in terms of b = bJ~ + b2~t we have 

gb = ~ a b • ~ = b2 ai + bt aL ~ = - a2 t + a 1 t 
b -l' _ i1Tk

2
• 11l2(e' - 1) 

i - }, - 4[1 + qHd - 1) 1 
(173) 

such that gb follows from g by using Bj = 1/Ef, 
Bf=l/d (i.e., B'=E~le;1 withE';=El'l+efH) and 
q; = 1- q2, qf = 1 - qi. Thus, GIa l + a~a2 = aib2 + Q'~bb 
and gb follows from g by replacing al by b2 and a2 by 
b1• Similarly, the earlier multiple scattered form 
(1 : 140), say K' it a K, corresponds to an electromag
netic form ~.i8.p with~ii =18 jj , ~ij=-18Ji' 

From (1: 136)ff, for an exclusion ellipse charac
terized by q, with semiaxes along t~ (such that £,, t~ 
= cosw), we have, for example, 

i4p 
(174) 

C=C2=-,;r , 

where q=L;q, ~~ ~~=2:q'j 'i~j' The elements q22 =ql sin2w 
+ q2 cos2w = (1 - q2) sin2w + (1 - qt) cos2w = 1 - qu and 
q21 =q12 = (q2 - q1) cosw sinw are unaltered if we replace 
q2 by l-q1 and q1 by l-q2' Using a1 a2 =b1b2 and qlq2 
= (1 - q2)(1- ql) we rewrite the denominator of (174), 
1 - c~qll - ca2q22 + e2 Ii Ilq 1= 1- cb2 (1- q22) - eb1 (1 - qll) 
+ e2 1b III - ql. Consequently, for the electromagnetic 
case, we may write 2111 =m22 , - 2112 =1821 such that 

Victor Twersky 228 



                                                                                                                                    

(175) 

and the earlier form (1 : 140) for K· i . K equals 
~.~. ~ with 

l8=b·[I+c(t-Cj)·I8]. (176) 

Thus (176) emerges from the Mathieu function develop
ment for the corresponding electromagnetic problem 
for H along y, i. e., for E = E(Z, x). If we incorporate 
the result for E = Ey, then 

- "".... ........ ......... 1· 2 
b= bt ,l;+ b2~~ + bayy, ba= 4t1rk fltIt2(Es-1), 

ge= ~~[~. (b t H + b2U) .~] + ba YY, (177) 

and (176) applies with q3 = 0 (as appropriate for the 
infinite elliptic cylinder). 

Essentially as before, we use the form (176) for the 
corresponding three-dimensional electromagnetic prob
lem of a triaxial ellipsoid. We incorporate the leading 
terms for radiation losses within the distribution by re
placing b '" h' by 

O"=0b;'t1th b~''''b;/(l-tb~W), b'=b"(f') (178) 

with b~ as in (130) and W corresponding to ellipsoidally 
symmetric correlations. Thus with c = C3 = i47rp/k3, 

s8=[1- ch"· (/ - eD)-I·ii', e-I =t+ cm. (179) 

We rewrite (176) asE-I-I=cb"·[I+(l-q)·(e-I-I)], 
from which 

e- I =- cb" ·[1 +q. (f- I)l, 
i- 1=- (I + cb" .ij)-I ·b"c, (180) 

i. e., the same form as in (1: 143) for the scalar prob
lem. The left side of the relation 

(181) 

determines an ellipsoid with shape q (corresponding to 
the exclusion ellipsoid) and parameter e specified by 
symmetric tensors with noncoincident principal axes. If 
the scattering losses are negligible, then the form 

(e - 1). [I +q. (f - 1)]"1 =wo(e'- 1)' [I +q" (e' - 1)]-1, 

Wo =p5B 

(182) 

generalizes the scalar relationl5 applied earlier for 
birefringence considerations, 

In particular if the axes of q, q' and l' coincide, we 
obtain 

(183) 

which differs from the earlier resultt5 in that q I is not 
necessarily equal to q~. Whereas (1 - w o) q I is positive, 
the present qi- woq i may be positive or negative. Now 
there are three distinct bases of anisotropy for coherent 
propagation: the obstacle's intrinsic anisotropy repre
sented by its material parameter e', the effects of its 
form represented by the shape parameter q', and the 
effects of the distribution represented by the shape q 
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of the exclusion region. The corresponding 1)2 is deter
mined by K' (77-21-E-I). K= O. If a principal axis of f is 
along y, then for incidence perpendicular to y, we have 
~=E3 for E=Ey, and 7ri=~·E-l.~ for H=Hy, essen
tially as discussed for (144) and (145); for this case 
(1 : 123) applies. 

Similarly, for obstacles specified by ii' and C" = ii' (ii1 
in the form (179), we have 

~=cl1 . [I + c(l - q) ·iL 
&= [1- C c"· (1- Ci)]-I. e", ii-I =1 + c~, 

(184) 

or, equivalently, 

(17 - i)· [I+q' (17 - 1)]-1 =- ce" . (185) 

The corresponding 1)2 for obstacles specified by both 
e' and ii' is determined by I IT 1)-2 + KXj.7-I XK·E'-1 I =0. 
If e and ii each have an axis along y, then for incidence 
perpendicular to y we obtain the forms in (171) but the 
principal axes of Ep and iip. are not necessarily paralleL 
For this case, the scalar developmentl for the slab 
distribution suffices for the transmitted and reflected 
fields, etc., in terms of the form (1 : 128), etc. 

We considered ellipsoids for illustrative purposes, 
but the initial forms (65) and (81), as well as special 
cases and results may be used for other scatterers. 
Thus, if each ellipsoid is replaced by an identical pair 
of Similarly aligned ellipsoids with fixed separation, 
then the pair scatterer has the same inversion and re
flection symmetries as the single ellipsoid, and the 
simplified systems as in (117) and (147) apply. Results 
for the single pair were given earlier, 2 with detailed 
considerations for pairs of dipoles. Thus (2: 141), in 
terms of, e. g., (2: 198) or (2: 210) for appropriate 
identical pairs of electric or magnetic dipoles, may be 
used in (147). However, if the elements of a pair scat
terer differ in physical properties or shape or align
ment, then we require (81). In particular if one element 
of the pair scatterer is an electric dipole (b=z,b,f,f, ) 
and the other a magnetic dipole (c = Z, C I '1'1) with 'I = , 
as the axis of the pair, then the solution for the compo
site obstacle is given by (2: 212)- (2: 226). The scatter
ing amplitude for the composite does not have inversion 
symmetry in the origin (the midpoint of the line joining 
the dipoles centers) or reflection symmetry in [; = 0, 
but does have reflection symmetry in [;2 = 0 and [;3 = 0, 
e. g., as shown by the special case of spherical dipoles 
(2: 175)-(2: 188). Results based on (81), (2: 141), and 
(2 : 179) provide a relatively simple case of polarizabili
ties,.!', M su~h that eac~ depend~ on both E and H, i. e., 
P = p.' E + Pm' H, M= M.n • H + M.· E. Similar inter
relations for the general ellipsoid, and for a sym
metrical pair such that each element consists of both 
an electric plus a magnetic dipole as in (2 : 227)ff, 
follow from (147). 
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property of direct-interaction scattering theories * 
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An axiomatic framework for relativistic direct-interaction single channel scattering theories is formulated 
in terms of two representations U' and U of the Poincare group. The infinitesimal generators P 
(momentum), J (angular momentum), E (energy), N ("boost") of U, and P', J', E', N' of U' are assumed 
to be related by the formulas of Bakamjian, Thomas, and Foldy: P' = P, J' = J, E' = (M" + p2 )112, and 
N' = (E'X + XE')/2 + P X (J-X X P)(M' + E')-I, where X is the center-of-mass position operator of U given 
by X = T -PX(J-TxP)M -I(M + E)-I with T = (E -'N+NE -1)/2 and M' is a positive operator that 
commutes with P, J, and X. Then, it is proved that, within the above-mentioned framework. the M",Uer 
operators W ± = lim exp( - it E')exp( i t E) for t ... ± 00 cannot satisfy the cluster decomposition property 
(also known as separability) except for interactions that vanish if anyone of the particles is removed to 
infinity. 

I. INTRODUCTION AND SUMMARY 
OF THE RESULTS 

This paperl contributes to a topic that is usually re
ferred to as the direct-interaction approach to relativis
tic particle dynamics2- 19 or as the theory of action at a 
distance. Its scope is limited to such direct-interaction 
theories that describe only elastic scattering, irrespec
tively of how large the center of mass energy may be. 
Though departing obviously from reality, such theories 
may be useful for phenomenological approximations and, 
further, for studying the relations between the princi
ples of quantum physics and the principles of relativity. 
An axiomatic characterization of the theories under 
consideration will be given in items (c) and (e). The 
matter to be discussed particularly concerns two 
further axioms: one [see (f)(2) 1 expressing a rather evi
dent physical property, the other [see (d)(2) 1 giving the 
theory an especially simple structure that is suggested 
by direct analogy with nonrelativistic theory. On an 
informal level these axioms may be expressed as 
follows. 

(a) The motion of the particles is separable in the 
sense that two subsystems are dynamically independent 
if they are separated by a suffiCiently large distance. 

(b) The motion of the particles is decomposable into a 
center of mass motion and an internal motion such that 
the interaction affects the internal motion only. 

The result of this paper is formulated in (g)j it states 
that these two axioms contradict each other20 except for 
interactions that shrink away whenever one of the parti
cles is removed to infinity; for a system of three or 
more particles such interactions are clearly unphysical •. 
This result may be considered as sharpening a rather 
cryptic argument of Foldy. 21 The fact that recent work 
on direct-interaction theoryI2.15.18 does not adopt the 
critical axiom (d)(2) indicates that experts know about 
difficulties associated with it. To reveal the mathe
matical reasons for such difficulties is the purpose of 
this paper. 

a)This work was supported in part by the Deutsche Forschungs
gemeinschaft. 

We turn now to exposing the announced axiomatic 
framework; the ideas involved therein are those of gen
eral scattering theory as described in Refs. 22 and 23 
and those of direct-interaction theory as described in 
Ref, 8, Some of these ideas will be indicated in later 
comments. Throughout the remainder of this section, 
Definition 1 (see Sec. II) and the notational convention 
following it will be adopted. Sections II and III are 
formally independent of the rest of this section. 

(c) Let U be a positive rep. of pI and let S be a 
bounded operator on H. Assume that there exists a pos
itive rep. U' on H such that 

(1) U'(-t)U(t)-We(U',U)=:We as t-Eoo, for E=+ 
and €=-, where We is a bounded operator on H; 

(2) U'(g)We = WeU(g) for all g E p, E E { +, -}; 

(3) S = Wl:,W •• 

Then we call the pair (U, S) a scattering system and S 
is called the scattering operator of the system. U' is 
said to be a dynamical description of the system and W. 
and W. are said to be wave operators of the system. 

The reps. U' and U should be interpreted as describ
ing respectively the relativistic transformation proper
ties 01 the states and of the asymptotic configurations23 

of the scattermg states. 

(d) Consider the following conditions applying to posi
tive reps. U' and U on H: 

(1) U'(g) = U(g) for all gE [ : ={(a,A) E P: aO = 0, A 
E SU(2)}. 

(2) In addition to (1), we have X=X /, where X and X' 
are the Newton-Wigner position operators of U and U' 
resp. (see Theorem 1). 

Then, a dynamical description U' of a scattering sys
tem (U, S) is said to be barycentric if (2) is satisfied. 

To describe scattering of particles some more struc
ture has to be added: 

(e) Let (Uj)jEI be a finite family of irreducible positive 
reps. j for any subset c c I (the case c = I being included) 
choose a tensor product HC=®iEcHi' define Uc : 
=®IEcUj, let (Uc,Sc) be a scattering system such that 
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Sc is the identity operator if c is a one-element set, 
and let V~ be a dynamical description of (Vc, Sc). Then, 
the family (Vc,SJcCI is called a particle scattering 
system and the family (V~)c C I is called a dynamical 
description of this system. 

Separability, as characterized in (a), demands that 
the scattering operators Sc of subsystems result from 
the scattering operator SI of the whole system by a 
spatial separation limit: 

(f) In addition to the assumptions in (e), let IT: 
= (CI, • 0 0 ,ck ) be any collection of pairwise disjoint sub
sets of I, and put c :=cl u',· U cko Let Hc=Hc1 ®'" ®HCk 
be the tensor product that is uniquely determined by re
quiring ®iEOcl/Ji = (®IECjl/!i)®' •• ® (0jECk l/!;) for all families 
(l/Jj)jEc with l/Ji E H j for all i E Co Then the particle system 
(e) is said to be IT- separable if 

(1) Vcl(dal)®" ·®VC (dak)SPc (-dad®"'®Vc (-dak ) 
k I k 

- SCI ® •• '®SCk weakly as Id 1- 00, for all (al"" ,ak) 
E RJk with a; *- a j for all i *- j. 

Further, the dynamical description (V~)ccr is said 
to be IT-separable if 

(2) (W.(V~, Vc) - W,(V~l' VC1 )®··· ®W,(V~k' Ve » 
XVel(dB.t)®",®VCk(dak)-O as Idl- co , foraflE 
E {+, -} and all B.t, ••• , ak as in (1). 

By definition, "separable" means ''IT-separable for 
all collections 1T as considered above. " 

Now the precise result of the present paper can be 
stated. 

(g) Adopt the assumption in (e) and (0, choose an 
elementiEI, denote by {i}' the set {jEI:j*-i}, and as
sume the following conditions to be satisfied: 

(1) The dynamical description (V~)eCI is ({i}, {i}')
separable. 

(2) The pairs (VI I), V I/}) and (UliI' , U [I)') of reps. 
satisfy (d)(l). 

(3) The pair (U;' UI ) of reps. satisfies (d)(2). 

Then the scattering operators S[il' and S(j} are the 
identity operators. 

If the particle scattering system is moreover separa
ble we conclude at once from (f)(l) that Se is the identity 
operator for all c C {i}'. Similarly, we find Se = 1 for all 
c C I with c *- I if the particle scattering system (e) is as
sumed to possess a separable dynamical description 
(U~)ecr such that the pair (U;, UI) satisfies (d)(2) and the 
pairs (V~, Ue) with c *- I satisfy (d)(l). To summarize 
this in a few words: An n-particle scattering system that 
allows a barycentric and separable dynamical descrip
tion shows at most a pure n-particle interaction. 

Several comments on the items (c)- (g) should be 
made. 

Comments on (c): Obviously, the W. are isometric 
operators; the ranges of W+ and W_ coincide iff Sis 
unitary. The wave operators are said to be asymptotic
ally complete if each of them maps H onto the ortho
complement of the eigenvectors of the mass operator 
M' of V'. The present notion of a scattering system is 
similar to that of a simple scattering system introduced 
in Ref. 22. There are two distinctions: In (c) asymp-
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totic completeness is not required while, on the con
trary, the requirements of relativity are taken into ac
count by introducing two reps. of P instead of two reps. 
of the time translation group. Condition (2)24 assures 
covariance: If the state l/J has the outgoing asymptotic 
configuration l/Jout (i. e., l/J= W-l/!out), then U'(g)l/J has 
the outgoing configuration V(g)l/Jout. The Poincare invar
iance of the scattering operator (i. e., SU(g) = V(g)S 
for all g EO P) follows at once from (2). A restricted 
form of (2) is satisfied as a consequence of (1): V'(t) w. 
= W.u(t) for all time translations t. The objects U and 
S being given, neither V' nor the W. are determined 
uniquely: As pointed out by Coester, 25 the definition 
D'(g): = V*V'(g)V, where V is a unitrary operator on 
H such that U(t)VV(- t) - 1 as I t I - co (a large class of 
such operators can easily be constructed), yields the 
wave operators W. = V*W. and, hence, S = W~W+ = w..*W+ 
and U'(g)W.=W.U(g) for allgEP. 'L'he term "dynamical 
description" is chosen for V' since V' allows understand
ing the mapping <Pin I-l/Jout : =Sl/Jln as the result of a dy
namical evolution: U(t)V'(- 2t)V(t)l/Jin - <Pout weakly as t 

Comments on (d): The following points will be dis
cussed in the sequel: (i) How a positive rep. can be 
characterized in terms of more elementary mathe
maticalobjects. (ii) Characterization of the sets Si(V): 
= {V' : V' and V satisfy condition (i)} for i = 1, 2. (iii) 
Characterization of S2(V) in the case that V is the rep. 
that is associated with a free n-particle system. (iv) 
Conditions (1) and (2) and the axioms of scattering sys
tems. (v) Relations to the literature. 

(i) Let V be a positive rep. of P on a Hilbert space 
H. Then we are able to write H as a tensor product 
H in ®L2(R 3) of an internal space H in and a one-particle 
momentum space L2(R 3) such that 

«(I') for all g = (0, a,A) EO [ we have U(g) = Vin(A) 
0Vcrn (a,A), where Vin is a rep. of SU(2) and Vern is the 
rep. of [that is given by (Ucrn(a,A)<p)(p) =exp(-ia' p) 
x l/!(A -lp) and 

({3) the Newton-Wigner position operator X of V is of 
the form 1 ®iV' p' Let us call such a tensor product a 
barycentric factoring of H (with respect to V). Now the 
following propOSition can be proved. 

(y) A bounded or a self-adjoint operator commutes 
with both P and X iff it is of the form A In@ 1. Such an 
operator will be called an internal operator; examples 
are the mass operator M = M in ® 1 and the spin operator 
S == J - X X P, a convenient definition of which is 
exp(2iu . S) = V in (exp(iu . cr») ® 1. The rep. V can be re
constructed from V In and M in in the following sense. 

(6) Let V in be a rep, of SU(2) on a Hilbert space H in' 

let Min be a strictly positive operator that commutes 
with V in, and let H =H in ®L 2(R3) be a tensor product. 
Then, the formulas in «(I') define a rep of [, which can 
be uniquely extended to a positive rep. V such that ({3) 
holds and Min®1 is the mass operator of V. Formally, 
this extension is effected by the Balwmjian-Thomas
Foldy jor111ulas 26 E = (M 2 + p2)1/2, N =}(EX +XE) + P 
X (J _ Xx P)(M +£)-1 for the generators of U, where P, 
J (the generators belonging to [), and X = 1 ®iV' pare 
known. A rigorous and direct construction of V can be 
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obtained by a spectral representation with respect to 

Min and U ln• 

(ii) Let U be a positive rep. and let H =Hln ®L 2(R3) be 
a barycentric factoring of its Hilbert space. Obviously, 
the latter is also a barycentric factoring with respect 
to U' provided U' belongs to S2(U), Hence the mass 
operator M' of U' is of the form M;"®1 and, by (6), the 
prescription U' I- M~n defines a bijective mapping from 
S2(U) onto the set of all strictly positive operators that 
commute with Uln . This provides some control over 
5 2(U). The set 5 j (U) is closely related to S2(U): Any 
U' E 5 j (U) can be obtained from a member of 52( U) by a 
unitary transformation that commutes with U(g) for all 
g E [27 and is arbitrary otherwise. Thus 5 2(U) is a 
proper subset of SdU). 

(iii) Let U be the rep. that is associated with a free 
n-particle system. For the sake of simplicity let us as
sume the particles to be spinless and pairwise dis
tinguishable. Then, a complete set of observables is 
given by the total momentum P = P j + ••• + P n and the 
rest frame momenta Kj, ... ,Kn_j that are given by K j 

=(Pj - (E j - (M +Ej-jp· P)M-l p (note that Kj + ••• +Kn 
=0). Let us choose a spectral representation such that 
these operators become multiplication operators with 
respect to the arguments p, kt, ... ,kn_l of the wave
functions. Then it is easily shown that X becomes i'V p 

and that (E)L2(R3n)=L2(R3(n-1l)0L2(R3), (1/J0CP) 
(p, ku ... ,~_j) = cp(p)1/J(kj , .•. , kn_1 ) defines a barycen
tric factoring. Hence, the internal operators are the 
operators that "do not act on the variable p. " As shown 
above, the mass operator M' of U' E 52 (U) is an internal 
operator. Therefore, the "interaction term" V =M' - M 
acts only on k j, .•. , k.-l' The operator M' being given, 
the whole rep. U' can be constructed as shown in (il. 
The analogy between V and a nonrelativistic potentiaUike 
interaction term is obvious: Replacing the rest frame 
momenta K j by their nonrelativistic counterparts K j 

= P j - mjX (1111 + ••. +111 nt l P (mj is the mass of the jth 
particle) and the mass operator (mr + Kt)j /2 +. ,. + (m~ 
+ K~)1 /2 by the operator of nonrelativistic internal en
ergy (2mltlKr + ••• + (2mntlK~, we see that V corre
sponds to the nonrelativistic interaction energy, which 
acts on kb ••• ,~_j and not on p. With the nonrelativistic 
meaning of p, kl' •.• ,k.-l the operator i'V p is the center 
of mass position (mlXj + ••• + 111~n)(ml + ••• + m n)-1 and 
the tensor product (E) describes the classical procedure 
of separating the center of mass motion. An analogous 
interpretation should be adopted for a barycentric fac
toring in the relativistic case, 

(iv) First we assume that the reps. U' and U in (c) 
satisfy (1), Then (c)(l) is equivalent to a less special 
relation: U'(-da)U(da)-We as d-EOO, for all transla
tions a ER4 with aO > 0. If (1) holds for the reps. U' CI' 
UCI ' I E {I, ... ,k} in (0, the limit relation (f)(2) is equi-
valent to the more tractable one (see Theorem 5) 

UCI (da1)0"'®Uc (dak)WeUcj (-d3j)0"'®U (-da) 
k ck k 

- We(U~I' UC1 )®" '0We(U~k' Uck ) as Id 1- 00. 

Now let us assume that U' and U satisfy (c)(I), (c)(2), 
and (2) and let us choose a barycentric factoring (with 
respect to both U' and U), Then the operators M', M, 
and We are internal operators [the latter one by (c)(2) 
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and Theorem 3] and henc e we get operator s M:n, Min, 
and We,ln' The property (c)(l) suggests the relation 
exp(- itM~n) x exp(itM In) - W.,ln as t - Eoo, a rigorous 
derivation of which, however, is not known to the auth
or, Conversely, let us assume the following condition 
(t) instead of (c)(I) and (c)(2). 

(t) exp(- itM:n) exp(itM in) - A. as t - EOO with a 
bounded operator A •• Then, we can prove by Theorem 
3 that the operator B.: =Ae01 satisfies BeU'(g) 

= U(g)B. for all g E P. According to the invariance prin
ciple for wave operators28 we expect exp[ - itf(M;n)] 
x exp[itf(M tn)]- A. as t - EOO for all strictly increasing 
differentiable functions f from [0,00) to R under rather 
weak assumptions on M:n and Min' Therefore, let us as
sume that the preceding relation holds for any of the 
functions fe : x I- (x2 + e2)1 /2, e?- 0, Then, we can prove29 

U'(- t)U(t) - B. = W.(U', U) as t - EOO. Thus the conditions 
(c)(I) and (c)(2) are shown to be satisfied. In conclusion 
we may roughly say that (d)(2) simplifies the structure 
of a scattering system by reducing it to the internal 
space of a barycentric factoring, 

(v) Besides the scattering theoretical interpreation of 
U' and U adopted here, a different interpretation is con
ceivable: U is associated with a noninteracting system, 
the only meaning of which is to serve for the starting 
point of a mental (or mathematical) construction that is 
to make the system an interacting one by adding "inter
action terms" to the infinitesimal generators of U, thus 
giving rise to a new rep. U' of P. 30 This point of view is 
similar to that of Refs, 2-4, and 12. In Ref. 2, Dirac 
discussed three possibilities of choosing the stable sub
group {g E P: U'(g) = U(g)}; choosing the Euclidean 
group [as in (1) and (2)] characterizes the instant form 
of dynamics in Dirac's terminology. This instant form 
of dynamics is well known from the Lagrangian field 
theory where, in the case of nonderivative coupling, 
the modifications of the energy-momentum tensor due 
to interaction change neither the momentum nor the 
angular momentum. Moreover, non relativistic potential 
interaction always fits the instant form. Therefore, it 
is quite natural that the predominant part of the litera
ture on direct interaction is based on the instant form; 
Refs. 3-8 and 19 may serve as examples. More re
cently, however, direct interaction theories based on 
a special Version of Dirac's point form were investi
gated by SokoloVl6- 18 (see also Ref, 15, Sec. II). In 
these theories the following condition (1)' is satisfied 
instead of (1). 

(1)' U'(O,A) = U(O,A) for all A E SL(2, C) and p'M,-1 
= PM-I, 

The discussion in (i) and (ii) shows that condi-
tion (2) gives an abstract characterization of those 
reps. U' that can be obtained from U by the classical 
Bakamjian-Thomas-Foldy formulas. 26 In Ref. 4 
these formulas are used in the first of two steps: Let U 
be the rep. of a free n-particle system. Then, a rep. 
belonging to 5 2(U), called the "reduced representation, " 
is constructed and finally the "physical representation" 
is obtained by a unitary transformation. This physical 
rep. belongs to 51 (U) but generally not to 5 2(U). 31 The 
scattering theory associated with reps. U' and U satis
fying (2) is investigated in Ref. 8, The analog to condi-
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tion (2) in a theory satisfying (1)' instead of (1) is ob
tained by adding to (1)' the condition MX=M'X'. 32 

Comments on (e): The tensor product structure of V 
allows constructing the observables of a free n-particle 
system (where n is the cardinality of c) as an irreduci
ble set of operators on the Hilbert space H c , 33 There
fore, the generalized eigenvectors that are needed for 
defining the S matrix and for calculating the cross sec
tions are given canonically. The question of how to in
troduce observables of interacting particles such that 
the above-mentioned channel observables result by 
some kind of asymptotic limit34 will not be discussed 
in this paper. The framework given by (c)-(e) may 
easily be extended by introducing a countable number of 
scattering channels; it is not evident, however, how to 
carryover the result of this paper to such an extended 
framework, Finally, it should be noted that the tensor 
products introduced in (e) are given canonically if the 
Hi are spaces of square integrable functions; this re
mark applies also to (f), 

Comments on (f): If the SCI' ... ,SCk are unitrary, the 
weak limit condition (1) is equivalent to a strong one. 
Hence (1) expresses just the cluster property formu
lated in Ref, 8, Condition (2) is easily shown to imply 
(1)35 but the converse cannot be true generally, The 
most natural way of translating the concept of separa
bility from the S-operator level to the level of dynamics 
seems to be provided by the condition (2)' that is ob
tained from (2) by replaCing the wave operators 
We(V~, UJ, We(U~ , Vc ), ' • , , We(V~ , Uc ) by the opera
tors V~(g), V~1 Ci), .. I., V~k(g), gc.

k 
P. it in (2)' the limit 

condition referring to V/(t) is assumed to be satisfied 
uniformly with respect to the time translation t, 36 we 
can easily show that (2) and (1) are satisfied, Condition 
(2)' comes very close to the separability condition of 
Sokolov37 and is just a formalization of that of Foldy 
and Krajcik, 12 

Comments on (g): The condition that plays the most 
striking role in (g) is (3). In fact, it can be shown, by 
a simple model describing two interacting particles 
together with a free one, that the conclusion of (g) be
comes wrong if in (g)(3), requiring (d)(2) is replaced by 
requiring only (d)(1), The only consequence of (g) for 
direct-interaction theories discussed in the literature 
seems to be the conclusion that the three-particle model 
of Ref, 8 cannot satisfy the separation property (f)(2) 
of the wave operators if the momenta of the particles 
are defined as those of the free particles the construc
tion has started with. 

The following two sections are devoted to the mathe
matical arguments leading to the result stated above. 
For the sake of transparency these are presented in 
the definition-theorem-proof style, The steps to be 
noticed particularly are given by Theorem 2, Theorem 
4, and Lemma 1. 

II. AUXILIARY INFORMATION ABOUT THE 
NEWTON-WIGNER POSITION 
OPERATOR 

Let us confine our interest to particles with nonzero 
mass; then only reps. of the following kind occur: 
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Definition 1, A rep. of P is said to be positive if its 
energy operator E and its mass square operator M2 are 
both positive and the spectrum of M2 has a strictly posi
tive lower bound, 

Note that any tensor product of positive reps. is again 
positive, In all that follows, V (with or without an index, 
etc.) will denote a positive rep. of P and with V we as
sociate some objects which will always be denoted by 
the symbols (marked by the same index as V) used in 
the following list: 

1. H, the Hilbert space on which the V(g), g c. p, are 
operators; 

2. E, pi, JJ, N i , j E {1, 2, 3}, the self-adjoint genera
tors of U defined by U(a, 1) = exp(iaoE - ia. P), 38 
V(O, exp(iu, a») = exp(2iu' J), V(O, exp(u' a») = exp(2iu' N) 
for all aER4, uER3; 

3. M = (E2 _ p2)1/2, the mass operator; 

4. X, the (Newton-Wigner) position operator defined 
in Theorem 1, 

The following three theorems are given without proof 
because their formal content can easily be verified by 
formal calculation using the Lie algebra of P and the 
technicalities of an exact proof would take too much 
space. 

Theorem 1; Let V be a positive rep. of P. Then there 
is a dense linear subset Dc H with the following 
properties: 

(i) D is invariant under the operators E, pi, J i , N i , 
E-l , lvr l , and (M + E)-I. Any real linear combination of 
the generators, considered as an operator on D, is es
sentially self-adjoint. 

(ii) Any real linear combination of the three operators 
defined on D by T - P X (J - T X P)M-I (M + E)-I with T 
=~(E-IN +NE-I) is essentially self-adjoint, 

Further, the self-adjoint extensions of the three 
operators defined in (ii) form a triple X of self-adjoint 
operators which are the same for any dense linear sub
set D with the properties (i) and (ii); on any such sub
space we have the Bakamjian-Thomas-Foldy formula: 

N =~(EX +XE) + PX (J -XXP)(M +E)-I, 

For any a, bER3 the self-adjoint operators a-X and 
boX commute with each other and with M, Finally we 
have 

U(a)b.XU(-a)=b.X +a~' PE-l
_ a'b, 

for all a E R4, bE R3. X is the N ewton-Wigner position 
operator of V. 

Theorem 2: Let V = VI ®V2 be a tensor product of 
positive representations. Then for all a, b E R3 we have 

(1 ®V2(a))b' X(1® V2(a))-1 = b· X - b· Z(a) 

with 

Z(a): =a(E2E-I +V .v)- (a· V)v, 

V: = PE- I , v: = (E2P I - E 1P2)M-I (M +Etl, 

where the generators with indices 1 and 2 are those of 
VI®l and 1®Uz respectively. The components of V and 
v are bounded operators. 
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Theorem 3: Let U and U' be positive reps. of P. A 
bounded operator B : H - H' satisfies U'(g)B == BU(g) for 
all g E P iff U'(a,A)B =BU(a,A) for all a E R 4, A E SU(2), 
and beX'B:::JBb·X for aU bER3. 

III. CONSEQUENCES OF SEPARABILITY 

The essential argument in this paper is: 

Theorem 4: Let U = U1@U2 be a tensor product of 
positive reps., where the mass operator of U2 is a 
multiple of the identity operator. Let W be a bounded 
operator that commutes with U(a) and with b· X for all 
a, bE R3. Suppose that there is a bounded operator W ~ 
such that 

(I@U2(da))W(I@U2(da))-I</J- W ~</J as d- 00, 

for all aER~\{O} and all </JEH. Then W~ commutes with 
U(a) for all aER4. 

Proof: Choose a, b E R3\{0} and for all dE R put T(d) 
:==I@U2(da) and Wa:==T(d)WT(-d). Since W commutes 
with the self-adjoint operator b· X, it also commutes 
with the bounded operator (d-1b' X + i)-I. Consequently, 
Wa commutes with Ra : = T (d)(d-1b' X + i)-IT (- d) 
= (d-1T(d)b' XT (- d) + i)-I = (d-1b. X - b 0 Z(a) + i)-1, where 
b 0 Z (a) is the bounded operator introduced in Theorem 
2. As is easily shown, we have Ra - (- b 0 Z(a) + i)-I as 
d- oo • SincellWall-""IIWII andl!Rall-""I for alldER, we 
obtain 0= lim[Wa,Ra]=[W~,limRa] for d- oo • There
fore, and since b was arbitrary, W ~ commutes with the 
three components of Z(a). Further, the bounded opera
tors p1(pe pt1 / 2 =pJ IPI-1, j E {I, 2, 3}, commute with 
Wand with T (d) and hence with W~. Taken together, 
these statements yield that W ~ commutes with the 
bounded operator po Z(a) I PI-I = (a 0 P) I PI-I E 2E-1. Since 
the operator (a o P) I P 1-1 is injective, we easily conclude 
that W ~ commutes with E 2E-1• To proceed further, we 
observe that W ~ commutes with I@U2(c) for all c ER3 
and hence, since the mass operator M2 of I@U2 is a 
multiple of the identity, with the bounded operator Ei1 

= (M~ + pD-I / 2• Consequently W ~ commutes with 
E':;.I E 2E-I and hence with E and with U(t) for all t E R. 
Thus the theorem is proved. 

For applying Theorem 4 to a scattering theory as in 
Sec. I it is convenient to keep the rep. U fixed and to 
consider the set of all the wave operators that are ob
tained if U' varies over aU reps, which are allowed by 
the conditions (c)(I), (c)(2), (d)(2) in Sec, L These 
operators are characterized anew in point (iv) of the 
following definition. To be able to state some facts in 
due generality, in points (i), (ii), and (iii) three more 
general kinds of asymptotic operators are introduced. 

Definition 2: Let U be a positive rep. and W a bounded 
operator on H. Then W is said to be 

(i) a generalized wave operator for U, if there is a 
self-adjoint operator E' on H and a Borel functionf:R 4 

-R such that exp(-itE')exp[itf(E,pl,p2,p3)]-W as 
t- 00; 

(ii) a wave operator for U if there is a positive rep. 
U' and E E {+, -} such that 

U'(-t)U(t)-W as t-Eoo and U'(g)W=WU(g) 
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for aU g E P; 
(iii) an instant form wave operator for U if (ii) is 

satisfied with U' being such that U' and U coincide as 
reps. of the Euclidean group [:={(a,A)E P:ao=O, 
A E SU(2)}; 

(iv) a barycentric wave operator for U if (ii) is satis
fied with U being such that U' and U coincide as reps. 
of [ and X'=X. 

Obviously, any wave operator is a generalized wave 
operator (for fixed U). Two lemmas will give the facts 
that will be needed about these operators. 

Lemma 1: Let W be a generalized wave operator for 
U. Suppose that W commutes with U(a) for all aER4. 
Then W is the identity operator. 

Proof: Putf(E,P)=:F and W(t):=exp(-itE')exp(itF). 
For all T E R we have exp(itE')W(T) = exp[ - i(T - t)E'] 
Xexp(itF)=W(T-t)exp(itF) and, by T-oo, exp(itE')W 
= W exp(itF). Since W commutes with U(a), it com
mutes with exp(itF). Thus w2 = lim exp(- itE') exp(itF)W 
= lim exp(- itE')W exp(itF) = lim exp(- itE') exp(itE')W 
= W for t - 00. Finally, since W as a limit of unitary 
operators is isometric, we have 1 = W*W = w*w2 
= (W*W)W=W. 

Lemma 2: Let WI and W2 be wave operators for UI 
and U2 resp. and let the time direction E in condition 
(ii) of Definition 2 be the same for WI and W2• Then WI 
@W2 is a wave operator for UI @U2• 

Proof: Let Uj be such that condition (ii) of Definition 
2 is satisfied for Wi> Uj, Uj, j E {I, 2}. Put U : = UI 
@U2, U':=Uj@U;, W:=WI @W2• ObviouslyU'(g)W 
=WU(g) for aUgEP. For all r{JIEHI and r{J2EH2 we 
easily show U'(- t)U(t)r{JI@r{J2- Wr{JI@ r{J2 as t - EOO. 

Since U'(- t)U(t) is unitary and the r{Jl@r{J2'S form a total 
set in H I @H2, we find U'(- t)U(t) - W as t - EOO. Thus the 
lemma is proved. 

Now we are able to prove the main result. 

Theorem 5: Let U=U t @U2 be a tensor product of posi
tive reps., where the mass operator of U2 is a multiple 
of the identity operator. Let W be a barycentric wave 
operator for U and let W ~ be a generalized wave opera
tor for U. Finally, suppose 

(1@U2(da))W(1@U2(da)tI</J-W~</J as d- oo , 

for all aER3\{0} and aU </JEH. 

Then W ~ is the identity operator. 

Proof: Theorem 3 shows that W commutes with U(a) 
and boX for all a, bER3. By Theorem 4, W~ commutes 
with U(a) for all aER4 and Lemma 1 shows W~==1. 

Theorem 6: The assertion of Theorem 5 remains valid 
if all assumptions concerning W ~ are replaced by: 

0) W~ is of the form W~.I@W~,2' where W~,l are in
stant form wave operators for Ui with the same time 
direction (see Lemma 2); 

(ii) (W - W~)(1@U2(da))</J- 0 as d- 00, for all aER3\ 
{O} and all </J E H. 

Proof: By Lemma 2 we infer from (i) that W~ is a 
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wave operator for U. Further, by (i), W ~ commutes 
with l®Uz(a) for all aER3. Thus (ii) implies that the 
limit condition in Theorem 5 is satisfied. Hence the 
assumptions of Theorem 5 are satisfied. 

Obviously, Theorem 6 implies the statement (g) in 
Sec. 1. 
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In the present paper, in the framework of the linearized Einstein equations, systems of two integral 
equations are set up, which describe coupled sound and gravitational waves associated with small 
perturbations of hot nonrotating neutron stars made of a perfect fluid. Suitable majorizations are given for 
the successive iterations in view of obtaining the asymptotic distribution of large eigenfrequencies. 

1. INTRODUCTION 

In recent years a great deal of attention was devoted 
to the problem of small perturbations of highly col
lapsed stars in the framework of general relativity, 
and also in connection with convective and vibrational 
stability, 1-12 

The perturbations are usually decomposed into multi
poles and are treated in the framework of linearized 
Einstein equations, even if the question of the legitimacy 
of such linearization is still open. 13-11 In the present 
context we will consider nonrotating neutron stars, con
sisting of a perfect fluid, with a polytropic behavior of 
the equation of state near the surface. 

In 1973, Detweiler and Ipser, 18 gave sufficient condi
tions for the stability of single eigenmodes for such 
configurations. However, it is not sufficient to make 
sure that the eigenfrequencies wn do not lie in the lower 
complex W plane, since stability with respect to an 
arbitrary perturbation also requires completeness of 
eigenmodes, which is still an open question; as far as 
we know, this is true not only for neutron stars, but 
also for rotating black holes, 19, 20 

It seems plausible that the solution of the problem of 
completeness requires some information about the dis
tribution of the eigenfrequencies wn in the complex W 

plane, in particular for w - 00, and about possible ac
cumulation points, Such an analysis may also be of 
interest in connection with other problems, i, e" emis
sion of gravitational waves, The purpose of this paper, 
together with successive ones, is to determine the 
asymptotic distribution, for w - 00, of the eigenfrequen
cies in the w plane, To this aim, by means of a con
siderable amount of work, we write a system of coupled 
differential equations for the Lagrangian variation of 

a) Work supported in part by the Consiglio Nazionale delle 
Ricerche. 

b)Permanent address: Istituto di Fisica "Go Galilei" Via 
Marzolo, 835100 Padova, Italy. 

the pressure and for a suitable gravitational amplitude. 
This system is of the second order in each variable 
and describes coupled sound and gravitational waves. 
The equations were obtained in the framework of a 
gauge first introduced by two of US21 ; this result cannot 
be achieved in the Regge-Wheeler gauge, since, as 
shown by Thorne and Campolattaro, 22 in that gauge one 
obtains a fifth order system, Successively, the differ
ential equations, together with the boundary conditions 
at r = 0, are transformed into two systems of coupled 
integral equations. In the star's interior the first sys
tem, whose amplitudes are labeled with the letter "g, " 
is obtained from a zero order iteration which essen
tially describes a purely gravitational wave not coupled 
to matter. On the other hand, the second system, whose 
amplitudes are labeled with the letter "s," is obtained 
from a zero order iteration which describes a pure 
sound wave not coupled to the gravitational field. The 
physical solution (which is determined up to an arbi
trary multiplicative constant) is given by a suitable 
linear combination of the above solutions, satisfying the 
condition that the Lagrangian variation of the pressure 
vanishes on the surface. The iterative series for solu
tions of type "s" or of type "g" are here suitably 
majorized in view of obtaining the distribution of the 
eigenfrequencies for w - 00, These indeed are related 
to the zeroes of the Wronskian constructed with the in
ternal and external gravitational amplitudes. 23,24 Our 
treatment is in some respects similar to the one de
scribed by Newton25 regarding the analytical properties 
of eigenfunctions and eigenfrequencies of the 
Schrodinger equation in potential theory. However, it 
should be noted that particular difficulties arise in the 
present problem from the fact that the sound velocity, 
the energy density and the pressure, expressed as func
tions of the distance r from the star center, in general 
vanish as a power of ro - r, where ro is the star radius, 
These difficulties lead us to dividing the interval (0, ro) 
into two parts: (0,1') and (y, ro), where different analyti
cal expressions hold for the zero order iteration of type 
"s" and for a kernel appearing in the integral equations. 
These expressions, however, tend to each other in the 
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limit w - 00, whatever may be the value of r, provided 
that r,* 0, '* ro, and is independent of Wo 

The plan of this paper is the following: In Sec. 2 we 
sketch the procedure followed by us in order to obtain 
the coupled differential equations. These are trans
formed into integral equations of type "g" and "s" in 
Seco 30 In Seco 4 suitable majorizing quantities for 
the iterations and series of iterations are obtained, in 
which the w dependence is explicitly exhibited. In Sec. 
5 a similar procedure is carried out for the external 
solution, in the upper w plane. 

2. THE COUPLED EQUATIONS 

In the framework of a given frequency w, for a given 
multipole 1, let us introduce the amplitude 1) defined by 

b.P = 1)(r) PI (cose) exp(iwt), (2.1) 

where b.p is the Lagrangian variation of the pressure; 
1) is connected to the amplitude a for the Eulerian 
variation of the pressure by 

1]= a + P/~, (2.2) 

where ~ is the amplitude for the radial component of 
the fluid displacement defined by 

e = Hr) P,(cos e) exp(iwt)o 

1](r) must satisfy the condition22 : 

1) (ro) = 0, 

where ro is the star radius. 

(2.3) 

(2.4) 

Let us further introduce the gravitational amplitude 

u =zr-2 = r-2[exp(- v) y - exp(- A) «(Vi /2) + r-i ) hi], 

(2.5) 

where y and hl have been defined in Ref. 21. 

Here we want to obtain two coupled equations for the 
amplitudes u and 1). In order to do this, first consider 
Eqso (1 09), (1.10), and (B4) of Ret 21. By algebraic 
elimination of the amplitudes H, H2 one obtains 

(r~ ) 2 1 (1 + 1)[ exp(A)acp - 2r-2] - cp exp(- v) w2r-l hl 

+ [r-2al (l + 1) - 2r-1 exp(- (A + v» w2] hi 

+ 2r-1 exp(- 2v) w2y - 1 (l + 1) r-2 exp(- v) y' 

+ 81TW 2(p +p) exp(A - v) ~ = 00 (2.6) 

Moreover, consider the following combination of the 
above equation with Eqo (B2) of ReL 21 ~ 

Vi "2 exp(- A)(20 6) - r-2w 2 exp(- v)(B2) = 0, 

which reads explicitly: 

exp(- A)[v' r-1l(l + 1) - 4w2 exp(- v)]u ' 

238 

- [2w 2 exp(-(A + v))(3v l + 2r-1) + r-1l(l + 1) 

x (2w 2 exp(- v) - (v,)2 exp(- A) - 2r-1v' exp(- A»] U 

+ 161Tr-1 exp(- v) W21) - w4r-2 Fhl = 0, 
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(2.7) 

(2.8) 

where 

F=4exp(-A +2v)+ w-2[(v,)2exp(-A)+321TP 

+ 8r-2(1- exp(- A»] exp(-(A + v» 

-1(1 + 1) w-4(v /)2r -2 exp(- 2A)0 (2.9) 

Now, from (1, 17) of Ref. 21 and (2.8) one obtains 

ul/+ (~VI- ~' +2r-1 w'F [VI1(1+1)rl -4W2eXP(-v)])ul 

+(1'-1 (A' + 5V' + 2r-1) + (v')2 - 2r-2 exp(A) + w2 exp(A - v) 

- r-2 exp(A) I (1 + 1) + ~ [r-1l (l + 1){2r1v l 
_ (v')2 

wF 

+ 2w2 exp(A - v)) - 2W2 exp(- v)(3 Vi + 2r-1) 1) u 

.pr-1 
+ -p 161Tw-2 exp(A - v) 1) = 00 (2.10) 

The above equation is one of the two coupled equations 
in the variables u and 1). 

In order to get the other it is necessary to write down 
the equations of motion 6(T ik ;k)=0 which for i=1,2,4, 
after elimination of angular and time dependent factors, 
explicitly reads 

(p+p)exp(- v)H+ (p+P)w2 exp(A- v) ~ 

- (v' /2)(a + 13) - a ' = 0, 

(p + P) exp (- v) y + (P + p) W 2y2 exp (- v) f: - a = 0, 

(2.11) 

(2.12) 

13 + (p' + (p + p)(2r-1 + A' /2)J ~ + (P + p) e 
-1(l+l)(p+P) f:- (p+P)H2/2=0, (2.13) 

where H2 and H have been defined in Ref. 21, f:, the 
azimuthal amplitude of the fluid displacement, is 
defined by 

(2.14) 

and 13 is the amplitude for the Eulerian variation of the 
energy density 021 

By algebraic elimination of f:, a,Y from (2.2), (2 0 5), 
(2.12), and (2013), we obtain 

I [H (AI) f (p + P) ~ - (p + p) e - 2r-1 + "2 ~ 

(2.15) 

and by algebraic elimination of a, e from (2,11), 
(2.15), and the derivative of (2.2) with respect to 1', 
we obtain 

[VII (AI) rl' + "2 (p + P) + p' 2r-1 + "2 

Vi 
+"2 (1 +l(l + 1) w-2r-2 exp(v» 1] 
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v' 
- (p+p)exp(- v)H+ "4(P+P)H2=0. 

Moreover, the following combination of Eqs. 
(1.13) of Ref, 21, 

exp(v) (~ [(1.11) + exp('\)(1.12)1- r;1 (1.13) 

_1(1
4
+1) y-l exP (,\)(1.10») =0, 

together with (2.5), gives 

H = exp(v) r-1(1 + v'r) H2 + I (I + 1) r exp(,\ + v) u 
2 2 

- 41Trexp(,\ + v) Q. 

(2. 16) 

(1.10)-

(2. 17) 

(2.18) 

By algebraic elimination of H, y, and Q from (2.2), 
(2.5), (2.16), and (2.18) we then get 

1)'+ ( VI+; + ~ 1(1+1)W-2r-2exp(v») 1) 

+ (~ _ w2 exp('\ _ v) + (V~)2 _ v' r-1 + (v~)2 1(1 + 1) r-2w-2 

~ r-1 ( v'r) 1(1+1) x exp(v'l(P+P) ~- (P +P)"2" 1 +"2" H2- -2-

x (P + p)(v'w-2 exp(v) + r exp(,\»u 

- ~ I (I + 1) exp(v - ,\) (~ + r-1
) (p + P) w-2h1 = 00 

(2019) 

Now the Eulerian amplitude {3 can be expressed in 
terms of 1) and ~ as follows, 22 

{3=?-P'~' 
s 

(2020) 

where v s is the velocity of sound o 

By algebraic elimination of {3 and H + 41Tr[ exp(,\ + v) 10: 
from (1.13) of Ref. 21 and from (2.18) and (2020), one 
gets 

H'z =2r-21(Z + 1) hi + r exp('\) 1(1 + l)u + ('\' - 2y-l)H2 

- 81Tr exp('\)(v;21) - p' 00 

(2021) 

In addition, by algebraic elimination of 0:, y, y', and 
hi from (B2) and (1.10) of Ref. 21, (2.2), (2.5), and its 
derivative with respect to r, one gets 

exp(- ,\)[161TP - 2w2 exp(- v) - v' (0 + 3r-1 exp(- ,\»] hi 

+ 81Tr1] + 41Tv'r(p + P) ~ - 2y2 exp(- '\)u' 

- [2 exp(- A) + 3v' r exp(- A) -I (I + 1)] ru 

v' - 2 exp(- ,\) H2 = O. (2.22) 

Finally by algebraic elimination of ht. hl' H2, Hf, ~, 
and ~' from (1.10) of Ref. 21, and from (2.8), (2.15), 
(2.21), (2.22), (2.19), and its derivative with respect to 
r, one gets 
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1]"+ { '- ,\' +2r-1 _ p'+P' +4 exp[- (2,\+ v)] w-2 
v 2 p+p F 

[ ~ (~) X "2 w 2 exp('\ - v) - v" 2r-1 + '4 

_ (~)2 (~r-l_ ~) + v' (iA'r-1 + 2r-2) 

(
U' ,\ '3 v" v' 1'-1 )]} -1(1 + 1) exp(v) W-2y-2V' 4 - '8 (v,)2 - "2 + -2- 1]' 

+ _ + -r-1(2u' + ,\') _ - r-1 +,\' +--{
v" 3 v' ( p' + P') 
2 2 2 p+p 

(
p, +P' u' ~ 

_ w-2r-21(Z + 1) exp(v) -- - + - (~ + ,\') 
p+p 2 2 

- ,\'r-1 +2r-2(exp(,\) -1») - exp(,\)l(l + 1)1'-2 

[
V' +,\' ( VI)] + V;2 w 2 exp('\) G + -2- r-1 + 2 

+ 1.. ( 4 exp(- ,\) (v' + ~ + v' I (l + 1) exp(v) W-2y_c) 
F w2 exp(v + ,\) 2 2 

x ~/(i'\'r-l + 2r-2) - v" (2r-1 +~) - (V')2( ty_1
- ¥) 

(
v''\' 3 v" V,y_l) 

-1(l+1)exp(v)w-2y-2 v' 4 - '8 (v')2_ 2+-2-

+ ~ w2 exp(,\ - V)] + 167T(p + P) r exp(- v) w-2 

x [r-ZV'I(Z+1)+w-2r-2eXP(V)I(Z+1) 

x (v'r-2 + (v,)2y -l exp(- ,\) _ 0 (VII + (V~)2 _ v~'\')) 

- (V2
3 

12(1 + 1)2w-4r -4 exp(2v - ,\)])} 1] 

+ 1 (l + 1) w-4(p + p) £"1 [exp(- 2'\) {VII [ 3(v,)2 

_41'-1 (v' + ¥ +r-1) -2V''\'] +v'y-l(,\'+2r-1j2 

+ (v,)2 [(V,)2 + (;)2 _ 3v'r-1- % v',\' _ 2r-2]} 

+ exp(-,\) r-21 (I + 1)(2v" - 2V'y-l - ,\'v' + 2(~ )2)] u = 0, 

where 

[

Vll 
G = exp(- v) - w-2 exp(-'\) 2 - v'r-1 

+ (V~)2 w-2r-2 exp(v) I (l + 1)] . 
The above equation and (2.10) form a system of 

coupled equations in the variables u, 1]. 

(2. 23) 

(2.24) 

A remarkable feature of the system is that there are 
no coupling terms in u', 1J' since they cancel out 

This fact strongly simplifies the whole treatment. 
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3. INTEGRAL EQUATIONS FOR THE 
INTERNAL SOLUTION 

In the following we will consider hot neutron stars 
with a polytropic behavior near the surface; in this 
case one has for l' - 1'0, 22 

v = (J.L\ 
8 p + p) 

(3.1) 

(3.2) 

Equations (2.10) and (2023) can be respectively writ
ten in the form 

°111 = Vl1u + V12 ?? 

0217= V21U + V22 17, 

(3.3) 

(3.4) 

where 01> 02 are the following differential operators: 

(j2 d B2 B' (V' - A' ) 2 V" - All 
01=--::J::"T +B1 - +~+~ - -_. - ---

dr dr 4 2 4 4 

2 l(l+1) + W exp(A - V) - --wz- exp(A - v), 
g 

Bl being the coefficient of 11' in (2 0 10), 

Wg = f' exp ( A ; v) dr', 

° 
° =--::J::"T +B - +~ +~ - ._- +-'J.. d2 d B2 B' (V' _ A' v' ) 2 

2 dr 2 dr 4 2 4 2v 8 

_---_..:....L+- -~ +w V" - AN 11" 1 (u,.) 2 2 exp(A - V) 
4 21's 2 l's 1'~ 

(3.5) 

(3.6) 

( 
_ l(l+1) [([+1) ) exp(A-v) - err - Y) ~ + e(y - Y) 2 1'2 

Ws (Ws- Wo) s 

A-I' f ' ( ) W8= exp -2-
dy' 

v ' s 

(3.7) 

(3.8) 

B2 being the coefficient of 17' in (2.23), e(x) the step 
function, r an arbitrary fixed w-independent value of 
Y, such that 0 < r < 1'0, 

+ (2W~F [l(l + 1) v'r-1 _ 4w2 exp(- v)l) 2 

+ (25F [l(z+1)V I 1'-1 -4W2
eXp (-v)l) I 

+ cf> [1(z+1)1'-1 (~(V')2_ A'v' -2v'r-1 2w4F 2 2 

- 4w 2 exp(A - V)) + 2w2 exp(- V)(V' + A')] , 

(3.10) 

(3.11) 

D1, Dz being respectively the coefficients of 1) in (2.10) 
and of u in (2.23); 
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v: = [~ (PI + pI) 2 _.! P" + p" +.! (~) 2 _ ~.' 
22 4 P + P 2 P + p 4 1.18 2v S 

- e(r-r) l([~1)eXp(A2V)] _[ p'+P' r-I 
V S (W8 -WO) p+p 

+ ~ -- + S + B r-I + ::2. + _:2 13 P'+P' (V'-'A')V I
] [- 132 B' 

2 P + P 41.18 2 4 2 

_ (VI - A') 2 _ V" - All] + w2 exp(A - v) 
4 4 v~ 

where 

I +P' 13 =E - 2r-1 + -p--
2 2 P + P 

(3. 12) 

(3,13) 

and C2 is the coefficient of 1) in (2.23); we observe that 
B2 is finite for 0.,; 1'''; 1'0 and vanishes as l' for l' - O. 
Near the surface the first four terms in the first square 
bracket of (3 0 12) diverge as (ro - rt2 owing to (3.1) and 
(3 0 2); this is the case also for the last term in the Same 
bracket since, owing to (3 0 2) and (3.8), 

(Ws - WO)2 -Yo - l' (1' -Yo). (3.14) 

In addition, taking into account (3.9), it can be easily 
realized that these terms cancel out one another so that 
their sum diverges only as (ro - rt1• 

The terms in the second bracket diverge also as 
(Yo - rtl, whereas those in the third bracket are finite 
for 0 ~)".,; Yo; w2 exp(A - v)/v; cancels exactly with a 
term appearing in C 2 , as it can be seen from (2023) and 
(2.24). Finally, taking into account the behavior of 
exp(- v)/W; for l' - 0, the sum of - err - 1') 
X [exp(A - v)]l (Z + 1)/ W~ v~ with the term y-ZZ (l + 1) exp(A) 
appearing in - Cz, is easily found to be finite for 
O·"'YcCC)"o. 

The other terms of C2, as it can be seen by inspec
tion, are finite for Y * roo and diverge at most as 
(Yo - yt1 for T - Yo; it follows that the same properties 
hold also for V22 • 

Observing the dependence on w2 of the different terms 
of V22 ' one can state in addition that 

IV22 1<C(Yo-y)-1, (3,15) 

where C is a positive constant, independent of rand w. 

The system of equations 

0lU = 0, 0z1)= 0 

allows the two solutions 

lI=uiol"'¢g}dXg). 17=1)~l",O, 

1
1)= 1J~Ol '" <P8[e(r- y)J,(x8) 

+ e(y - rl (a)i.i+l(X) + O!)i"f-l(X»], 

u =U;Ol '" 0, 
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(3.21) 

(3.22) 

where J •• 1 /2 (z) and H~!I /2 (z) are Bessel and Hankel 
functions; o!. and O!_ are constants determined in such 
a way that 1)~0) and (d/dr) 7)~0) be continuous at the 
"junction" point Yo In the following (3 0 17), and (3 0 18) 
will be denoted as "zero order gravitational and matter 
field solutions," respectively; these solutions are both 
regular for r= 0 but (3. 18) does not satisfy in general 
the condition (2.4)0 

In addition Eqso (3.16) also allow the irregular 
solutions 

(0)- -(~) 
u=uirr=¢cn''<'e, 

1)=1)1~~== ¢s[e(r- r)n,(xs) + 8(r- Y)(i3.ht) (X) 

+i3_h~-)(X»], 

(3 023) 

(3.24 ) 

(3.25) 

where NY+1/2 are Neumann functions and f3. and {3_ are 
constants determined in such a way that 1)~~~ and 
(d/ dr) 11l~~ be continuous at the junction point Yo 

Note that both in (3.18) and (3 0 24) the divergences 
arising from hr")(X) (of the type -X-i) are exactly com
pensated by the factor L(p+p)vs]1/2, whose behavior 
forr-ro is -(Ws - Wo)', owing to (3 01), (3.2), and 
(3.9). 

Let us consider now the following two systems of 
integral equations: 

u .. =u;O) + J; gl(r, r')[V11ug + V1211I ]r' dr', 

Us = J; gl (r, r')[ V11us + V12 11s]r' dr', 

11s= 1)~0) + J; g2{r, r')[V21us + V221)s]r' dr', 

u<O)(r)u<O)(r') - u<O){r)u<O)(r') 
( ') e itt trr c gl r,r =- [W(u(O) u( »] , 

c , irr r' 

, _ 17~O)(r) 1):~~(r') - 1):O~{r) 1)~O)(r') 
g2 (r, r ) - - [W(1);O >, 11~~h]r' ' 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

where W(lh, 1J!2) denotes the Wronskian with respect to 
r constructed with the functions 1J!t.1J!2 o 

The solutions of (3.26) or (3.27) also satisfy the 
system (3.3) and (3.4)0 In the next section it will be 
shown that they may be obtained by successive iterations 
and that they are regular at the origin. 

The solutions of (3.26) and (3.27) will be denoted 
repsectively as the "gravitational solution" and the 
"matter field solution. " 

The physical solutions satisfying (20 4) is obtained by 
the combination 
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4. MAJORIZATION OF THE ITERATIVE 
INTERNAL SOLUTIONS 

(3 0 30) 

(3.31) 

(3.32) 

Successive iterations can be given for the systems 
(3 026) and (3.27), 

u <n+O - J.r g (r r') (V u In) + V 1)<n» dr' - ° 1, 11 12 r' , (4.1) 

1)(n+l)=J.
r 
g2(r,r')(V21U(n)+V221)(n»r' dr', (4.2) 

° 
) u(O) == u;O) ~ u<O) == 0 

(1)(0) == 0 or ~ 11(0) == 11~0) 0 (4.3) 

We want to obtain suitable majorizations of the Single 
iterations and of their sumso To this aim, in both cases, 
it is convenient to introduce ii, ~ defined by 

u = ur-1[L( Ix s 1)]1+1 exp( IImw I W.), (4.4) 

11 = 1j r-1 (p + p)l /2 v! /2 {8rr - r)[L( Ix.1 ) ]'+1 

+ e(r- r)[L(IXI )]-i}exp(IImw I W.), (4.5) 

where 

x 
L(x)= 1 +x • (406) 

Let us introduce 17;n), ~in), u~n), and ~~n) in analogy 
with (4.4) and (4. 5). 

Moreover, let us define (j = 1, 2): 

Vlt = Vlt exp[(v- A)/2]vs[L(lxs l)]'+1 

X [OJI + oJ2 (p + p)-l /2 v;l /2], 

VJ2= Vj2Vs exp[(v- A)/2]{[L{lxs l)]'+1 err-r) 

+ 8(r - r)[L( IX I )]-i} [on + Ojl (p + p)1/2 v!f2], 

gl(r,r')=g1{r,r') ~ [L(lxs l)]-'-l 
r 

x exp[ I Imw I (Ws(r') - Ws{r»], 

g2(r, r') =g2{r, r') ; exp[ I Imw I (Ws{r') - Ws{r»] 

[(P+p)1/21/2] 
X (P+p)1!2~\/2r' {[L(lxsl)]1+18rr-r) 

(407) 

(4.8) 

(4.9) 

+[L(IXI)]-i 8(r-y)}-1 0 (4010) 

(4.11) 
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Hereafter we will denote with C, Cr, Cz, ••• positive 
constants which are independent of rand w. 

As shown in the Appendix, we have then for 1 wi large 
enough 

Igol(1', 1") V1k(1")I", 1:1 (i,k=1,2), 

lU'iO)I<c, 1~~O)I<c. 

From (4.11) it follows 

Cn+1 
<-- j

WS 

. Iw In 0 

CI>"1W; 
= IwlnnI 

It follows that 

'" C 6 cnwsn 
nem n! I win 

(4.13) 

(4.14) 

(4.15) 

( 
W C W

2
C

2 
) 1+ s + s +00. 

(m+1)lwl (m+1)(m+2)lwI 2 

(40 16) 

_ em.! WQ' (cwo) 
- nt! I w 1m exp TWT . 

The same majorizations (4015), (4016) hold altogether 
for lu~n) I, I 17!n) I, as seen from (4012), (4013), and 
(4.14L 

The series of the iterations converge uniformly in r 
for I w I large enough and give the solutions of the re
spective systems of integral equations (401), (4.2). 
From (405), (3 018), and (4016) written down for 178 , re
calling the majorization (A20), we obtain in the limit 
I w I - 00, and I Imw I large enough 

I 
w I c 6 71 (m)(1') < .. -, - 11J(O)(r) I· 

"'.! '/S I W IS' (4.17) 

it follows that 1J!0) gives the dominant contribution to 
'T)s in the above limiL 

The above relation suggests that matter field waves 
are decoupled from gravitational waves, in the limit 
w - 00, up to the surfaceo However, a similar relation 
cannot be obtained for Ug, as seen from (3 017), (4.16), 
(4,4), and (A24). 

In order to construct the Wronskian one also needs 
the derivative of the gravitational amplitudes Us and Ugo 
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To this aim, from (401), (3028), (3 023), and (3.17) 
one gets for uin ) or u!n), by derivation, 

-- - W tj>-1 ..::::.I.JL + -- --du(n) [( dtj> l + 1) u(n) 
dWg - g dWg Wg w 

(4.18) 
where 

(0) () (0)(,) (0) () (0)(,) 
g I+1.! (r 1") __ 1/,.1+1 r U lrr r - U ir!),.1 l' U, r 

1 ,- [W(u Co ) u(O») , 
K , irr r' 

(4.19) 

A majorization similar to (4015), (4016) can now be 
obtained for du (n)/ dWgo In fact, gf+1.! is majorized as 
in (4013) together with (4.9), where g1 is replaced by 
gl+1.! (see the Appendix). Then the second term in (4017) 
is majorized according to (40 16), with a procedure 
which is completely similar to (4 011), (4012)0 Since the 
quantity which multiplies u(n) in (4018) is finite for 
I x g I > C, with the help of (A5) it follows that 

(~) x exp Iw I 

5. INTEGRAL EQUATION FOR THE 
EXTERNAL SOLUTION 

(4.20) 

In this paper we shall confine ourselves to consider
ing the region of the complex w plane defined by Imw? 0; 
furthermore, since the eigenfrequencies are symmetri
cally distributed with respect to the imaginary axis23 
it is sufficient to consider the region Rew? 00 

For ro. 1'0 the system (3 03), (3.4) reduces to a single 
second order equation 

(5 0 1) 

The "lngoing" solution of the above equation satisfies 
the boundary condition23 

limu_ exp(- iw Wg) = 1. 
r~ w 

The Eq. (5.1), together with this condition, is 
equivalent to the single integral equation 

u:O) = ¢g hi') (Xg) , 

g1 (1',1") = 2:W [exp (v; ;I)] 

(5 0 2) 

(5 0 3) 

where x~ =x g(1"') [the above expression is an alternative 
form of g1 (1', 1") given by (3 028), suitable for external 
solutions 1. 

The successive iterations of this equation are 
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u~")=J: gl(r,rl) V11 (rl) drl !:1 gt(rt>r2) Vl1 (r2) dr2X '" 

x 1: n-l gl (r n-h r,,) V11 (r ,,) <p ~(r ,,) Ii:-) (x ~(r ,,» dr". 

(5.5) 

For r> r 0 the functions v', A', and 4J appearing in 
the definition (3.10) of V 11 are given by 

2M 
v' =- A' = --::T exp(A), 

r 

iP=47 (5-9~), 
2M 

exp(- A)=l- r > 0, 

(5.6) 

(5.7) 

(5.8) 

where M is the mass of the star. Then, as seen from 
(3.10), V11 is of the form 

V11 == 1,.. t cpq (~ ,M) eXFP!A) Ppq (.! ,M), (5. 9) 
r p,q'O w r 

where cpq, Ppq are polynomials respectively in 1/w2 

and l/r whose coefficients depend on M, 

[
116M 28A:f2 ) 

F= exp(A) 4 + w·2 \7 - -yr 

(5.10) 

The successive iterations u~,,) for u. as obtained from 
(5.3), (5.4), and (5. 5) can be written in the form 

1 IT U~")=-(2' )" 6 6 00 '6 al(<p,(r)/<p,(rl» 
LW a a a 1 2 ,,00 

X V11 (r,,) hi -) (w W,,) dr '" 

Wm = W,(r m), ~1 == exp(- A) V11 , (5 0 11) 

where 0'10 a2, 0'3, ••• assume the determinations plus and 
minus. Let us consider the product of exponentials aris
ing from the functions Ii, (a,) whiCh appear in the inte
grand relative to a Single term of the summation over 
a 10 0'2, • •• ,a,,; this is of the form 

exp{iw[ W" + a "(W,,.1 - W,,) 

+a,,_I(W,,_2- W,,_I)+0"+a1(W,.- WI)]} 

=exp{iw[2Wm -2Wm +2Wm v v-I "-2 

(5.12) 

where m, are positive integers depending on the chOice 
of a10 a2, • •• ,a", such that 1.; m, .; n, m ,•1 '" mi' 

By introducing further 

ym=Wm-Wm_1o Yl=W1-W,. (5.13) 

we can set the argument of the above exponential, re
spectively for even and odd v, in the form 
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(5.14) 

or 

(5.15) 

where the indices of the y's inside a single parenthesis 
are consecutive. 

With reference to (5.11) let us introduce 

K:") (z) == exp('f iz) Ii:") (z). 

Then we can write u~n) in the form 

(") _ exp{iw W,) '" "' •• , '" IT K(aOK (-al) 
U_ - (2';w)" LJ LJ L.J 01 I I 

" at G2 an QO 

(5.16) 

(5.17) 

where the arguments of the various functions are 
omitted for sake of shortness and 8, == 8, (0'10 0'2, ••• ,0'") 

are zero or one according to the determination of 
0'2> 0'2, ••• , 0'". 

From the definition of W" for r> ro, one gets 

Wm=W,(rm)=W,.{r)+17m+2Mln (1+ r~2M) (5.18) 

17m =r m - r, r- 2M> ro - 2M> O. (5.19) 

From the above equalities, it is easily shown that 

(5.20) 

Since K:*)(w Wm ) given by (5.16) are polynomials in 
l/wWm, whose coefficients depend on 1 only, from the 
above inequality, we get for I w I large enough 

(5.21) 

Furthermore, recalling (5.8), (5.9), and (5.10) it 
is elementary to show that 

From the above inequalities and from (5. 9) it follows 
also that 

I V11 (r m) / < C / I r m /2. (5.23) 

It must be remarked that the constants C appearing 
in the above inequalities are independent not only of w 

but also of rj, r2,' .• ,r m-l. 

In addition, we have from (5.13), (5.16), 
(5.19), and (5.20) 
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Ym =r m - r m-l + 2Mln (;:_~ _2~M) , (5,24) 

Thus the exponential factors appearing in the inte
grand of (5.18), for Imw ~ 0, are such that 

I exp(2iw BmYm) I = exp(- 2 ImwBmYm) ~ 1. (5.25) 

Finally, we want to obtain a majorization for u:n) 

analogous to (4,16L Let us introduce the function 

F(",V)(r, w) = IK~")(wW,,)K:V\w W.,) Vl1 (r, w) I. 

Then, from (5,17) we obtain 

lu~n)I~~(-Im~Wg) ~ IKiap(wW,) I 
12w I al. a2 ..... an 

(5,26) 

From (5,21), (5,22), and (5,23) it follows that the 
last integral in the above inequality is majorized by a 
constant e independent of r n-l' 

Then from the identity 

lr f(rl)drl~ rl f(r2) dr2 0 0 ofr
n
_
1 

f(rn)drn 

(f~ f(r') dr,)n 
n! 

and from (5.21) and (5,27) we get 

l u(n)l~ exp(-ImwWg)en+l 
- 12w I nn! ' 

I
R I = I ~ u(n) I ~ exp(- ImwWg) e m+1 

m f;{,. - Iwlmm! 

(5,28) 

(5, 29) 

x 1+ + +000 [ e e
2 J 

Iwl(m+1) IwI 2(m+1)(m+2) 

exp(- ImwWg) e m+1 (ell I) 
< I w I m m ! exp w 

e exp(- Imw Wg) 
< Iwl m ' 

(5.30) 

Straightforwardly, a similar majorization can be 
performed for 

du~n) _w{(l +1 + 1.... d¢.L) u(n) __ 1_ 
dW, - wW, ¢, dW, - 2iw 

x 1r 

[li;:l(wW .. )h;-)(ww.,(r'»)-h;:l(wW
f

) 

xh:+) (w W,(r'»)l(Vl1U~n-l»r' dr'}, 

We obtain 

I 
~ du~n) I e exp(- Imw Wg) 
LJ -- ~ 1 
nom dW.. I wi m- ' 

APPENDIX 

(5.31) 

(5.32) 

Throughout this Appendix it is understood that some 
of the majoriza.i.ions which follow (e. g., I Vl1 l < C) hold 
"for Iwl large enough," whereasgl(r,r'), g2(r,r') are 
considered in the domain ° ~ r' ~ r ~ ro. In addition, 
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primed and unprimed quantities denote functions of 
r' , r, respectively. 

In order to obtain the inequalities (4,15), (4,16), 
(4,17), (4,20), (5,29), and (5,32), use is made of (4.13) 
which must be justified, In potential theory, majoriza
tions for the Green functions have been given. 26.27 We 
note, however, that in the present problem things are 
somewhat more complicated, For example, g2(r, r'), 
given by (3.29) together with (3.18) and (3.24), is con
structed with the Hankel functions of argument 
w(Ws - Wo), which diverge for r-ro• In order to get 
such majorizations, let us consider the following rela
tions implying spherical Bessel functions: 

jv(z) = Rv(z) sinz + Sv(z) cosz 

nv(z) = R,,(z) cosz - S,,(z) sinz 

where R,,(z), Sv(z) are polynomials in liz of degree 

(A1) 

(A2) 

l + 1, whose coefficients depend on l, if v is a nonnega
tive integer, 28 More generally, jv, nv, R", and S" are 
assigned in terms of power series expansions in z, 29 

whereas, for z - 00 asymptotic expansions in liz hold 
for Rv, Sv' In any case R", S" behave like z...,-t, - z-l, 
respectively, for z ~ 0, z ~ 00, and are majorized by a 
constant C2 for I z I> Cl> as seen from their expansions 
in powers of z, Equations (A1) and (A2) imply 

- W1 (r')gl+P" (r, r') = ¢,¢;U/+P(x,) n,(x~) - n/+p(x,,)}I(x;)] 

+ (R,+s> R; + S I.P S;) sin(x,. - x;) J, 

where p = 0, 1, 

(A3) 

Now the Wronskian WI is explicitly given by - w¢; 
x exp[(X - v)/2J; moreover ¢,., given by (3.20), satis
fies (as seen by inspection) the inequalities e i ~ r I ¢,I 
."S e2, It follows that I 1>/ ¢~ 1< e; then (A3) leads to the 
maj orization 

Igf+P.' (r, r') I < C I w 1-1 exp[ IImw I (W,- W;)] 

for Ix,I~lx;I·'>C. 

(A4) 

In order to also include the case Ix;1 «1, Ix"l~ e, it 
is sufficient to supply a factor [L( Ix; 1)]-' [see (4.6)] in 
the above equation; indeed, in this way, the correct 
divergence x;' appearing in the second member of (A3) 
is accounted for. So we have 

Ig!+p"(r, r') I <C Iw 1-1 exp[1 Imw I (W,- W;)] 

x[L(lx~I)]"lr'/r, Ix"I>C, (A5) 

When P = 0, a Similar argument leadS t026
•

27 

Igl(r, r') I < e Iw 1-1 exp[ I Imw I (W,- W;)][L(lx;I)]I+I 

x[L(lx~In-' r'/r. (A6) 

As regards g2, let us generalize its definition (3.29) by 
introducing 

(A7) 
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where, in analogy with (3. IS), (3.24), 

1);,0:'., = <p s[ err - r)i"j>(x s) 

+ e(r - r)(CI+hf:~(X) + ()'_ht~ (X)] , (AS) 

(0) [- - ( ) 1)lrr.'.~=<Ps 8(r-r)n,..,xs 

+ e(r - r){f3.hy~~)(X) + i3)i1~(X)]0 (A9) 

Note that 1>8' given by (3.21), is such that 11> . .i <p~ I < Co 

Then the following inequalities similar to (A5) and 
(A6) are deduced for r < r: 
Ig~+9>./(r,r') I <C Iw 1-1 exp[ IImw I (Ws- W;)] 

X[L(lx~1 ))"' r' /r, Ix.l> C, 

Ig2(r, r') I < C I w 1-1 exp[ I Imw I (Ws - W~)J 

X[L(lxsl)ll+l[L(lx~I)J-' r'/r. 

(AlO) 

(All) 

Let us further analyze the case r < y' ,s; r,s; Yo. Recalling 
the relationship between the Hankel, Bessel, and 
Neumann functions we get from (A7)- (A9) after a short 
calculation 

g ,..,.I+q(r r,)_l ~ [J7- 'X) ii- (X') 
2 ,- w <p~ "P \ I+q 

- nj.p(X) h .• (X')] (exp(v- Jt)/2)v s)r=r" 

(A12) 

Note that 

lX' I == Ixo-X~I? Ixo -xsl=lxl. (A13) 

So in (A12) the roles of the primed and unprimed vari
ables are interchanged with respect to those appearing 
in (AlO) and (All) and 1 is replaced by T. Further, we 
observe that X' - X = w (Ws - W~) and that near the star 
surface Vs - (Ws - Wo), 1>s - (Ws - WO)' owing to (3.21), 
(3 01), (3.2), (3.14), and (3.9). Then the following in
equalities similar to (AlO) and (All) are deduced: 

Ig~·l+q(r, y') I < C I w 1-1 (Wo - W} 

xexp[ I Imw I (Ws - W~)J[L( Ix I )fi, 
Ix'l> C, 

(A14) 

Ig2(Y, r') 1< C I w l-l[L( lx' I )];+I[L (IX I )]-i 
xexp[ I Imw I (Ws - W~)](Wo - Ws)i(Wo - W~)-(i-1). 

(A15) 

Let us consider further the case r' "" r ~ r. Introduc
ing in (3.29) the expressions for 0'+, G_, 13., and 13. 
[obtained by imposing that 1)~0 > and 1):~~, given by (3. IS), 
(3.24), be continuous at the junction point r together 
with their derivatives 1 we get with a short calculation 
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( ') _ (exp[ (Jt - &.!l) g2 r,r -w 
Vs T 

X{g2(~ r')[g~~'+I(r, r) - Ag2(r, r)] 

- gt1•1 (Y, Y')g2(1', r)}, 

A_(l+l_ Z+l) 
- Xrr) xsrr) , 

/7:'+I,,(y 1")= limg~+l,l(r r') 
002- , r";:.. " 

J,'+1(r r= limg2"I+l(r r'), 52+ , r ) ." , r .. T+ 
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(A16) 

(A17) 

(AlS) 

Clearly gt1" allows a majorization similar to (AIO) 
since Ix.(r) I > C; on the other hand g~~'.1 allows a ma
jorization similar to (A14), since IX' (r) I > C. From 
(A16) it follows that 

Ig2(1', r') I < C I w 1-1 exp[ IImw I (Ws - W~)] 

X(Wo- Wi[L(lx~I)]-'[L(IXI)]-i r'. (AI 9) 

Recalling the properties of v, Jt for l' - 0 one can see 
by inspection that the expression between square 
brackets appearing in V21 [see (2.23)] is majorized by 
a constant C for 0 ,s; r,s; ro, together wlthy-2 - exp(- v) W;2 
and q,y-l, which appear respectively in (3 0 10) and in 
Ref. 210 Then let us consider the majorizations of V lk 
given by (3010)- (3 012)0 In addition, F, given by (2.9), 
satisfies C1 < I Fl < C2 for I w j large enough. It follows 
IVI1 I<C,IVI2 1<Clwl-2

, 

Recalling further the pr_operties (3.1), from (3.11) 
we get I V21 1 < C (Wo - Ws) 21-1 1 W 1-4, whereas we have 
V22 < C(Wo - Ws )-2 owing to (3.15), (3 014). Now from the 
majorizations already given for gj, g2, and Vlk' together 
with (407)- (4.10), majorizations (4013) easily follow 
for I wi large enough, 

Finally, we want to prove that [for w - 00 and such 
that Ws is sufficiently far from zeroes of j,(z)] ~~o>, 
given by (40 5), satisfies 

C1 < I i7~O) 1< C2• (A20) 

Indeed the Bessel functions satisfy25 

II, (w Ws) I < C j [ L( I w Ws I) ],+lexp( I Imw I Ws); (A21) 

on the other hand, recalling tAl), with the above 
specifications for w, one obtains 

ii, (wWs ) I > C2[L(1 wWsl )]'+1 exp(1 Imw I W.). (A22) 

With similar arguments, for r> r, recalling the 
definition of G., G_, one gets 

C j < I (a)if·>(X) + Cl'_h/->(X) I 
xexp[- IImwl Ws][L(IXI)]i <C2• (A23) 

From (A21)-(A23), together with (405), one obtains 
(A20). Furthermore, a relation similar to (A21) holds 
for )1 (x g ) 

IiI (w WI') I < c[ L (I w WI' I ) ]'+1 exp( I Imw I Wg ), (A24) 
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Identification of the velocity operator in an irreducible 
unitary representation of the Poincare group for imaginary 
mass or zero mass and variable helicity 

Thomas F. Jordan 
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For an irreducible unitary representation of the Poincare group with imaginary mass or zero mass and 
variable helicity it is shown, as it was previously for positive mass or zero mass and fixed helicity, that 
the velocity operator can be identified by its transformations under the Poincare group together with the 
assumption that its different components commute with each other. In particular, there is no way to use 
an unconventional velocity operator to avoid the tachyon interpretation of imaginary-mass representations. 

In a previous paper, I which provides an introduction 
to this one, as well as in an earlier paper by Ahmad 
and Wigner2 which provided the idea, it was shown that 
in an irreducible unitary representation of the Poincare 
group for positive mass or zero mass and fixed helicity 
(" discrete spin"), the velocity operator can be identi
fied by its transformations under the Poincare group 
together with the assumption that its components com
mute with each other. Here the same is done for ima
ginary mass or zero mass and variable helicity \' con
tinuous spin"). Again we find the conventional velocity 
operator is the only possibility. In particular there is 
no way to use an unconventional velocity operator to 
avoid the tachyon interpretation of imaginary-mass 
repres entations. 

Let P denote the generator for space translations. 
The generator for time translation is 

H=E(p2+m2)1/2, 

where E = ± 1 is fixed if m is zero and variable if m is 
imaginary. For the rotation and Lorentz transformation 
generators J and K we use the" standard helicity" form 
written first for zero mass by Lomont and Moses3 and 
then for positive and imaginary mass by Moses. 4 We 
use the conventions and notations of Lomont and Moses. 3 

The representation of the little group, the two-dimen
sional Lorentz group for imaginary mass or the two
dimensional Euclidean group for zero mass, has gen
erators 5, T 2, T3 where 5 is the helicity and the commu
tation relations of T2 and T3 with 5 are those of the .:v 
and z components of a vector with a generator for ro
tations around the x axis. The irreducible unitary rep
resentation of the Poincare group is spanned by eigen
kets I p, E, s) of P, H, and 5. The eigenvalues of 5 may 
be the integers s = 0, ± 1, ± 2, ... or the half-integers 
s = ± t ± t .. '. In addition, for each k = 0, ~, 1, t ... 
there is an imaginary-mass representation where s 
= k, k + 1, k + 2, ... and one where s = - k, - Il- 1, 
- k - 2, .. '. The operators T 2, T3 are given by 

(T2 ±iT3)lp,E,s)=t.(s)lp,E,S±1), (1) 

al Permanent. 
b)1976-77 • 

where t. are functions of s that are characteristic of 
the representation and are zero only when s is the maxi
mum or minimum eigenvalue of 5 so there is no 
I p, E, S ± 1) in the representation. Let K be 1 for zero
mass representations. For imaginary- mass represen
tations let K be the positive number such that; is _ m 2• 

From the formulas Lomont and Moses3 and Moses4 

write for J and K we can write the Pauli- Lubanski 4-
vector in terms of P, E, 5, T 2, T 3, 

P'J=P5, 

HJ + PXK=HP5 + KE(E2T 2 + E3T 3 ), 

where 
P = (p2)1/2, 

P=P/P, 

(2) 

(3) 

E2 = (P3 /p, P 2P 3 /P(P + PI)' - pUP(P + PI) - Ptl P), 

E3 = (-P2/P,P;/P(P +Pl ) +PdP, -P2P 3/P(P +Pl )). 

The vectors P, E2, E3 are orthonormal and P x E2 is E3, 

etc. 

Here we will show that the only possible velocity op
erator V in the irreducible unitary representation of 
the Poincare group is V = P /H because there is no other 
operator that transforms correctly under the Poincare 
group and has components that commute with each 
other. Let us be more specific about the transforma
tions. We assume V is translation-invariant and time
independent, rotates as a vector, and Lorentz trans
forms as a time-independent velocity should, as charac
terized by the commutation relations l 

(l/i)[Vj , Kkl = Vj Vk - Ojk 

for j, I? = 1,2,3. 

Let 

Uo=(1_V2).1/2, U=V(1_V2).1/2. 

From the Lorentz transformations of V, described by 
the commutation relations (4), it follows that Uo, U 
transform as a 4-vector, in particular that 

(4) 

(5) 

Also, from our assumptions about the transformations 
of V, it follows that Uo and U are translation invariant 
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and time-independent, Vo is rotation-invariant, and U 
rotates as a vector. 

From Eqs. (3) and (5) we have 

K€PE3(l/i)[Vo, T21- K€PE2(l/i)[Vo, T31 

= (l/i)[Vo, px (HJ + px K) 1 = px (px (l/i)[Uo, Kj) 

=- px (pXV) =p2v - p(p. v). (6) 

From Eq. (2) we see that Vo commutes with S. Now P, 
€, S are a complete set of commuting operators so, 
since Uo commutes with P, €, S, it must be a function of 
them. Also p. V must be a function of P, €, S; it com
mutes with P and H and is rotation-invariant so from 
Eq. (2) it follows that it commutes with S. From Eqs. 
(1) we find that for a function I of P, €, S 

[r(S) , T2 ± iT311 s) = [j(s ± 1) - I(s)] t.(s) Is ± 1) 

= [r(S) - I(S'!' 1) ](T2 ± iT3) Is), 

[r(S), T21 =H2/(S) - I(S + 1) - I(S - 1) ]T2 

+ (i/2)[j(S + 1) - I(S - 1) ]T3, 

[j(S), T31 =H2/(S) - I(S + 1) - I(S - 1) ]T3 

- (i/2)[j(S + 1) - I(S - 1) ]T2• 

The dependence on p, € is suppressed here because it 
plays no role. Then from Eq. (6) we see V is of the 
form 

(7) 

V=A+B2T 2+B3T 3, (8) 

with A, B2, B3 functions of P, €, S. Since Vo also is a 
function of P, €, S, we have isolated the dependence on 
T2 and T3• 

From Eq. (2) we find 

3 3 

[Vj, S] =P-i 0 Pk[Vj , Jk] =P-i 0 P k i€jkl VI 
k=i hi 

for j = 1,2,3 or 

(l/i)[U,S]=pxV. 

Substituting the form (8) for U, we get 

- B2T3 + B3T2 =pxA +px B2T2 +px B3T3' 

With this and Eqs. (1) we can set 

(9) 

PXA=O, PXB2=B3, PXB3=-B2 (10) 

because if there is a maximum or minimum value of s, 
the value of Bz - iB3 at the minimum value of s, or Bz 
+ iB3 at the maximum value of s, does not occur in 

V =A +i(Bz - iB3)(T2 + iT3 ) 

+t(B2 + iB3)(T2 - iT3 ) 

and, since 

(l!i)[Tz ± iT3' sl =± i(Tz ± iT3), 

it is just these superfluous parts of Bz, B3 that are not 
made to satisfy Eqs. (10) as a consequence of Eq. (9). 
Since Bz and B3 are perpendicular to P, we can let 

B2 = BzzEz + B23E3, B3 = B32E2 + B33 E3' 

Then from Eqs. (10) we get 
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so we have 

(11) 

with A, C, D functions of P, €, S. Now we see that Eq. 
(6) breaks down into 

K€(1/i)[Vo, T2]=PDT2 +PCT3, 

K€(1/i)[Vo, T 3] = - PCT2 + PDT3· 
(12) 

Both (H, p) and the Pauli- Lubanski 4-vector of Eqs. 
(2) and (3) have the transformation properties we have 
required for (Vo, V), but it remains to impose the re
quirement that the different components commute with 
each other. From our assumption that the different 
components of V commute with each other it follows that 
Vo commutes with V. From Eqs. (11) and (12) we see 
this implies 

2CDT2 + (C2 _ DZ)T3 = 0 

or 

(C + iD)2(T2 + iT3) - (C - iD)2(T2 - iT3) = O. 

With this and Eqs. (1) we can set C and D equal to zero 
because if there is a minimum or maximum value of 5, 

it is just the value of C + iD at the minimum value of 5, 

or C - iD at the maximum value of 5, that need not be 
zero as a result of these equations, and it does not oc
cur in 

U=A +tcEz - iE3)(C +iD)(T2 + iT3) 

+ i(E2 + iE3)(C - iD)(T2 - iT3)· 

Then from Eqs. (12) we see V o commutes with T2 and 
T 3 and thus with all the generators of the irreducible 
representation of the little group. This implies Vo is 
independent of S. SoU ° is a function of P and €. 

The Lorentz transformation generator is of the 
form3 ,4 

K=HQ+N, 

where N is an operator that commutes with P and €. 

Here Q is i'V on momentum-space wavefunctions with 
the invariant inner product. From Eq. (5) we see V is 
a function of P and €. Then V=U/Uo is a function of P 
and €. From our assumption that V rotates as a vector 
it follows that 

V=F(p 2
, €)P 

with F a function of p2 and €. Substituting this into the 
commutation relations (4) we find that the only possi
bility is 

Therefore, 

V=P/H. 
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Uniqueness of solutions to the linearized Boltzmann 
equation 
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Uniqueness theorems are proved for the linearized Boltzmann equation for both the "exterior" and 
"interior" problems under generalized Maxwell boundary conditions. The solution space is a weighted Lp 
space. and agrees with the space in which solutions have previously been constructed. 

I. INTRODUCTION 

Although the Boltzmann equation is more than 100 
years old, only recently have rigorous mathematical 
treatments of the equation and other types of irrever
sible statistical mechanics been developed which would 
parallel corresponding rigorous treatments of equilib
rium statistical mechanics as summarized for example 
in Ruelle's book. 1 Along such lines are investigations 
of uniqueness and existence of solutions to various 
forms of the linearized Boltzmann equation, which are 
still active areas in the mathematical physics litera
ture. A quasirigorous approach to the neutron transport 
equation, including constructive methods of existence 
proofs, was developed in 1960 by Case,2 and is reviewed 
extensively in a later book. 3 These same techniques 
were even earlier applied to the linearized Vlasov equa
tion describing plasma oscillations4.5 and later to the 
kinetic theory of gases6

- 8 and radiative transport in 
stellar atmospheres. 9 

In the early 1970's strictly rigorous methods for solv
ing these equations were introduced independently by 
HangelbroeklO and Larsen and Habetler, 11 These ap
proaches have been described and compared with one 
another and the Case method in a review paper. 12 

The purpose of the present study is to prove unique
ness to supplement the rigorous constructive existence 
proofs mentioned above, Except for a brief remark near 
the end of the paper, we restrict our attention to the 
linearized Boltzmann equation describing gas kinetics. 
Our technique is based on Case's treatment13 with two 
major differences. First, we consider the "exterior 
problem" instead of the "interior problem" studied by 
Case, although our results can easily be extended to the 
interior problem as well. More importantly, we believe 
that the (Hilbert) space used in Case's work is not the 
appropriate solution space. In particular, rigorous con
structive solutions have been obtainedl4• 15 in a different 
space (the space X;'(IRn) defined below], and so we will 
prove uniqueness in that space. Further, the existence 
of a certain integral, which is crucial to our proof, can 
be inferred in X;;'(lRn) , and not in Case's Hilbert space. 

alSupported by the National Science Foundation Grant ENG. 
75-15882. 

For these reasons, let us define the space X;(lRn), 
p > 1, by 

m 

X; (lRn) = ffi Xp(lR"), (1a) 
;=1 

(1b) 

where Lp(lRn
, fL) is the weighted Banach space with norm 

11I11 =J n I/lpdfL(c)=j n I/lpexp(-cec)dnc, (lc) 
III l\ 

[L;(lR n
, fL) is related to Lp(lRn

, fL) in analogy with Eq. 
(Ia)]. 

We call attention to two other attempts to develop 
uniqueness in a rigorous context. The first is presented 
in a series of papers by Cercignani and Pao (a biblio
graphy appears on p. 154 of Ref. 7; cf. pp. 140ff of the 
same reference for a description). Unfortunately, the 
existence proofs are not constructive. Furthermore, 
the weighted Banach space necessary for the demonstra
tion of existence encountered in Refs. 14 and 15 does 
not appear to be a convenient space in which to work 
(leaving aside questions of physical relevance). The 
second attempt is due to Giraud, 16 but his techniques 
are considerably more cumbersome than our simple 
methods based on Case's work. 

II. THE TIME-INDEPENDENT, EXTERIOR PROBLEM 

The time-dependent equation is considerably easier to 
treat than the time-independent, as a quick reading of 
Ref. 13 indicates, and so we will deal only with the lat
ter. The interior problem, discussed in Ref. 13, is a 
straightforward modification of the exterior problem, 
and the appropriate uniqueness theorem for that case 
will be stated without proof. 

The linearized Boltzmann equation can be written in 
the form 

c·Vh(c, r)=J(h), 

where c E lRn is the (dimensionless) gas velocity, the 
gradient operator is with respect to the position vari
able r, and the collision integral J(h) is dissipative. 
This means that 

j h(c, r) J(lz(c, r» d{l (c) ~ 0, 
:ft" 

(2) 

(3) 
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with equality iff J(h) = O. (This condition is necessary 
for the existence of an H-theorem for the Boltzmann 
equation). Specifically, the unbounded linear trans
formation J: x;'(lR")-Lj(lR",jJ.) is given by 

J(h)=J "K(c,c')h(c',r)djJ.(c')-v(c)h, (4) 
IR 

where K(e, c') is the collision kernel and v(c) is known 
as the scattering rate 

v(c) = J "K(c', c) dJ1 (c'). 
IR 

(5 ) 

The domain of J is the dense subset of X;(lR") for which 
J(hr) E Lj(lR", dJ1). [Where the spatial variable is held 
fixed, we shall write h(c,r)=hr(c); e.g., hrEXP'(lR").) 

In the model considered in Ref. 14, 111=1, n=l, and 
K(e, c f

) = 1lf;. The constructive solution of Eq. (2) ob
tained in that reference requires the space Xp(lR). This 
work has suggested our choice for the domain and range 
spaces of J in the more general case treated here. As 
a result of these choices the integral in Eq. (3) may 
exist as an extended real number. 

Time reversal invariance actually requires that 
K(c, e') be a real symmetric function of c and c f

; rota
tional invariance requires further that it depends only 
on c'c'. These facts are well known1,11; however, we 
shall not make use of these conditions in our uniqueness 
theorems. The following useful result is readily ob
tained from Holder's inequality. 

PYojJosition 1: If K(c, c / ) is a polynomial in c'· c with 
no constant term, then J(h) is continuous. 

Note also that the left-hand side of Eq. (2) defines a 
function in Lj(lR", jJ.) if the components of Vhr are con
tained in XP'(lRn

). 

We now consider solutions of Eq. (2) in the exterior 
of a bounded set V s::: JR" with connected complement and 
piecewise smooth, orientable boundary. Appropriate 
boundary conditions will be imposed on a V and at the 
point 00. We define a solution of Eq. (2) to be a map 
It: JR" - X; (lR") with continuous spatial first partial deri
vatives such that the components of Vhr E X;(lR"). (The 
continuity of the spatial partial derivatives is used only 
for the application of Gauss's theorem and so can be 
weakened. ) The boundary conditions which are generally 
adopted on av are the so-called linearized Maxwell 
conditions, namely 

h(c, rsl = (1- a)h(c lI , - c1.' rs) 

+ (2a/7T) J ns' c'h(c', r s) dJ1 (c') + ho(c, rs), 
ns 0 c' >0 

whenns'c<O. HerersEoV, O~a~l, and ns is the 
outward normal to av at rs; cJ. is the component of c 
perpendicular to av at rs and Gil is the parallel com
ponent. At infinity we require 

lim h(c, r) =h~(C), 
Irl- ~ 

in the sense 

lim f (ns ' c)[h(c,r)- h~(c)]2dS=O, 
Irl- ~ 

250 J. Math. Phys., Vol. 19, No.1, January 1978 

(6) 

(7a) 

(7b) 

where the integration is carried out over a sphere of 
fixed radius 1 r I. We now state 

Theorem 1: Subject to conditions (6), (7a), and (Th), 
Eq. (2) has at most one solution for c E lR", r E JR"\ V. 

Proof: Assume that two solutions h1 and h2 exist. 
Then h=h j - h2 obeys Eq. (2) subject to 

h(c, r) = (1- a)h(c ll , - cJ.> rs) 

(8a) 

and 

lim h(e,r)=O 
Irl- 00 

[the limit being defined by (7b»). 

(8b) 

We now proceed as in Ref. 13, i. e., multiply Eq. (2) 
by exp(- c 2)h(e, r) and integrate over d"r and dOc. The 
integral on the left-hand side can be converted into a 
surface integral over av plus a large sphere of radius 
1 r 1 - 00, by application of Gauss's theorem after the 
identity hVh =tV/z2 is employed, By virtue of (Sb), the 
integral over the surface of radius 1 r 1 vanishes as 1 r 1 

We thus arrive at Eq. (13) of Ref. 13, except that the 
order of integration is reversed: 

i fIR" fav lls'e/z
2
(e,rs)dSd/J-(e) 

= J "J n\ h(c, r)J(h) d"r d/J-(c). 
J\ J\ ,v 

(9) 

Because of the continuity of h(e, r) in r, Fubini's 
theorem applies, 18 and we can carry out the integration 
over c first. Dissipativity shows that the right- hand 
side of Eq. (9) is nonpositive (it may equal - 00), The 
left-hand side can be Simplified, as in Ref, 13, by ap
plying the boundary condition (8a), and we conclude 
[Eq. (8) of Ref, 13) that 

f]Rn lls' clhc, rs) djJ. (c) 

= [2a (1 - a) + 0'2)[ f ns ' clz2 (c, rs) djJ. (c) 
DS' 0>0 

The second integral always exists via Holder's 
inequality . 

(10) 

The first integral either exists, or is + 00, since lz is 
measurable. If the integral exists, we follow Case's 
reasoning13 (using the Schwartz inequality) to conclude 
that Eqo (10) is nonnegative. If it is infinite, the same 
conclusion is immediate. In either case it follows that 
both sides of Eq. (9) must vanish. Thus [Eq, (3)) 

(lla) 

and 

f ns ·ch2(c,rs )d/J-(c) 
ns" c> 0 

(llb) 

[These are Eqs. (14) and (15) of Ref. 13.) From the 
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Schwartz inequality and Eq, (8a) it follows that 

h(c,rs):=h(rs), everywhere for almost all c, 

i. e., a function of rs alone. 

(12) 

From Eqs. (Ua) and (2) we conclude further that 
h(c, r) is independent of r along any ray originating at 
point rs in the direction c, for ns' c > O. Consider two 
rays originating at points rs and r~ and intersecting at 
r. It follows that h(rs ) =h(r;) and, in fact, that h(c, rs) 
is a constant also independent of rs' Thus 

h(c,r)= canst, everywhere for almost all CE:JRn• 

Finally, from (8b) we conclude 

h(c, r)::= 0, r E: JRn\V, 

everywhere for almost all c E: JRn
• 

This completes the proof of Theorem 1. 

Uniqueness for the initial-boundary value prob-

(13) 

(14) 

lem is slightly Simpler to prove since it is possible to 
conclude, as in Ref. 13, that 

(15) 

which implies 

h(r,c,t):=O, rE:Rn\V, O<t<oo, 

everywhere for almost all c E: lRn. (16) 

Here we assume again that Il is continuously differen
tiable in t, and one extra change in order of integration 
is required. 

We may remark that the major portion of the above 
proof already appears in Ref. 13. However, it was felt 
necessary to justify certain of the mathematical mani
pulations in order to make Case's treatment "rigorous. " 
Note in particular that Case chose to work in the space 
L 2(lR3, fJ-); in fact, Kuscer 17 states specifically that this 
is the appropriate solution space, However, in this 
space there is no guarantee that 

exists [see Eq. (10)]. The existence of this integral is 
crucial to the proof of Theorem 1. Furthermore, the 
work on the BKG model referred to earlier indicates 
that our choice of the Xp spaces is appropriate. It is in
teresting that, in studies of the neutron transport 
equation, the Xp spaces also entered in a natural way. 19 

We now state without proof 

Theorem 2: Eq. (2), subject to condition (6), has, up 
to an additive constant, at most one solution for 

C E: lRn, r E: V. Here ns must be interpreted as the inward 
normal at rs. 

The proof proceeds in direct analogy with that of 
Theorem 1. Extension to the initial boundary value 
problem is also immediate. The additive constant am
biguity in the interior solution13 does not exist for the ex-
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terior because in the latter the behavior at infinity is 
specified. 

Siewert2° has raised the question as to the uniqueness 
of the solution to the equation of radiative transport in 
a half-space, subject to reflecting boundary conditions 
at x = 0 as given by Eq. (6). The relevant equation is 

a~ [ fJ-ox(x,J.1.)=J(~), J.1.E: -1,1], XE:lR+, (17a) 

where 

(17b) 

and solutions ~ are to be sought in Xp with norm 

It is trivial to show that J(~) is dissipative, and the left
hand side may be treated analogously to the gas case, 
One concludes that the solution to Eq. (17) is unique. A 
similar result can also be shown to hold for the full 
three-dimensional equation 

(2.Vi/J=J(i/J), 

where 

and 

J f«(2·(2')d(2':=l, 

The equation and the notation are identical to those 
of one-speed neutron transport with c=l, as dis
cussed in Ref. 3. The uniqueness proofs for the neutron 
transport equation, as described there, were primarily 
the inspiration for Ref. 13, and they may be made 
rigorous along the same lines as discussed in this paper 
for the Boltzmann equation, 

III. THE ONE-DIMENSIONAL BGK MODEL 

The present work was actually motivated by the con
structive solutions obtained in Refs. 14 and 15, The 
BGK model equations considered there are not really 
linearized versions of the Boltzmann equation since the 
dependent variable h does not represent the deviation 
of the gas distribution function from equilibrium, but 
rather certain moments thereof. For this reason, it is 
probably necessary to show (although it is stated with
out proof in Ref. 7 and is presumably well known) that 
the collision operator is dissipative, The relevant 
equations can be written 

dll 
Cdx=J(h), X,CE:JR, (18) 

where for the scalar case 

Js(Jz):= I: h(c', x)dfJ- (c') - h (c, x), (19) 

and for the vector case 

(20a) 

where Q is a 2 x 2 matrix 
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Q(c)= 

L
ffiC2 -~) IJ 
If 0 . (20b) 

Furthermore, the boundary condition (6) is replaced, it 
turns out, by the simpler condition 

h(c, 0) =ho(c) + ah(- c, 0), c> 0, (21) 

where a = 0 corresponds to diffuse reflection and a = 1 
to specular reflection. (We are considering the half
space problem, x E 1R+, C E 1R. ) 

The proof for J s follows from the Schwartz inequality. 
For J v, one proves that 

Q(c) 1.: QT(c')h(c',x)d/l(c'), 

is a projection, from which the result follows fairly 
easily, The solutions as constructed in Ref. 14 can be 
verified to be continuously differentiable (in fact Goo) in 
x by application of the Lebesque monotone convergence 
theorem. The proof of Theorem 1 (and Theorem 2) is 
readily adapted to the semi-infinite case; in fact, the 
argument is somewhat simpler, since the gradient 
found in Eq. (2) is replaced by ah/ax, and one can sim
ply integrate from zero to infinity. However, the con
tinuity properties of these solutions suggest that the 
more general case treated here should satisfy the con
tinuity conditions imposed on h(c, r) which allow appli
cation of Gauss's theorem. 
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On the inverse scattering problem for a class of spin-orbit 
and central potentials8
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The nonrelativistic scattering of spin-l!2 particles by a certain class of central and spin--{)rbit potentials is 
considered. The potential coefficients associated with the phase shifts of all physical angular momenta at a 
fixed energy are deduced. It is shown that the construction does not lead to a unique solution and the 
found set of potential coefficients depend on two arbitrary constants. Finally the potential coefficients 
associated with transparent spin--{)rbit and central potentials are explicitly constructed. 

1. INTRODUCTION 

In this work we are interested in the construction of 
a certain class of spin-orbit and central potentials 
from the information on phase shifts for all angular 
momenta at a fixed energy. The class of spin-orbit 
and central potentials which we will be concerned with 
is the analog of the class of central potentials which 
was first studied by Newton. 1 By Newton's class of 
central potentials we mean those potentials whose 
associated potential coefficients, defined in terms of 
a zero-base potential, are zero for nonphysical values 
of the angular momentum. 

An important tool in construction of central potentials 
from phase shifts at a fixed energy is the so-called 
Regge2-Newton1 equation. The analog of this equation 
for spin-orbit and central potentials was first found 
by Sabatier. 3 The problem of constructing the potential 
coefficients from the phase shifts for spin-orbit and 
central potentials at a fixed energy was considered by 
the author in a previous work. 4 In that work we 
showed that, for a large class of spin-orbit and central 
potentials, the information on phase shifts can give us 
the potential coefficients only up to an unknown multi
plicative constant. We were also able to rearrange 
Sabatier's equations3 in such a way that the information 
which we can get for potential coefficients5 from phase 
shifts was enough to find the spin-orbit and central 
potentials associated with the given set of phase shifts 
at a fixed energy. 

The procedure will be as follows. Since we need to 
depend heavily on the work of Sabatier3 and on our 
previous results,4 in Sec. 2 we review the relevant 
parts of those works related to the construction of 
spin-orbit potentials from information on potential 
coefficients. In Sec. 3 we construct the potential 
coefficients from the phase shifts at a fixed energy. For 
the sake of completeness, in that section we also have 
reviewed the relevant parts of our previous work. 4 The 
main difference is that in the present work all the 
fundamental operators and their inverses are explicitly 
calculable. Section 4 is devoted to the problem of finding 
potential coefficients for a set of physical phase shifts 
all being zero. This section helps us to see how our 

alSupported in part by the Pahlavi University Research 
Council, Shiraz, Iran. 

method can be used and it also gives the potential coef
ficients associated with transparent potentials explicitly. 
In Sec. 5 we give the summary of the construction 
procedure. 

Restricting ourselves to the class of spin-orbit and 
central potentials which are the analog of Newton's 
class of central potentials, just like the central case, 
enables us to calculate the fundamental operators and 
their inverses explicitly. Having done so, we are able 
to show that if6 o~ = 0 (A -3) for large values of A, then 
we can construct the potential coefficients from the 
phase shifts. It also allows us to see the exact form of 
the nonuniqueness which exists in this construction. 
Furthermore, we can explicitly construct a set of 
potential coefficients which are associated with trans
parent spin-orbit and central potentials at a fixed 
energy. 

In this work we have limited ourselves to the problem 
of constructing potential coefficients from phase shift 
information as a function of the angular momentum 
at a fixed energy for a class of spin-orbit and central 
potentials which are the analog of Newton's class of 
central potentials. The details of construction and 
the asymptotic properties of the potentials considered 
in this work will be the subject of a forthcoming 
communication. 

2. A SURVEY OF PREVIOUS RESULTS 

The Schrodinger equation and the differential cross 
section for scattering of spin- t particles by central 
and spin- orbit potentials have the following forms 7: 

A'i'(r) + [1 - Uc(r) - 2L' SUs(r) ]'i'(r) = 0, 
(2.1) 

where 

1(8) = (1/2i)L::{(l + 1)[exp(2io;) -1] 

and 

g(8) = (1/2i)L: [exp(2io;) - exp(2ioi)]p} (cos8). 

Weare measuring the radial distance r in units of 
*, the reduced wavelength of the relative motion, which 
is fixed throughout the following. Writing above equa-
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tions in terms of the two possible angular momenta 
j=l±t, we have3 

d2 

r2 Jr2 >11(r) + y2[l - V(r) 'F 2AQ(r) ]>ItHr) 

= (A 2 
- t)'l1(r), 

where8 

Q(r) = tUs(r), V(r) = Uc(r) - Q(r), A =l + t, 

(2.2) 

and 'l1 are the regular solutions associated with j = 1 
± t of the above equations. 

The inverse scattering problem is that of finding the 
potentials V(r) and Q(r) from the asymptotic behavior 
of \f1(r). To do so, we first define the following input 
matrix4 : 

[

- e(r, r') r(r, r'q 

G(r, r') = /+(r, r') - e(r, r'U ' 

where 

e(r, r') = 6 a~u~(r)u~(r'), 
~E: (l 

/,(r,r')=:[: d~u~(r)u~(r'), 
~E:(l 

with 

for positive integer A, 

otherwise, 

n _ {' 1 1. 2 2. ... } 
~"-2,,2,,2, 

(2.3) 

and the potential coefficients d~ are to be defined later 
in terms of the phase shifts. 5 

Next we define an auxiliary matrix H(r, r') through 
the follo~::jl}g integral equation: 

H(r, r') = G(r, r') - for H(r, s)G(s, r')s-2 ds. (2.4) 

Having defined H(r, r') in terms of d~ we define the 
function t(r) to be the solution of the following 
equation: 

:r t(r) + Hi (r)t(r) + H2 (r)t2 (r) ==H3(r) (2.5) 

with limt(r) == 1 where 

Having found t(r), we define Q(r), F±(r), and h± by 
the following: 

d 
Q(r) = [2rt(r) ]-1 dr t(r) (2.6) 

and 

254 

F±(r)==exp[± for sQ(s)ds] 

h± = exp[± 1~ sQ(s) ds]. 
o 
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(2.7) 

(2.8) 

Next define the vector K(r,r') =[K'(r,r'),K-(r, r')] to 
be 

K(r, r') == F(r)h-1H(r, r')Jz, 

where 

h == rho+ hO]. F(r) = [P+(r), r(r)] and ~ 

Using the above definitions in (204), we get the 
Sabatier equations3 

K(r, r') = F(r)E(r, r') - IrK(r, s)E(s, r')s-2 ds, 
o 

where 

E(r, r') =h-1G(r, r')h = r- e(r, r') 

l!+(r, r') 

g±(r, r') = 6 b~u~ (r)u~ (r') 
~E:Q 

and5• 8 

b~ =h~d~. 

g-(r, r') l 
- e(r, r'~ 

(2.9) 

(2.10) 

It has been shown by Sabatier3 that K(r, r') defined by 
Eq. (2.10) is such that the following relation is 
satisfied: 

(2.11) 

if the potential coefficients are chosen in such a way that 
the following is valid: 

K±(r, r) = trF±(r){± r2Q(r) + for dS[S3Q2(S) - S V(s) ]}. 
(2.12) 

A look at the definition of Q(r) enables us to realize 
that both of the relations in Eq. (2.12) can be satisfied 
if we have the following relation: 

+ r-1F+(r)W(r, r)]. (2.13) 

Since the central potential V(r) is not known, therefore, 
Eq. (2. 13) is not a condition to be satisfied by the 
functions involved, but it is the definition of the central 
potential in terms of the input functions. So by using the 
above procedure it follows that we are to choose d~ in 
such a way that the regular solutions >It~ defined by 
Eq. (2.11) have the desired asymptotic forms. If that 
is possible then the potentials Q(r) and V(r) defined by 
the above procedure are associated with the desired 
phase shifts. In other words, the inverse scattering 
problem for spin-orbit and centeral potentials has 
been solved. 

In order to find d~ from the information on phase 
shifts at a fixed energy, we use Eq. (2.11) in Eq. (2.10) 
and find a representation of K(r, r') in terms of >It~(r). 
Using this representation in Eq. (2,11), we find the 
following relations: 

>ItHr) =F±(r)u~ (r) - 6 [>It! (r)b~ - ~ (r)a/.L ]L~ (r), 
/.LE:Q (2.14) 

where 

L~ (r) == for uJs)u/.L (S)S-2 ds. 
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We have been able to show4 that di can be found from 
Eq. (2.14), if the phase shifts are such that the follow
ing conditions are satisfied6 : 

rOrIQ(r)ldr<oo, 
o 

Q(r) = o (r-3) for large r, 

C~=O(Al/3) for large A, 

where 

C~ =dt - a~. 

(2.15) 

As was shown before, 4 the ci for nonphysical values 
of A are arbitrary. A different set of values for them 
corresponds to different classes of spin-orbit and cen
tral potentials which are all associated with the same 
set of phase shifts for physical values of angular 
momenta. Therefore, if we are interested only in 
finding a set of spin-orbit and central potentials which 
corresponds to a given set of phase shifts, then we are 
perfectly justified in making a specific choice for cL 
for nonphysical values of angular momenta. In this work 
we will choose them all to be zero, that is, 

ct = 0 for integer values of A. (2.16) 

It should be noted that c~ are the exact analog of the 
potential coefficients used by Newton1 in his study of 
the inverse scattering problem for only central poten
tials. The choice he made in his work is identical with 
the one we have made through Eq. (2.16). Therfore, 
we expect the class of spin-orbit and central potentials 
to which we are restricting ourselves in this work to be 
the analog of the class of central potentials studied first 
by Newton. 1 

3. DETERMINATION OF POTENTIAL COEFFICIENTS 

In this section we would like to find the potential 
coefficients d~ from the information on the asymptotic 
behavior of if1(r), that is, from the phase shifts for 
physical values of A. As was stated before, we are 
assuming that Eq. (2.16) is satisfied. The procedure 
to be used is identical with that used in our previous 
work, 4 but due to the need of defining the relevant 
operators for our special case, we find it necessary to 
give a brief review of how we are going to construct 
d~ from the phase shifts at a fixed energy. 

The starting point for finding dt is, of course, Eq. 
(2.14). We have shown4 that if Eqs. (2.15) are satisfied 
then we can use the asymptotic form of Eq. (2.14) when 
r tends to infinity. Doing so, and equating coefficients 
of eir and e- iT separately, we find that 

Bt exp[i(oi - A1T/2)] 

= exp[ - iA1T /2]- 6 {B~d7. exp[io~] 
"E:O 

(3.1) 

In deriving Eq. (3.1) we used the following asymptotic 
forms for large r 

>11- h±Bt sin[r+ 0i-lT(A- t)/2], 

(3.2) 
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L~ (00) =L~ = [A2 - 112]-1 sintlT{A - Il). 

Next, in Eq. (3.1), we separate the terms associated 
with physical values of A, from those associated with 
nonphysical values of A. Writing the result in a matrix 
notation, we have 

(3.3) 

(3.4) 

where the column vectors <pij and <P~ are defined in such 
a way that the elements of <pij are Btexp[i(ox- A1T/2)] with 
AE: no={t, 2, 3,'" } and the elements of <pi are similar 
except that Ac np=H,~,~,···}. ~o is a column vector 
with elements of exp(- iAlT/2) with AE: no. dt and ao are 
diagonal matrices with diagonal elements dt and a"" 
where A E: np and Il E: no. Note that in writing Eq. (3.3) 
and Eq. (3.4), we have made use of the fact that Eq. 
(2.16) is satisfied. 

Using Eq. (3.3), we find that 

[1- 2aoL~]ao(cpo - <Po) = - aoL2[d;<p; - d;<p;]. (3.5) 

It is easy to show that the matrix (1-2aoL~) = 
= - 2aoL~ is such that r~, except for some sign factors, 
is nothing but the matrix M(j). M(cd is the matrix 
which was first defined and studied in detail by 
Sabatier. 10 We find it very remarkable that the matrix 
lvI, first defined by Newton,l and its generalization 
l'vl"') play such an important role in the inverse scatter
ing problem at a fixed energy. In this work we shall 
be dealing with ill"') for values of l\' being equal to t, 1 
and ~. 

Following Sabatier's results, 10 it is now easy to see 
that the matrix L~ has an inverse f and also there is 
a vector v which is annihilated by L~. The matrix f and 
the vector v have the following forms: 

f2m'1+il_ f21+13 
2/+8 - 2m+1 +13 

and 

where 

4(2/71 + 1 + (3)2 _ (32]l\'~(8)(lIl<8) 

IT[(2l + W - (2m + 1 + i3)p] 

(3.6) 

(3.7) 

rt~(13) = r(n + 1 + (3)r(t)(2n + 1 + (3)/n! r(t - n)r(n +!3 + 1), 
(3.8) 

rt2(1l) = r(n + (3)rC~)(2n + !3)/n! r(t - n)r(n + (3 + t) 

with (3 = 1. We should note that rt~(8) and l\'!(8) are noth
ing but the functions l\'~ and l\'! first defined by 
Sabatier. 10 In this work since we need to work with 
these functions for different values of {3, therefore we 
need to elevate their importance by adding another 
index f3 in their 5!efinition. In spite of the simpler 
appearance the r given above is equal to that of 
Sabatier. 10 The realization that f can be written in the 
above form was the crucial point in being able to 
evaluate the matrices, which are to follow in a closed 
form. 
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Having the inverse of r and knowing that aii1 exists, 
we find that 

ao(rpo - rpo) = - Yv + irL2[d;rp; - d;rp;], (3.9) 

where 

y=ye i8 

with y and e being arbitrary finite real constants. Hav
ing found ao(<IIo - <110)' we substitute them in Eq. (3.4) 
to get an equation containing only terms related to 
physical values of A: 

<IIt=1it - (L: +S:)d;<II; +~ rft,.p; 

where 

±-t -LP- c;,,_ l.LPrLO Tjp-.,p±Y oV, Jp--z 0 p. 

(3.10) 

Making a long but essentially similar calculations as 
done by Sabatier10 for finding the inverse of M"'-), we 
find that 

S~ = - Ml + A/2J..L + J..L/2A]L~ + [sint7T(A + J..L)]/4AJ..L, 
(3.11) 

1i~ =Tjt exp[i(At -7TA/2)], 

where 

TIt cosAt = 1 ± y(I1T/2A) sin(7TA/2) cos(fI + A7T/2) 

and 

TI~ sinA~ = ± y(v'iT/2A) sin(7T A 12) sinCe + A7T/2). 

(3. 12) 

Some of the important relations needed to find S~ in a 
closed form are proven in the Appendix. 

Next we write Eq. (3.10) in terms of its elements: 

B~exp[i(o~- A1T12)] 

=1Jt- '6 [L~ +S~]d~B~ exp[i(o~ - J..L1T12)] 
,,<=:rlp 

+ '6 S~d~B~ exp[i(o~ - J..L7T/Z)]. (3.13) 
,,<=:rlp 

If we equate the real and imaginary parts separately, 
after we have multiplied Eq. (3.13) by exp[- i(l5~ 
- A7T /2)], we find that 

:y~= '6 D![(l +tanl5~ tanot)(M~ +S~) 
IJ.EJlp 

- (tan6~ - tanoi)N~] 

- '6 D~ [(1 + tan1i~ tan1i~)S~ - (tan6~ - tan60N~ ] 
,,<=:Op 

and 

B~ =Tji cos(Ai - 15~) + B {D~ [(cosoi + tano~ sinl50N~ 
,,<=:np 

+ (tanot coso~ - sin1i~)S~] 

- D~ [(coso~ + tano~ sinoVN~ 

+ (tano~ cosoK - sin1ii)(M~ + S!) ]}, 

where8 

M~=iA.jI..1L~=I/[J..L2_A2] ifA-J..Lodd, 

= 0 otherwise, 
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(3.14) 

(3.15) 

S~ =i'-'''lS~ = - iM~ (1 + A/2J..L + J..LIZIl), 

N~ =i'-"S~ + (4:) 15~ = {cOS[7T(A- J..L)/2] 

x sin[7T(1l + J..L)/2]}!4AJ..L, 
(3.16) 

N~ =N~ - (7T/4A)O~, 

)Ii = TjHcosAt tanot - sinAi). 

So the problem of finding d~ is reduced to the problem of 
finding D~ from Eq. (3.14). Using the found D~, we can 
then find Bi from Eq. (3.15). Having found D~ and B~, 
using Eq. (3.16), we are then able to find d~. 

Except for giving the explicit form of all the operators 
involved in our method, what has been presented up to 
now is the same as in our previous work. 4 At this point 
we have to depart from the previous method for finding 
D~, because the specific choice of ci (for nonphysical 
values of the angular momentum) made here would 
force severe conditions on 15t in order for the matrices 
involved to be invertible. The reason is that in Eq. 
(3.14) the value of 0112, which corresponds to j = - ~, 
is not physical and is not given to us by experimentation. 
Therefore, the value of l5i/2 is a free parameter in this 
analysis. Unfortunately, there seems to be no simple 
way to use this freedom on 0i/2 in Eq. (3.14), in order 
to make the inversion possible in general. To make use 
of this freedom, we will follow a method which is essen
tially the same as that used for eliminating the coeffi
cients associated with other nonphysical values of A. 
That is, instead of choosing 0in arbitrary, we choose 
the associated potential coefficient din to be arbitrary, 
Of course, once d1!2 is fixed, 15112 is no longer arbi
trary; it must be defined in a way that is consistent 
with the rest of our analysis. 

Choosing din arbitrarily and doing the analysiS which 
is to follow, one finds that the problem of inversion 
becomes possible if we choose di/2 to have the following 
value: 

(3.17) 

With this choice of din, we note from Eqo (3.13) 
that the following is satisfied: 

di/2Bin exp[i(6i12 - 7T/4)] 

= - i1in + L .. (L~!2 + S~(2)d:B~ exp[i(6~ - J..LlT/2)] 
"<=:l1p 

- B S:f2d~B: exp[i(l5~ - f..L7T/2)], 
.. <=:n; 

(3.18) 

where 

n- {3 57} "J>= 2'2",~,··· 
Next we substitute Eq. (3.18) in Eq. (3.13) and get 

a new form for Bi in which the factor on the left side 
of the Eq. (3.18) does not appear: 

B~ exp[i{o~ - A7T/2)] 

=1ii + A?hi11!2 - L' (A~+ + AthA~/hld:B~ 
",<=:n~ 
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xexp[i(6~ - J..I.1T/2)], (3.19) 

where 

A~±=HL~ 'F (L~ +2S~)]. 

Next, multiplying Eq. (3.19) by exp[- i(1)~- A1T/2)], we 
find that the imaginary part of the resulting equation 
for even nonzero values of the angular momentum satisfy 
the following equations: 

.. 
O'~ = 6 P~~ 'F ~ + (T~ ± T~)[± ~T;;' 

moO 

~ 

+ 6 p;;,{± ~ + (T~± T~)[± Y'!.T~ + ~ 'F Z~)T;;']}, 
moO 

(3.20) 

where 

T;' =Htan6im+2+1!2 ± tan62m+2+1/ 2], 

T;. = ~[tan62m+l+1/2 ± tan02m+l+1/2]' 

~ = [1 'F 1/2(2n + 5/2) ](~ ± T~), 

and 

Y'!. = {(2m + i)[(2n + .~y - t]l (2n + ~ )[(2m + W - t]}~ . 

Doing the same thing for the case when angular mo
mentum is equal to zero, we get 

~ 

n-tan0i'!2 = L P~M~~~3!2 , 
moO 

where 

n+ = [1 + (1T/2)1/ 2y cos(e + 1T/4)] tanol/2 

and 

257 

_ (1T/2)1/2y sin(e + 7T/4) 

~ 

- 6 {[M~~~3/2(1 + T;" tano;d 
moO 

+Rl/2 T--t ,,+ ]p-+ 2",.3/2 m anul/2 m 

fi- = 1- t [P:'T~ + P;;'T;;,]M~~:3/2' 
moO 
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(3.21) 

(3.22) 

For odd values of angular momenta, from the 
imaginary part of Eq. (3.19) after it has been multi
plied by exp[-i(0~-A7T/2)], we find that the following 
is to be satisfied: 

a! + Di/2 ~ = t {x~ + (T; ± Ti)[X~T~ - (Z~ 'F Y~)T;;']}P~ 
moO 

.. 
+ 6 {(T;± Ti)[X~T;;' - (Z~ 'f Y~)T:'J 

moO 

- z~± Y~}p;;" (3.23) 

where 

X~ =M~~'11~~!2' z~ =MWF2[2(2m + m-1, 

1 (1-;; + (~1T)1/2y cos(e + 7T/4) 
- -2~(2-1=-+~%r.-) 21 +%:t= ~ 

± [v'21T1/2y cos(e + 7T/4) + 1 + Q]), 

Ii = t ( T+m - T;;')(Pm - P;,.) _ (T~ + T;;')(P~ + P;)) 
moO 2m + 2 2m + 1 

andll 

At this point, it is illuminating to note that Eqs. (3.20), 
(3.22), and (3.23) are equivalent to Eq. (3.14) for our 
special choice of 0i/2 given by Eq. (3.21). The reason 
for choosing to work with the former equations is that 
by making a specific choice for di!2 we have been able 
to eliminate the troublesome coupling between D~ for 
even and odd values of the angular momentum. Having 
done so, we will be able to find the inverses of the 
matrices involved and to justify the necessary inter
change of summations, without having to consider the 
detailed form of 0t appearing in the above matrices. 
So the method to be followed is first to find D~ for odd 
values of the angular momenta. Having found D~ for 
odd values of the angular momentum, we are then in a 
position to find g\ 0i12' .i, a±, ii, and aj from Eqs. 
(3.21), (3.22), and (3.23). Next we can solve for Di 
for nonzero even angular momenta from Eq. (3.23) in 
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terms of Di/2' Finally this information is put into 
Eq. (3.22) from which Di/2 can be found. Thus we have 
been able to find Di!2 and D~ for all values of A * t. 
Since we already know the form of di/2> we can use all 
the above information in Eq. (3.15). Doing so and us
ing Eq. (3.16), we then can find the potential coeffi
cients di for all possible values of the angular 
momentum. 

At this point we may also note that our method 
treats the information on oi12 in a very different way 
from the information on o~ for x* t. This we should 
have expected, because, looking at Eq. (2. 2), we note 
that the ot for A * t contain information about the central 
and spin orbit potentials, while 01/2 contains informa
tion only about the central potential. That is the reason 
for treating the information on oj/2, that is, Eq. (3.22), 
separately from the information given by the other 
phase shifts. 

We should also note that, for very special values of 
ot, it may happen that the unknown constants 0i!2 and/or 
Din drop out of Eq. (3.21) and/or Eq. (3.22). In that 
case Eq. (3.21) and/or Eq. (3.22) become conditions to 
be satisfied by the factors involved. Should we not be 
able to satisfy those conditions, then our method does 
not work for those special sets of phase shifts. Of 
course, this is nothing new. We have already seen ex
amples of phase shifts for which the associated central 
potentials cannot be constructed using the Newton1 

method. 

The next step in our method is to evaluate P:;' from 
Eq. (3.20). To do so, we shall keep one of the equations 
in Eq. (3.20) and instead of the other equality, weuse 
the sum of the two equations in Eq. (3.20). We then 
find an equivalent relation to Eq. (3.20), which in a 
matrix notation, has the following form: 

(J'= [X - z+ w: + W:1p'+ [y+ w: + W:1P-, (3.24) 

(3.25) 

The next step is to find a right inverse for X. We note 

that we can think of elements of X either as some of the 
elements of M or M(3

12). But a look at Eq. (3.24) in
forms us that we can write the following in a simpler 
form if we think of X to be associated with matrix M. 
In that case let us define X in the following form: 

_ 4 [(2m +1 +.!.)2_.!.]a111/2)aO(1/21 xm __ ( 1 )m+ 1+1 24m 1+1 
I - rr - (2m + 1 + W - (2l + 2 + W 

One can show that10 

XX = (X - Z)X = 1. 

(3.26) 

(3.27) 

We should also note that there exists a vector vO which 
is annihilated by X. That is 

XvO=O, 

where 

vO= (_1)na !ll/ 2 ) • 

(3.28) 

USing the method given first by Newton1 for the case of 
a central potential, we find that the matrix [1 + XIX':] is 
invertible if the phase shifts tend to zero fast enough 
for large values of the angular momentum. It then 
follows that 

iJ'=R{X[~O"+ + ~O"- - w:iJ-] +yOvO}, (3.29) 

where 

R=[1 +Xw:]-l, 
where yO is some arbitrary constant. 

Substituting Eq. (3.28) in Eq. (3.24), we find that p
satisfies the following equation: 

V-=(y+w-)iJ-, (3.30) 

where 

W~ w: - w+ fiX w: , 

+nYO/4(2n+~). 

Again because of the way ft;- depends on tano~ we note 
y + W is invertible, if Y has an inverse. Keeping in 
mind that for later calculations p~ will be required to 
tend to zero for large values of n, it is possible to show 
that Y defined belOW is the desired right inverse of Y: 

- 4(21+1+%)[(2m+~)2-tl(-1)m.I[(21+1+1J2-i] 0(3/2) 1(3/2) 

1'7'= rr(2m +~)[(21 + 1 +W -t ][(2m +~ )2 _ (21 + 1 + Wl am (\'1 
(3.31) 

It also follows that the vector v1, defined below, is annihilated by Y: 

v! = [(2n + i)2 - t ](- 1)na~(3/2) /(2n + i). (3.32) 

But since p- ~as to tend to zero for large values of n, the above nonuniqueness does not lead to nonuniqueness in the 
definition of P-. It follows that 

(3.33) 

Clearly Eq. (3.33) is the solution to Eq. (3.30) if necessary interchange of summations is justified. For all the 
terms containing o~, making suitable conditions on the asymptotic behavior of lit, the interchange of summations 
can be justified. The only term that may cause a problem is the last one appearing in the definition of V-. Using the 
relations given in the Appendix, we can explicitly find the value of the term appearing in the left-hand side of the 
following equation. Having done so, we have 

f: ~{i i7[21+~J-l}=[2n+~1-1. (3.34) 
m.O /;0 
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Therefore, the interchange of summations is justified, and P- defined by Eq. (3.33) satisfies Eq. (3.30). 

Having found p~, given by Eqs. (3.33) and 13. 29), we are then i~ a position to find ain, a, ii·, o.~, and a~ from 
Eqs. (3.21), (3.22), and (3.23). Noting that P~ tends to zero and p" tends to a constant for large n, we see that the 
above quantities are all well defined if at tends to zero rapidly enough for large values of the angular momentum. 
Knowing the above quantities, we are then in a position to find P~ from Eq. (3.23). Again, keeping one of the equa
tions in Eq. (3.23) as it is and, instead of the other equality, using the sum of the two equations in Eq. (3.23), we 
find an equivalent relation to Eq. (3.23), which in a matrix notation, has the following form: 

0.+ + Dina+ = [X + U: + U:]P+ + [Y - z + U: + U:]p- , (3.35) 

~(o-+ +0--) + ~Di!2(a+ +u-) == [X+ U:]P+ + [- Z + U:]p-, (3.36) 

where11 

U! == [T' ]{X[T'] - Z[T']} + [T·]Y[T·]. 

In this case, it is easy to see that X is related to M(3/2) so the right inverse, Z, of X exists. Furthermore, we do 
not have a vector12 which is annihilated by X. The right inverse of X is given by the following relation: 

4 [(2 +1+~)2_9]C'l!1(3/2)(lIO(3/2) 2m (1),+m m 2 ! m I (3 37) 
I == 1i - (2m + 1 + ~-j2 - (21 + W . 

We can then claim that P+, defined by the following, is the solution to Eq. (3.36): 

P+ ==ftH(a+ + a-) + ~Di/2(a+ + a-) + [Z - U:]p-}, (3.38) 

where 

R == [1 + ZU:]-lZ. 

To prove the above statement, we need to justify the necessary interchange of summations. If a~ == o(x -3) for large 
values of X, then, using an argument similar to the one given for Eq. (3.33), we see that the interchange of summa
tion is justified. Therefore, P+ defined by Eq. (3.38) satisfies Eq. (3.36). Substituting Eq. (3.38) in Eq. (3.35), we 
find an equation for p., 

0- + Di/2 17- == (Y + W+) p- (3.39) 

where 

0- == Mo.+ - if- -..4 (a+ + a-)], 17- == Ha+ - a- -X(a+ + (J-)], iV+ == U: + X(Z - U:), and X == U;R. 

It is easy to write down the form of the right inverse, A, of the matrix Y. We can also see12 that there is no vector 
which is annihilated by Y: 

Am _ 4(2m + 1 +%)[(2l +%)2 - t][(2m + 1 + %)2 - t](_1)l+mCX~(3/2)CX~(3/2) 
I - 1T[(zm + 1 +W - t](21 +%)[(2m + 1 +-w - (2l+!)2] 

(3.40) 

At this point, we should note that we could have written Eq. (3.31) and Eq. (3.40) in simpler forms, had we used 
the existing relations between 0!~(312), 0!~(3!2), t!!~(1!2), and cxt(1/2). But we have not done so, because the forms 
given indicate their origin in a more illuminating fashion. We also should note that although the matrix [1 +A flr'] 
looks similar to other matrices in this analysis, finding its inverse may not be as simple as the inverses of the 
other similar matrices, even if we assume that all the phase shifts vanish for values of the angular momentum 
greater .!han some numl>er. The reason is that in the definition of W'there appears a term associated with the 
matrix Z. Noting that Z is a degenerate matrix, 13 we see that with a little extra work [1 + A W] can still be inverted. 
Having done so, we have 

P-==!r+Di/2V>, (3.41) 

where 

V' == [1 + A iV+]-1A V., VO == [1 + A iV+]-1A 17-. 

So again P- defined by Eq. (3.41) is a solution of Eq. (3.39) if the necessary interchange of summations is justi
fied. Using an argument similar to the one given for Eq. (3.33), we can justify the interchange of summations if 
the arbitrary constants y and e satisfy the following equation: 

y cos(e + 1T/4) == - (1 + li)(21T)-1!2. (3.42) 

With the above choice of y and e the interchange of summations is justified and P- defined by Eq. (3.41) is the 
solution to Eq. (3.39). 

The last step in our method is to find Din from Eq. (3.22). To do so, we substitute the values of P± given by 
Eq. (3.41) and Eq. (3.38) into Eq. (3.22), then we are left with the following equation: 

(3.43) 

259 J. Math. Phys., Vol. 19, No.1, January 1978 M.A. Hooshyar 259 



                                                                                                                                    

where 

n = tan 011 2 - tan Oil 2 + i: T; u~ ~?;;~~anoi' 2)~, if+ = iR[u+ + (j-- + 2(Z _ U:) V+], UO = iR[a+ + (;:- + 2(Z - 0:) VOl. 
m=O m 2 

In general n is different from zero. Therefore, Eq, (3.43) gives us Di/2. Of course, it may happen that for some 
special set of phase shifts n becomes equal to zero, in that case Din is not given by Eq. (3.43) and (3.43) becomes 
a condition on the potential coefficients. In that case if Eq. (3.43) is satisfied, then Din can be chosen aribtrarily, 
and if Eq. (3.43) is not satisfied, then we are dealing with an exceptional set of phase shifts for which our method 
cannot give any solution. As is customary, in this work we will not be interested in solving the inverse scattering 
problem for such sets of exceptional phase shifts. 

At this point we have solved the problem of finding IJ,.' from the information on phase shifts at a fixed energy. 
Using Eq. (3.15), we find the potential coefficients di. As expected, the information on phase shifts does not give 
us d~ uniquely. The solution depends on two arbitrary constants yO and e. 

4. TRANSPARENT SPIN-ORBIT POTENTIALS 

In order to clarify the method and also because of its 
own right, we would like to apply the method given in 
Sec. 3 to the most trivial, but interesting inverse 
scattering problem for spin-orbit potentials. That is, 
we would like to find the potential coefficients associated 
with the set of physical phase shifts which are zero for 
all the physical values of the angular momentum at a 
fixed energy. 

(4.1) 

Starting with Eqs. (3.33) and (3.29) and noting that 
W., U', and 0' are zero, we get 

p~=yO(_1)mt¥~(1/2), P~=[2(2m+i)]-lp~. (4.2) 

In deriving Eq. (4.2) from Eqs. (3.29) and (3,33), 
use was made of the relations given in the Appendix. In 
what will follOW, we shall make extensive use of the 
identities given in the Appendix, in order to find the 
values of all the relevant sums which are involved. 
Having found~, we are then in a position to find <i, 
n" 01/2 , a;, and 01 from Eqs. (3.21), (3.22), and 
(3.23). Their values are 

tanoj(2=yO'lrrh, s1-=1, 

Q;+ = i tan(e + 1T /4) + y0(731T /4- f 1T), 

ut = -1/4(2l + 3/2)(2l + 3/2 'f i), (4.3) 

Ii := 0, a1 = [(2l + i)2 - t ]-1, 

where 

j3 = 161Tr(~)[r(m-4. 

In deriving these relations we have also used the fact 
that YCos(e +1T/4) should satisfy Eq. (3.42), that is 

y cos(e + 1T /4) = _ (21T)-1!2. (4.4) 

Using the above results in Eq. (3.38) and Eq. (3.41) we 
find that: 

P~ = _ ~(_1)m+lt¥~~1/2) /4(2111 +~), 
(4.5) 

P~ = (2/1 1T)[Dil2 - rrr:e/4](-1)m+10'~~1{2). 

The last step in deriving P;, is to find the value of Din 
which is found from Eq. (3.43). Using the fact that 
the physical phase shifts are all zero, we find that 
Eq. (3.43) reduces to the following simple form: 

yODj/2 = 2yO[1 - v'iTl3/4] - (1/v' 1T) tan(e + 'IT/4). (4.6) 
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Having found P;, and P;, from Eqs. (4.2), (4.5), and 
(4.6), we can then substitute them in Eq. (3.15) to find 
the associated potential coefficients. The interesting 
point to be noted is that although the arbitrary constant 
e came into consideration only as a phase ambiguity, 
in the determination of the potential coefficients the 
associated nonuniqueness is through the factor 
tan(8 + 1T/4), which can influence the potential coeffi
cients just like the other arbitrary constant yO. 

Since in this section we are interested in finding 
transparent spin-orbit potential, we note that the ex
ample we have given is associated with all phase shifts 
being zero except 6i12 which may not be zero. To get 
a truly transparent spin-orbit potential, we should 
require that 

(4.7) 

We note that the above condition is satisfied if we 
choose yO to be zero. In that case we note that Eq. (4.6) 
cannot be satisfied in general, except if we require a 
certain value for 8, that is, 

yO=0,8=_1T/4. (4.8) 

If we choose our arbitrary constants with the above 
values, we have 

0~=0, P;,=O, 

(4.9) 

P: = (2!f1T)[Dil 2 - f 1T:e/4](-1)m+1Q'~~V21, din =- 2/JT, 

where Din is an arbitrary constant. At this point we 
substitute Eq. (4.9) in Eq. (3.15) for the value of the 
angular momentum being zero: 

(4.10) 

Noting that Di12 is nothing but dj/2B1/2, we find from 
Eq. (4.10) the following relation: 

Di/2 =Di12 - f 1T~/2. (4.11) 

l.et us next write Eq. (4.11) and Eq. (4.9) in a more 
familiar form: 

(4.12) 
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where yl is an arbitrary constant and Dilz is now defined 
through yl and is no longer arbitrary by itself. The 
reason for writing Eqs. (4.9) and (4.11) in the above 
form is clear. Equation (4.12) is the analog of the 
familiar potential coefficients'0 associated with only 
central transparent potentials. From Eq. (4.12) we note 
that (D~ + D~) is the analog of the potential coefficients 
associated with transparent central potential. 

Having found D~ from Eq. (3.15), we can find the 
potential coefficients associated with transparent 
spin-orbit and central potentials; 

d~l+l+1/2 = 0, 

di'.,/Z = DZ1+1/Z[B21+112]-" 

where 

B± 1 1 1T D± 
21+112== 'I' 2(2l+%) - 4(21+t) 21+1/2' 

(4.13) 

At this point we have found the potential coefficients 
associated with transparent spin-orbit and central 
potentials. The found set of coefficients depend on one 
arbitrary constant yO. Since we found the set of poten
tial coefficients in such a roundabout way, it is instruc
tive to check that this set of coefficients indeed satisfies 
the equation we started with, that is, Eq. (3.14). 
Writing Eq. (3.14) for the case when all the phase shifts 
are zero and e is equal to -1T/4, we get 

o =L M~~+.v+jl Z (Dim+1+11 2 + Dim+l+1/ 2) 
m 

yV21T' I Z 
'f 2(2l+1+%) 

=LM~::""N2(D2m+1/2 +D2m+1/2) 
m 

"R21+1+i/2(D+ D- ) ±L..! 2m+l/Z 2m+1/2 - 2m+112' 

(4.14) 

For reasons which will become clear later, we have 
not used the fact that yV21T' I 2 is equal to - 1 in Eq. 
(4. 14). A look at Eq. (4. 12) informs us that the first 
equation in Eq. (4.14) is satisfied and the second equa
tion is reduced to the following form: 

yfl1T'/2 _ 2/+1+1 2 + _ 
2(2l + 1 + t) - - ~ R2m+1/~ (D 2m+1I2 - D2m+1/2)' (4.15) 

Using Eq. (4.12) and the identities given in the Appen
dix, it is easy to show that indeed Eq. (4.15) is satis
fied if y is given by Eq. (4.4). In other words our solu
tion is indeed the solution to our original equation. 

As the reader may have suspected, we did not give 
this verification in such detail, for its own sake, but 
we did so in order to point out that the set of potential 
coefficients that our method gives for transparent 
spin-orbit and central potential is not the most general 
set that one can have. Now that we know of a solution 
to (4.15), it is very easy to note that we can satisfy 
Eq. (4.15) for any value of y if we change the definition 
of (D~ - D~) given by Eq. (4. 12) by an appropriate factor 
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of y. So the most general solution to Eq. (3.14) when e 
is equal to - 1T/4 is given by the following relations: 

D~I+1+l/2=0, 

(4.16) 

D21+1/2 - Dil+11 2 = y{:1(21T)1i 2 (- 1) 16'~( 11 2) /2 (2l + i). 
One should note that our solution, Eq. (4.12), is a 
special case of Eq. (4.16), where the arbitrary constant 
y in Eq. (4.16) is chosen to be equal to - (21T)"112. The 
potential coefficients d~ associated with the most general 
set of transparent spin-orbit and central potential in the 
class that we are considering is then given by substitut
ing Eq. (4.16) in Eq. (3.15): 

dil+l+l!2 = 0, 

dil+1/2 =D21+1/2[B;,+1/2]-I, 

where 

Y(21T)1/2_1 1T 
Bil+l/2=l± 4(2l+%) - 4(2l+%)Di l +1/2' 

(4.17) 

In evaluating D~ from Eqo (4. 17) we should use D~ given 
by Eq. (4,16). We should also note that in Eq. (4.16) 
yO and yare arbitrary constants and in analog to the 
case of a central potential, we expect yO to be associated 
with the strength of the transparent central potential and 
y to be related to the strength of the transparent spin
orbit potential. 

The reason why our method is not able to give the 
most general solution to Eq. (3 0 14) for the special case 
when all the phase shifts are zero is, of course, the 
fact that in that case the troublesome coupling between 
odd and even angular momenta does not appear in Eq. 
(3.14). Therefore. one does not need to make any 
specific choice of din in order that the coupling not to 
appear in our analysis. An interesting point emerges if 
we try to find the solution to Eq. (4.15) without making 
use of our knowledge of a special solution to it. We see 
that the inhomogeneous term in Eq. (4.15) is not in the 
domain of the inverse of R, which we can construct. In 
other words, the solution to Eq. (4.15) cannot be ob
tained by a simple inversion. We find it remarkable that 
our method was able to find a special solution to Eq. 
(4.15) and also the vectors annihilated by At in a sys
tematic fashion. 

5. SUMMARY 

In this work we were able to construct explicitly the 
potential coefficients from the phase shifts at a fixed 
energy, for the case when the potential coefficients for 
nonphysical values of the angular momentum had a de
finite form given by Eqs. (2.16) and (3.17). In order to 
clarify the method of construction of the potential 
coefficients from the phase shifts at a fixed energy, let 
us note that the first step in the construction is to find 
P± from Eqs. (3.29) and (3.33). Having found P~, we 
are in a position using Eq. (3.21), to find the phase 
shift 6i/2' which is associated with a nonphysical value 
of angular momentum and is not given by experiment. 
Then we can find a, f2±, a~, a, and at from Eqs. (3.22) 
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and (3.23). Next we choose the arbitrary constant y in 
such a way that Eq. (3.42) is satisfied. Having done so, 
we are in a position to find Din from Eq. (3.43). 
Finally, substituting Di/2 into Eqs. (3.38) and (3.41), 
we can find P~. p~ and p~ give us the constants D~I+2+1/2 
and Dil+l+l/2. Knowing Di!.2 and di/2 enables us to find 
Din from Eq. (3.15). Now that we have found Dt for all 
values of the angular momentum, substituting them in 
Eq. (3.15) and using Eq. (3.16) enables us to find the 
potential coefficients. 

As is shown in Sec. 3, the set of potential coefficients 
found from the phase shifts at a fixed energy is not 
unique. They depend on two arbitrary constants yO and 
tan(e + 7T/4). 

Having found the potential coefficients, we are then in 
a position to use the method of Sec. 2 to find the asso
ciated spin-orbit and central potentials. The details of 
constructing spin-orbit and central potentials from 
potential coefficients, which are associated with the 
desired phase shifts at a fixed energy, will be the sub
ject of a forthcoming communication. 
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APPENDIX 

In this appendix we want to give the types of relations 
and identities that we need most frequently in our eval
uations of operators and sums. The method for evalua
tion of the series involved is exactly the same as that 
given by Sabatierlo in his work dealing with the inver
sion of matrix M("'). The only difference is that in this 
work we have to perform the operations in a more gen
eral form and to apply the method to some new sums. 
Space limitation does not allow us to show all the series 
we had to deal with, but the method of evaluation is 
essentially the same in all cases. 

The following functions were defined first by 
Sabatier10 : 

Si8)(r) = (±r)1/2J1/ 2+B(r) 

~ 

= 6 ('i~(mJ2n.l+B(r), 
n=O 

~ 

S6B)(r) = (±r)1/2J_1/ 2+B(r) = 6 ('i~(8)J2n+B(r). 
n=O 

With the above definitions it follows that14 

fo~ drr-1J A+8(r)Si B)(r) 

(A1) 

(A2) 

rWr(j3 + ± + ±:>..) - for:>.. + 2{3 + 1 > 0, 
- 2r(1 - ±:>..)r(l + (3 + ±:>..)r(± + ±:>..) 

(A3) 
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for:>.. + 213 > O. 
(A4) 

In this work 13 takes onthe values of ±, 1, t. 
N ext we define the following functions: 

~ ~t<B)J 
~l(B) = L. n 2r1+B 

n=O (2n -+- 1 + m -- (/1 + W ' 
(A5) /1*2n+l, 

(A6) 

which are generalizations of the functions S6P) and SiP) 
of Sabatier. 10 Using the same arguments as given by 
Sabatier, lOwe get 

[(:>"+13)2_ (/1+W]Ia~ drr-1J A+8st(B) 

[(:>.. + 13)2 - (/1 + 13)2]( drr-1JA+8~(B) 

_jjA(~) + J'" drr-1J SCM 
- 0,.. 0 A+8 0 , 

where 

BA(8) 
I,.. 

[
?I", (8) d J J d -S'" (81] 00 

= ':>0 r dr A+8 - A+8r dr 0 0 

(A7) 

(A8) 

(A9) 

Using the asymptotic form of the Bessel functions14 and 
the fact that we are only interested in those values of 
:>.., /1, and (3 for which the brackets in Eq. (A9) are zero, 
for r equal to zero, we get 

13),(8)_ ~ f ~!(8) sin(±7T) [(2n+l+{3)-(:>"+{3)] 
I,.. - - 7T n=O (2n + 1 + (3)2 - (/1 + (3)2 

(AI0) 

(All) 

Since series of the above types appear in many parts 
of this work, we give the method of their evaluation in 
detail. U sing identities for sine function, we note that 
the above can be written in the following form: 

13 A(B) = _ sint7T(l - :>..) 
l/.L sinz7T(l - /1) 

(A12) 

(A13) 

Of course, this is valid only if sin±7T(l- Il) or sin±7T1l 
are not zero. For cases of interest this condition is 
satisfied. Using the well-known relationl4 
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i7T(;\.2 - J.l2) 1" dr r-1J).(r)J", (r) 
o 

= sini7T(;\' - J.l) for;\. + J.l > O. 

We have the following results: 

B)'(B) = _ sini7T(;\. - 1) f" drr-1J Sj8) 
1" sin-!-7T(J.l _ 1) ,,«3 1 , 

o 

";\./" B).(B)=_Slll"27T drr-1J S(8). 
OIJ. sin-!-7TJ.l ".8 0 

o 

(A14) 

(A15) 

(A16) 

Except for our generalization to noninteger values 
and the constants which Sabatier did not write down 
explicitly (because in his case the above became zero) 
the values we have found are identical with Eqs. (2. 20) 
and (2.21) of Sabatier. 10 

As a last example let us consider one of the sums we 
had to evaluate in Sec. 4, that is 

-{3 ~ 2Q'~(1/2)(_1)n (A17) 
=L (2 3)2 

n=O 1T n +"2 

It is easy to write the above in standard form, and note 
that !I is nothing but -Bf~IW. Using Eqs. (A15) and (A3) 
for (3 equal to i, we get 
- r 100 

-1 -(1/2)( (3=v 2 0 drr J_1/2+1/2(r)S1 r) 

= 167TrW/r4m. (AlB) 

Of course, for our special values of J.l, ;\., and (3 all the 
restrictions in Eqs. (A3) and (A14) are satisfied and the 
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interchange of summation and integration is also 
justified. 10 

IR. G. Newton, J. Math. Phys. 3, 75 (1962). 
2T. Regge, Nuovo Cimento 14, 951 (1959). 
3p.C. Sabatier, J. Math. Phys. 9, 1241 (1968). 
4M.A. Hooshyar, J. Math. Phys. 16, 257 (1975). 
5b'i" which are denoted by ')i).(W", 1) in Ref. 3 are referred to 
as the potential coefficients. For solving the inverse scatter
ing problem one cannot work directly with bt and instead has 
to consider d~ which are related to bt through Eq. (2.10). 
Because of this relation, we also call dt the potential 
coefficients. 

6By j(x) =0 (g(x» for large values of x, we mean thatj(x)/ gW 
tends to zero. 

IN. F. Mott and H. S. W. Massey, The Theory oj Atomic 
Collisions (Clarendon, Oxford, 1965). 

8Please note the misprint in the corresponding equation of 
Ref. 4. 

9By the symbol A~ we mean the element (ij) of a matrix A. 
In the customary notation it would have been written as 
A/J• 

IOP.C. Sabatier, J. Math. Phys. 7,1515 (1966). 
I1In the evaluation of A!,,". the signs are decided in accordance 

with the associated index l or m. For example, in the evalua
tion of A!,;;., the upper sign is used in any bracket that 111 

appears and the lower sign is used in any bracket that l 
appears. 

12p.J. Redmond, J. Math. Phys. 5, 1547 (1964). 
13R. Courant and D. Hilbert, Methods of Mathematical Physics 

(Interscience, New York, 1953). 
14Bateman Manuscript Projects, Higher Transcendental 

Functions. edited by A. Ederlyi (McGraw-Hill. New York. 
1953). 
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In this paper, we introduce the spinor Helmholtz equation, a first order partial differential system, which, 
on the one hand, describes the behavior of a polarized electromagnetic beam at the Fresnel approximation 
and which, on the other hand, can also be used, from a numerical viewpoint, instead of the scalar 
Helmholtz equation for solving the Dirichlet problem. We give the main properties of this equation and of 
its solutions. 

INTRODUCTION 

The Helmholtz equations for a scalar field u(r) and a 
vector field A(r) in the usual Euclidean space :IR3 are 

~(r) + K 2u(1') = 0, 

V' A V' AA(r) - J(2A(r) = 0, V" A(r) = 0 0 

tl., V', are the Laplacian and nabla operators, K the 
wavenumber, r denotes an arbitrary point in :IRs, 
r =x1 + yj + zl with 1, j, 1, an orthonormal basis of :IR3• 

In this paper, we introduce the spinor Helmholtz 
equation which is a partial differential equation of the 
first order (contrary to the two previous ones) for the 
spinor field {1(r). A spinor is a geometrical object 
defined over a two-dimensional complex space which is 
the representation space of the two-dimensional unitary 
unimodular group SU(2). 1 

There exist two reasons for considering such an 
equation: 

1. First, from a numerical viewpoint, since the ap
proximation of derivatives by differences leads to un
stable computations, it is often better to use a system 
of first order partial differential equations than a par
tial differential equation of the second order provided 
that in both cases one obtains the same solutions. We 
will prove that any solution of the spinor Helmholtz 
equation is also a solution of the scalar Helmholtz 
equation. 

2. Physics provides the second reason; it is well 
known2 that for an unpolarized electromagnetic field, 
according to the Fresnel approximation, that is, broad
ly speaking, when one is only interested in the energy of 
the electromagnetic field, one can use the scalar Helm
holtz equation instead of the vector equation; but, it was 
recently shown3 that, at the same level of approxima
tion, and for a polarized electromagnetic field, one has 
to use the spinor Helmholtz equation. 

In this paper, we give the main properties of the 
spinor Helmholtz equation and of its solutions, and in a 
second paper, we will discuss some numerical methods 
to find these solutions. 

In order to simplify calculations, we use the tensorial 
formalism; the latin indices i ,j, k, , ,0 take the values 
1,2,3, 

a -3-
2 - Cly' 

We use the Einstein summation convention AIEl =A1E 1 
+A2E 2 +A3E 3, so that, for instance, the previous Helm
holtz equations become 

(oj 0 J + K2)u(r) = 0, 

ElmlEwOJ AR(r) = 0, oj AJ(r) = 0
0 

Eij/ is the permutation symbol; EIJk is zero if two or 
more indices are equaL E Ijk = 1 if the ordered set i,j, k 
is obtained by an even permutation of 1,2,3 and EOk = - 1 
for an odd permutationo 51} is the Kronecker symboL 

1. THE SCALAR HELMHOLTZ EQUATIONS 

We first give some results which will be useful 
later, about the scalar Helmholtz equation and its 
solutions o We begin with the Gauss-Ostrogradski the
orem which asserts that if V is a closed region and 5 V 
is its bounding surface, 

Iv o'AJ(r)dv = Iovn'A,(1')ds 

provided that the triple integral through V exists and no 
straight line parallel to an axis meets 5 V more than a 
fixed number of times; n j denotes the outward normal to 
5 V (see Ref. 4). 

This theorem holds for unbounded regions V as well 
as for bounded regions if the integrands of the surface 
integrals are O(r-3) in absolute value as r - 00, In the 
following, when we use unbounded regions, we always 
assume this condition is fulfilled. In particular, we will 
consider unbounded regions of the n type whose bound
ary 6 n = s u ~ is made of a surface S and of half a 
sphere ~ with center on S and with infinite radius, For 
these regions, the Gauss-Ostrogradski theorem gives 

In oJAj(r) d1' = Is nJAJ(rS
) drS, (1) 

where the notation r S means that r belongs to the surface 
S, 

To mathematically describe the behavior of a com
plex scalar field u(r), we need in addition to the Helm
holtz equation, 

(2) 

some boundary conditions such as (3a) for the Dirichlet 
problem or (3b) for the Neumann problem, 

U (1'S) = f(rS) , 

i'iJt(rS
) =g(r5

), r 5 E: S 

(3a) 

(3b) 
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where o.u(rS) is the normal derivative to Swith on=nJoJ• 
Of course, we could also consider more general bound
ary conditions as O!u(rS) + (3onu(rS) =h(rS) where a and (3, 

are arbitrary complex scalars. 

From (1), we easily obtain Green's identities provid
ed that the derivatives exist for the scalar fields u(r), 
u'(r), 

In (u'(r)ojoJu(r) + oju'(r) oju(r))dr 

= Is u'(rS
) onu(rS) drS, (4) 

1'1 {u'(r) o'o,u(r) - u(r) oJaju'(r)}dr 

= Is {u'(rS) Onu(rS) - u(rS) a,u'(rS)}drS• (5) 

If in (4), we take u'(r)=u(r), u(r) being a solution of 
(2), it becomes 

Is u(rS) anu(r'} drS = Ia {aju(r) o,u(r) - K 2u(r)u(r)}dr 

and, if we exchange the roles of u and u' and substract, 

is On lu(r') 12 drs = 2 1n {alu(r) oju(r) - K 2u(r)u(r)}dr 

=21nL(u,op)dr (4') 

where L (u, 0 jU) is the Lagrangian density. 

Let G (r, r') = G (r', r) be the Green function of the 
scalar Helmholtz equation, 

(0'0, + K2)G(r, r') = - o(r - r'), (6) 

where o(r - r') is the Dirac distribution introduced here 
formally as a shorthand definition that G(r, r') is a 
fundamental solution of (2) (see Ref. 5). Then, if in (5), 
we take for u(r) a solution of (2) and for u' (r) the Green 
function G(r, r'), it becomes 

u (r') = Is nJ{u(rS) 0 jG(r', r') - G(rS, r') 0 jU (rS)} drs, 

r' E: a, (7) 

an expression which in theory makes possible the com
putation of u (r), r E: a from the boundary data on S. 

Remark 1: It is easy to check that u(r) defined by (7) 
is a solution of (2); we have just to use (6) with the re
mark that r' *rs since (2) is valid in a not on S. 

Remark 2: To solve the Dirichlet or Neumann prob
lems we must use Green's functions Gl(r,r'), G2(r,r'), 
with suitable boundary data 

Gl (r
S

, r') = 0, 

OnG2(rS, r') = O. 

Then, the solution of (2), (3a) is 

u(r')= 1s u(rS
) onGl(rS, r')drS, r' E: a, 

while, for (2), (3b), we have 

u(r') = - 1s o,u (rS)G2 (r
S, r') drs, r' E: a. 

(7a) 

(7b) 

(8a) 

(Bb) 

Since these problems have a unique solution, (Ba) 
enables us to calculate anu(rS) and (Bb) enables us to cal
culate u(r S

). 

The Green function for a three-dimensional infinite 
domain has the simple form6 

G(r r')= exp(iKlr-r'j) 
, 417 I r _ r' I 0 (g) 
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Remark 3: In the half-space z ~ 0 where the surface 
S is the plane 170, z = 0, we have 

G (r r') = 1- (eXP(iK I r - r' I) _ exp(iK I p - r' I)) (ga) 
1, 417 I r - r' I I p - r' I ' 

G (r r,)=1-(eXP(iKlr-r'l) + eXP(iKIP-r'I)) (9b) 
2, 417 I r _ r' I I p - r' I ' 

r= (x,y, z), p= (x,y, - z), r'= (x', y',z'), 

while relations (8a) and (8b) become, with R2 = (x _ x' )1/2 

+(y_y,2)+z2, 

( ) = -..!1...J.f(' ,)exp(iKR)d'd' u r 27T OZ • x, y R x y, 
o 

( ) __ ..!j. (' ,)exp(iKR)d'd' u r - 2 g x ,Y R x y. 
7T '0 

2. THE SPINOR HELMHOLTZ EQUATION 
A. Definition and properties 

Let >It(r) be a two-component complex spinor w(r) 
= (:~:;l) and let ail i = 1, 2, 3, be the Pauli matrices 

1
0 11 10 -i/ 11 0 I 

al= 10' a2 =li 0 ' a3= 0 -11 

satisfying the following easy to prove relations 

a/aJ +api = 2o i " 

ala J = iEilkak
, 

where a~ is the Hermitian conjugate matrix of ai' 

(lOa) 

(lOb) 

(11) 

(12a) 

(12b) 

(12c) 

oil is the Kronecker symbol, and Em is the permutation 
symbol. 

In the same way that the scalar field u (r) is invariant 
with respect to the rotation group while the vector field 
A(r) transforms according to the relation AI(r) - Aj(r) 
= a l 0 J (r) where ail is a 3 x 3 orthogonal matrix, the 
spinor field >It(r) transforms according to the relation 
>It (r) - >It' (r) = S>It (r) where S is a 2 x 2 unimodular unitary 
matrix st = S-l, so that for the Hermitian field >Itt (r) 
one has >r,t(r) - >Itt(r) = >Itt (r)S-l , and one can prove the 
following equality: 

The spinor Helmholtz equation [(13)] and its adjoint 
equation (Hermitian conjugate equation) are then 

(12d) 

(a'a, + iK)>It(r) = 0, (13) 
t .-

\{f (r)(a'oj - iK) = 0, (13') 

where a is a derivative acting on the right and a is a 
derivative acting on the left (when no confusion is possi
ble, one writes il). 

Equations (13) and (13') are convariant under the rota
tion group in ]R3. This follows at once from (12d), from 
the transformation laws of \{f(r), \{ft(r) , and from the 
fact that oJ is a vector operator, OJ ~ ilj=aJkok• 

Now, we will show that Eqs. (13) and (13') describe 
the propagation of two coupled complex scalar fields; 
of course to have a well-posed problem we must still 
give some boundary data. The boundary data will be 
discussed in the next section. 
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Theorem 1: Let >It(r) be a solution of (13), then each 
component \{i i (r), i = 1,2 is a solution of (2), 

Let us multiply (13) on the left with the operator 
(al~, - if:); it becomes 

(a'a, - iK)(aJa, + iK)>It(r) 

=0 

= (alaralaj + K2)>It(r) 

= H(a'ol + ala') alai + K 2}>It(r). 

Then, the result follows from (12b). 

Of course, this theorem still holds for the compo
nents If!i (r) (i = 1, 2) of a solution >Itt (r) of (13') where the 
bar denotes the complex conjugation 

In some sense, the following trivial result can be con
sidered as an inverse of Theorem 1: If, u1 (r), u2(r), are 
two arbitrary solutions of (2), then >It (r) = (ala j - iK) 
x (~~ ~;D is a solution of (13). The proof follows at once 
from (12b). 

Remark: As noted in Ref. 3, '1I(r) can be considered 
as the Stokes spinor used to describe the polarization of 
the electromagnetic field. 

B. Green's functions for the spinor Helmholtz equation 

Let >It (r), <I> (r), be spinors with the following trans
formation law under the SU(2) group: 

>jt(r) ~ >It'(r) = S>It(r), <I>(r) ~ <I>'(r) = <I> (r)S-I. 

Then, using (12d) and the fact that oJ is a vector opera
tor, it is easy to show that the following expressions 
are vectors: 

<I>(r)a,w(r), <I> (r)aJ>I!(r) , <I> (r)a1'¥ (r), 

q,(r)(a II a)J>I!(r), <I>(r) (a II 3)J>It(r) , 
(14) 

where the symbol II denotes the vector product so that 
(a/\ O)j=EiJkaJ, ok; as a consequence, one can use the 
Gauss-Ostrogradski theorem and relation (1) gives 

J" a'(<I> (r)a J'l1(r) dr = Js n' (<I> (rS)a Jw(rS
)) drS, (14a) 

J a aJ (<I> (r) 1;>I!(r) dr = fs n' (<I> (r 5
) ~~-'l1(Y'» drs, (14b) 

ja a{<I> (r)(o II ~)-J>It (r)}dr = Js nJ{<I> (r5 )(0 1I1)iW(r S )}drs. 
(14c) 

We shall see later that these three relations are not in
dependent and that both of them imply the third one so 
that it is just sufficient to consider (14a) and (14b), but 
we need a slight generalization of the Gauss-Ostro
gradski theorem. Let r(r, r') be a 2 x2 matrix with the 
following transformation law under the SU(2) group: 
r(r, r'h- r' (r, r') =sr(r, r')S-l. Then let us substitute 
r(r, r') for <I>(r) in (14), the corresponding expressions 
become spin-vectors such as r(r, r')aJ>It(r), that is, 
geometrical objects with the following transformation 
law under SU(2) [we still use (12d) or the vector 
character of oJ 

It is easy to generalize the Gauss-Ostrogradski the
orem to spin-vectors and the proof in Ref. 4 can be 
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repeated word for word so that it is not reproduced 
here, Similarly to (14a)- (14c) one obtains 

J
a 

aj{r(r, r')o,>It(r)}dr= J s ni{r(rS, r')aj>I!(rS)}dr', 

(14'a) 

(14'b) 

J
a 

aJ{ r(r, r')(a 1I1i-j >lt(rHdr = Is nJ{r(rs, r')(a II ~)-j'l1(rS)}drS. 
(14'c) 

From (14b) and (14'b) one deduces at once two Green's 
identities for spinor fields, 

fa {<I> (r)aJa,'l1(r) - <I> (r)a j aJ'l1(r)}dr 

= Is nf {<I>(r")a,'l1(rS) - <I> (rS)aj>I! (rS)} drS , (15) 

fa {r(r, r')aj
ai 'l1(r) - r(r,r')a'ai 'l1(r)}dr 

= js n'{r(rs, r')aJ'l1(rS
) - r(rS, r')Bi 'l1(rS)} drS. (15') 

Let us now introduce the 2x2 Green matrices n(r,r'), 
)l2(r,1"), for the Eqs. (13) and (13'), 

(aJai + iK)Yl (r, 1") = - ooo(r - r'), 

Y2(r, r')(aiai - iK) = - aoo(r - r'), 

where a 0 is the 2 x 2 identity matrix. 

(16a) 

(16b) 

U sing the same proof as in Theorem 1, it is easy to 
check that n (r, r'), Y2 (1', r'), are given by the following 
expressions where G (1',1") is the Green function of the 
scalar Helmholtz equation: 

Yl (1', r') = (aJo i - iK)G(r, 1"), 

Y2(r, r') = (a'ol + iK)G(r, 1"), 

(17a) 

(17b) 

and the matrices y;(r,r'), i=1,2, have under the SU(2) 
group the transformation law assumed for r(r,1") since 
aJa i >-- aj aj = akpJak = SaJa jS-I. 

Let us remark that n(r,r')*yi(1',r') since we use the 
same (in general complex) Green function in the right
hand side of (17a) and (17b) but if one exchanges l' and 
r', it becomes 

n(r', r)= (aiaj - iK)G(1", r), 

Y2(1", r) = (a'a; +iK)G(r', 1') 

(17'a) 

(17'b) 

but G(r, r') = G(r', r) = G( Ir - 1"1) which implies 
a ,G(r, 1") = - ojG (1',1") so that by comparison of (17) 
and (17'), we obtain 

Yl (r, r') = - Y2(1", 1'), Y2(r, r') = - Yl (r', r), (18) 

One could expect these relations, taking into account 
the well-known anticommuting properties of the 
quantized spinor fields, 

We now deduce some important results from these 
preliminaries, Let us take in, (15'), for \}fir) a solu
tion of (13) so that oJaJ'l1(r)=-K2'l1(r), and for r(r,r') 
let us take the Green matrix n (r, r') for which the pre
multiplication of (16a) on the left by the operator 
(aio i - iK) gives 
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As a result, we obtain from (15'), 

In {(aJ a j - iK)6(r - r')}>J!(r) dr 

= Is nJht (r
S, r')3J>J!(rS) - Yt (rS, r')2J>J! (rS)} drS 

and using the properties of the Dirac distribution and of 
its derivatives, 

(aJa j + iK)>J!(r') 

= - Is nJ{'Y1 (rS, r')3J \)i(~) - 'Yt (~, r')aJ lJ!(rs)}d~ 

that is, finally, since >J!(r) is a solution of (13), 

Is nJ{Yt (rS, r')aj>J!(rS) - 'Yt (rS, r')a J>J! (rS)} drS = 0, (19) 

In particular, if 'Yt.t (rS
, r') is the Green matrix (17a) 

defined with the Green function (7a), GI (r, r'), rela-
tion (19) becomes 

Is {OnYt.I(rS, r')}>J!(rS) drs = O. (19') 

Let us compute this expression for r' on 5, that is for 
r' = r's. From (17a), one has 

anYI (rS, r') = (ala J - iK)anG I (r
S, r') 

and from (Sa), i\Gt (rS, r'S) = 6 (rS - r'S) so that 

a nrl (1'",1'15) = (aJ [I J - iK) 6(rS - r'S). 

Using this last result in (19') gives 

(aJai + iK)>J!(rS) = 0 

so, we have proved the following theorem. 

Theorem 2: If >J!(r) is a solution of (13) in 11, then 
lJ!(1'S) is a solution of (13) on 5. 

(20) 

Let us now consider (14'a) with a solution of (13) for 
>J!(r) and with the Green matrix Y2(r,1") for r(r,1"). 
Then taking into account Eqs. (13) and (16b), it becomes 

>J!(1")=IsnjY2(rS,r')aJ>J!(rS)d1'S, 1"<'::11 (21) 

a relation similar to (7). It is easy to show that >J!(r) 
defined by (21) is a solution of (13). Indeed, using the 
first equation of (18), we have 

(aJ oJ + iK)tJi(r') = Is ni(aJ oj + iK)Y2(rS, r')a {>J!(rS) drS 

= - Is nl (alaj + iK)Yt (r', rS)a j>J!(rS) ds", 

but from (17'a), (aia j + iK)Yt (1", r S) = (6,' + K2)G(r', r S) 
= - 6(r' - 1'

S) and so for 1" E. n, (alai + iK)>J!(r') = 0, 

We will now discuss (21) in order to obtain relations 
similar to (8a) and (8b). 

Theorem 3: If on 5, >J!(rS) satisfies (20), then 

lJ! (1") = Is a n01 (yS, r')tJi (rS) drS, (22a) 

lJ! (1") = - Is 02 (rS, r')an>J! (yS) drS, (22b) 

where Gj, G2 are the Green functions satisfying (7a) 
and (7b) respectively. 

USing definition (17b) of 1'2 (rS, r') in (21), leads to 

>J!(r') = iK J~ niaiG(rS, r')lJ!(rS) drS 
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+ Is ni(aioiG(rS, r'»ajtJi(rS) drS 

= i/( Js nia jG(rS, r')tJi(rS) drS 

+ Is nJ{OiG(rS, r')}>J!(rS) drS 

+ i Is nJ{(a A 3) jG(r", r')}lJ!(yS) drS, (21') 
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If in (21') we take G(~,r')=Gl(~,r'), the first term is 
zero from (7a), the third term is also zero for 
a,P1 (rS, r') is normal to the surface G1 (r

S, r') = 0 and so 
0kGt(rS,r') is parallel to nk since Gl(~,r')=O on S, but, 
from the definition of the scalar triple product ni(aA a)l 
=-aJ(nAo)l and thus al(nA O)P1(rS,r') =0. So, we are 
left with (22a), but since we proved that lJ!(r) defined 
by (21) is a solution of (13), it follows from Theorem 2 
that (22a) is only valid if (20) is fulfilled. In away, 
Theorem 3 is a reciprocal to Theorem 2. 

Before proving (22b), let us note that (13) can be 
written 

(23) 

a relation which shows, as noticed before, that the 
three relations (14a)- (14c) [and (14' a)- (14'c») are not 
independent. If (23) is multiplied on the left by nJ and if 
one defines 

an=njol' (aAo)n=nJ(aAa)j, an=nJaj 

another form for (20) is 

an>J! (rS) - i(a A a)nlJ!(rS) + iKanlJ!(rS
) = 0, (20') 

Let us now take G(r',r')=G2(rS,r') in (21'); from (7b), 
the second term is zero, 

lJ! (r') = iK Is nJa jG2 (r
S, r')>J! (rS) drS 

+ i Isnl{(a A o)jG(rS, r')}lJ!(rS) dr". (21") 

The expression makes possible the calculation of the 
normal derivative o~>J!(r'S), 

a~lJ!(r'S) = iK Is nlaia~G2(rS, r,s)>J!(rS) drS 

+ i Is nj{(a 1\ O)ja~G2(rS, rlS)}lJ!(rS) drS 

but (8b) implies o~G2(rS,rlS)=-6(rS-rlS), using this 
result and the properties of the Dirac distribution and of 
its derivatives, the previous expression becomes 

a~tJi(rlS) = - iKantJi(rfS) + i(a A a')ntJi(r'S), 

that is (20'). 

Let us now introduce this relation in (21 "), we have 

lJ!(r') = - Is G2(r
S, 1") 0 n>J! (rS) dr" 

+ i Is nl {G2(r
S, r')(a 1\ a)jlJ!(rS) 

+ G2(rS, r')(aA a)JtJi(rS)}drs. 

Let us consider the second integral which becomes with 
the Gauss- Ostrogradski theorem, 

Is nl{G2(rs, r')(a 1\ 3)jtJi(rS) + G2(rS, r')(a A a)JlJ! (rs)} drs 

= In aJ{G2(r, r')(a 1\ a) JlJ!(r) + G2(r, r')(a 1\ a) j>J!(r)}dr 

and it is easy to show that the integrand in the right
hand side is zero. This completes the proof. 

We are now in a pOSition to discuss the boundary data 
to add to (13). From the previous results, it is obvious 
that one has to conSider two kinds of problems: 

1. Third boundary value problems in which one gives 
a solution >J! (1'5) of (20) on 5 and then in theory, (22a) 
makes possible the computation of >J!(r)o This is a third 
boundary value problem since it appears that (20) writ
ten in the form (20') implies a relation between tJi(rS), 
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the normal derivative \(I n(rS
) , and the tangential deriva

tive (a /\ o)n\(l(r). 

One can easily imagine boundary data satisfying (20): 
for instance, with two arbitrary solutions ul (r), u2 (r) 
of (2), one introduces the spinor x(r)=(alol-iK)(~~i;D; 
x(r) is a solution of (13) and its restriction x(rS) on Sis 
a solution of (20). 

2. First boundary value problems (Dirichlet prob
lems) in which \li(rS) is given which permits the com
putation of (a/\ o)n\li(rS), then on\li(rS) (and also the higher 
order normal derivatives) is obtained from (20'). Using 
(22b), one can in theory compute \(I(r). 

There is a further question, for Dirichlet problem: 
Can \(I(rS) be chosen arbitrarily on S? The following 
results bring a negative answer. 

Indeed, we have not yet used the relations (14a)
(14c). Let us take, in (14a)- (14c), respectively for 
\(I(r) and <I>(r) some solution \(I(r), \(It(r), of (13) and 
(13'); then we have 

Isnj\(lt(rS)aj\(l(rS) drs = 0, (24a) 

Is nl{\(It (rS)a1\(1(r) - \(It (rS) 0 j\(l(rS)} drS = 0, (24b) 

Is n1a1(\(It (rS) \(I (rS»dsS = 2 In {ol\(1t (r)o j\(l(r) - K2\(1t (r)\(I(r)}dr. 

(24c) 

Using (20') and the Hermitian conjugate equation, one 
can also deduce from (24a) and (24b) 

Is nj{ >1/ (rS) (a /\ a)l\(1(1'S) + \(It (rS)(a /\ a) j\(l (rS)} drS = 0, 

(24'a) 

The relations (24b) which put some restriction on the 
data \(I(yS) for the Dirichlet problem, assert that 
\(It (yS)a j >¥(yS) , \(It(rS)a

1
\(1(rS) _ \(It(yS)aj\(l(rS) are tangential 

vectors while (24c) is similar to (4'). If \(I(r) is con
sidered as the Stokes spinor, \(It(r)a1>¥(r) is the polari
zation of the electromagnetic field and (24a) means that 
one has to use a transverse polarization. 

Let us now come back to the numerical problem con
sidered in the Introduction, that is for the Dirichlet 
problem, how to use (13), (20') instead of (2), (3a), 
From the uniqueness of the solution in the case of the 
Dirichlet problem for the scalar Helmholtz equation and 
from Theorem 1, one knows that if <Pl (yS) = u (rS) on S, 
then <Pl (r) = 11 (r) in S1 where qJl (1') is one of the two com
ponents of the spinor \(1(1'). So, to solve the Dirichlet 
problem with the spinor Helmholtz equation one need 
only give another data <P2 (rS) so that (24a) and (24b) are 
fulfilled, without forgetting that (20') supplies 0n\(l(rS). 
(This is an economic way from a computational 
viewpoint) 

C. Case of a spinor field in the half-space z ;? 0 

Let us consider here a spinor field in the half- space 
z? ° with boundary data on the plane z = 00 The Eqs. 
(20), (22a), and (22b) hold valid for these last ones with 
G1(r,r'), G2(r,r') given by (9a) and (9b) while the equa
tions (20') and (24a) become 

03\(1(x,y, 0)=i(al0y- a20x)\(I(x,y, 0) - iKa3\(1(x,y, 0), 

(25) 
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(26a) 

I{ t - t-
S \(I (x,y,0)03\(1(x,y,0)-\(I (X,y, 0)03\(1(x,y, O)}dxdy =0, 

(26b) 

where 0s\(l(x,y, 0) denotes the normal derivative on the 
plane Z = 0. One sees at once that for the Dirichlet prob
lem there exists a very attractive spinor which satisfies 
(26a) and (26b), identically >¥(rS) = (£\~~D, where the bar 
denotes the complex conjugation. 

It is interesting to investigate the solutions of the 
type \(I(r) = <I> (r) exp(iKoz) where from (13) <I> (r) satisfies 
the equations 

(ala 1 + iKoas + iK)<I> (1') = 0, 

(a 1 a j + 2iKoo 3 + KS 
- K~)iJ? (1') = 00 

(27a) 

(27b) 

The solutions \(I(r) = iJ?(r) exp(iKoz) have the following 
interesting property: 

Lemma: On every surface Sl parallel to S (that is 
every plane Z = Z 1), one has 

~ ( iJ?t(rS1 )iJ?(rS1 )dyB=0. (28) 
OZ J S1 

To prove (28), we first note that (27b) and the Hermitian 
conjugate equation (0 10 j - 2iKoos + J{2 - Ro)iJ? (r) = ° give 

2iKoo3(iJ? t (r)iJ? (1'» + iJ? t (r)33asiJ?(r) - iJ?t (r)a Sa3iJ? (1') 

=- {iJ?t(r)a"a"iJ?(r) - iJ?t (r)a "a"iJ? (r)}, 0' = 1, 2, 

That is, 

2iKoas (iJ?t (1')iJ? (1-» + 2s (iJ?t (r)2siJ?(r) - iJ?t(r)3s<I>(r» 

=- a"'{iJ?t(1')a",iJ?(r) - iJ?t(1')a",<I> (1-)}, 

so that, if D is a disc in the plane S1> 

2iKoad~ iJ? t(rS)iJ? (rS) (11_s + adD {iJ? t(yS)asiJ? (1'S) 

_ iJ?t(rS)asiJ? (rS)} dys 

= - J
D 

a"{iJ? t(yS)3 ",iJ?(YS) - iJ? t(yS)8 ",iJ? (1-S)}dy s. (29) 

Let us apply the Gauss- Ostrogradski theorem to the 
right- hand side of this relation, It becomes 

2iKoad
D 

iJ?t(yS)iJ?(rS)d1-S + adD {iJ?t(yS)3siJ?(YS) 

- iJ?t (yS) a3iJ? (yS)} drs 

=- Jc v"'{iJ?t(rC)2"iJ?(rC)- iJ?t(rC)8"iJ?(rC)}dr c 

where C is the boundary of D, v" is the outward normal 
to C, and r C is an arbitrary point on C. 

Now, if the radius of the circle goes to infinity, the 
first term in the left- hand side becomes 2iKo03 
xf s iJ?t(rS)iJ?(rS)rlYs and the second term is zeroo By 
oncJ more using the Gauss-Ostrogradski theorem, one 
has 

ad
Sl 

{iJ?t(r)a3iJ?(rS) - iJ?t(yS)a3<l> (rS)}rlYS 

= adn 3j {iJ? t(Y)2j iJ? (1') - iJ?t (y)a1iJ? (r)}dr 

= - 4iKo3 sIn iJ? t (r)iJ? (1') dF 

=0. 

NOW, since for Iyel - 00, iJ?(FC
) - 0 (see the Introduction), 
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the right- hand side of (29) tends to zero and this com
pletes the proof. 

From a physical viewpoint, q,t (r)q,(r) is a scalar 
proportional to the energy density of the spinor field, 
so (28) implies that the energy in a plane normal to the 
propagation direction is a motion constant. In other 
words, a transverse wave remains transverse. 

D. Helmholtz equations with variable index 

The discussion of the solutions of Helmholtz equa
tions when the wavenumber K is a constant is a rather 
academic problem. We consider here a field in a 
medium with a slightly variable index. In a more pre
cise way, we consider the scalar Helmholtz equation, 

(iJ' a, + K 2n2 (r»u (r) = 0, 

with 

n(r)=l + Ej.L(r), ESUP IJL(r)1 «1. 
rEg 

(30) 

(3D') 

The quantity E measures the deviation of the index from 
unity. For the spinor fields, we have 

(a'a, +iKn(r»w(r) = 0, 

wt(r)(aiaj -iKn(r» = 0, 

(31) 

(31') 

but it is clear that Theorem 1 is no more valid. To ob
tain a weakened form of this theorem, we have to put on 
nCr) more restrictive conditions than (3D'). Among other 
possibilities, let us consider the two following ones: 

(a) Let us assume that, besides (3D') one has 

laiJL(r) I <EKIJL(r)lo (30") 

Then, at the E order, Theorem 1 is valid since from 
(31), one deduces 

{aia i + K2n2(r) + iKai(i:J in (r»}w(r) = 0 

and, using (30') and (30") at the E order, 

{ala, + K2(1 + 2E J..L (r»} w(r) = o. 
(b) One can also assume that JL(r) is a step function 

constant on blocks PIJI in R 3, that is, there exist PiJI 
blocks, 

(3D"') 
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such that 

n(r)=n(xhYi,z,)=nw for rEPijI. 

With condition (30"'), Theorem 1 becomes a local the
orem only valid on every block PIJI. This condition is 
very attractive for numerical computations. 

From a physical view point, it is interesting to 
notice that if E JL (r) is not a little perturbation, then, at 
the Fresnel approximation, a polarized electromagnetic 
beam will have a very different behavior than an un
polarized electromagnetic beam since the first is a 
solution of (31) and the second is a solution of (30), but 
now, unlike the case of n constant, the solutions of (31) 
are not solutions of (30)0 

3. CONCLUSIONS 

In this paper, we gave the main properties of the 
spinor field equation and its solutions and we proved 
that it is possible for the Dirichlet problem to use this 
equation instead of the scalar Helmholtz equation. In 
complex problems, in particular when nCr) is not a con
stant, it is conjectured that the spinor Helmholtz equa
tion is easier to solve than the Helmholtz scalar equa
tion and that the corresponding finite difference 
algorithms have a better stability. We will discuss this 
point in a second paper. 7 
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We consider the transformation b i = !.J ~ 1 (Aij{lj + ).tiPj t) between two sets of boson operators, with Au and 
).tij complex. Closed formulas are derived for the transformation brackets connecting base states of the two 
sets. As an application, the general quadratic Hamiltonian in one dimension is diagonalized and two 
examples, involving time-dependent real transformation and time-independent complex transformation, are 
worked out. 

1. INTRODUCTION 

It is well known that the problem of finding the eigen
values and eigenfunctions for a set of s coupled har
monic oscillators can be solved, in analogy with the 
classical case, by performing the principle axis trans
formation. Thus, given the Hamiltonian H= (ata)f(:t) 
with (ata)=(aI·· 'a;a!" ·a.), a complex transformation 

bi =6 U"ijaj + /-Lija]), bI =6 (/.L;jaj + AtaJ) (1) 

can be found, which diagonalizes the 2s by 2s Hermitian 
matrix H. The diagonalizing matrix A = (~* ~*) however, 
is in general not unitary. Once the transformation to 
the new boson operators has been performed, the 
eigenvalues of the Hamiltonian can be read from the 
uncoupled form H=Zhib;b i +const. To complete the 
solution, one needs the transformation brackets from 
base states of the old operators to those of the new 
operators. It is precisely the calculation of these 
brackets to which we shall attend ourselves. 

Particular cases of the general transformation (1) 
(both for bosons and fermions), of which the 
Bogolyubov-Valatin transformation l is a notable 
example, have been found extremely useful in the past. 
Baranger,2 has considered the full transformation (1) 
for the case of fermions, Solutions for the transforma
tion brackets (in the boson case) for particular forms 
of (1), have been recently published. 8-0 Common to 
these works, is the assumption of a transformation 
with real coefficients. As we shall later see, this 
assumption amounts to a pure point transformation 
(transforming coordinates among themselves), whereas 
the general transformation (1) is a full canonical 
transformation mixing coordinates and momenta. 

In deriving the transformation brackets, it is con
venient to employ the so -called coherent states 
(eigenstates of the annihilation operators). Using these 
states, cumbersome recurrence relations are replaced 
by simple differential equations whose solutions can be 
readily found. The relevant properties of the coherent 
states are summeriz ed in Sec. 2. Section 3 treats the 
one-dimensional case. The general transformation 
brackets are derived both in the coherent state 

aJThis work is supported in part through funds provided by 
ERDA under Contract EY-76-C-02-3069. "ODD. 

b) Address as of August 1977, Racah Institute of Physics, The 
Hebrew University of Jerusalem, Jerusalem, Israel. 

representation and in the occupation number representa
tion. As an application, the general one-dimensional 
quadratic Hamiltonian is diagonaliz ed in Sec. 4, and two 
specific examples, one with time-dependent real coeffi
cients and another, with time-independent complex 
coefficient are presented. In Sec. 5, the s-dimensional 
transformation is worked out. Conditions for the 2s by 
2s matrix A = (~* t*) to be regular and to connect one 
set of boson operators with another set, are spelled out, 
and the most general form of such a matrix, subject to 
an additional reality condition, is found. Finally, the 
transformation brackets are derived in the coherent 
state representation, Our main results are Eqs, (23) 
and (25) for the one-dimensional case, and Eq. (84) 
with definitions (63) and (83) and conditions (64) for the 
s -dimensional case. 

2. PROPERTIES OF THE COHERENT STATES7 

In this section we summarize those properties of 
coherent states which pertain to our discussion. The 
coherent states are defined as eigenstates of the annihi
lation operator a 

al a) = a I a) , 

where a is any complex number. In ter ms of the 
occupation number states, these states are given by 

or 

Note that the vacuum state in both representations 
coincide. The coherent states form a complete set 

f d 2 a 
-17-la)(al =1, 

where 

The scalar product of two different states does not 
vanish. Instead, we have 

(p 1 a) = exp[ - ~ 1 P 12 - ~ 1 a 12 + i3* a]. 

In particular, the normalization of the states is 

(ala)=1. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7a) 

(Th) 
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Any state II)!) can be expanded in terms of the coherent 
states I a), 

f d2 a 
II)!)= -;-exp(-l a I2/2) I)!(a*) I a), (8) 

where 

(9) 

is an analytic function of a*. In particular, the repre
sentation inverse to (3) is given by 

(10) 

Hence, 

fd 2 a 1 1 , 
<nln')={j ,= -exp(_l a I2) ,,(a)" ,-;0, (a*)". 

"" 1T vn! vn'! 
(11) 

Finally, for any analytic function I)!(z) , the following 
relation holds, 

3. THE ONE·DIMENSIONAL CASE 

Consider the transformation 

b=Aa+llat , bt=ll*a+i\*at . 

Using the boson commutation relations we have 

The inverse transformation 

a=i\*b-Ilbt, at=-Il*b+Abt 

(12) 

(13) 

(14) 

(15) 

automatically satisfies (14). We shall use the notation 

(16) 

and expand the new coherent states in terms of the old 
coherent states 

(17) 

where 

l)!a(a*)=exp(laI 2/2) .<alf3\. (18) 

Consider the matrix element 

where we have employed Eqs. (13), (16), (17), and (18). 
Using the value of the scalar product (7a), and Eqs. 
(12) and (18), we obtain 

Aa~*l)!a(Y*)+(IlY* -f3)l)!a(Y*)=O. 

Hence, 

l)!a(Y*)=l)!a(o)exp[~ y* _~fy*2l (19) 
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In order to determine the bracket 

(20) 

we shall first calculate the expansion coefficients of the 
new vacuum in terms of the old states. Specializing 
Eq. (19) to the case f3=0, we have 

l)!o(O:*) = if; 0(0) exp[ - ha *2] 

with T= Il/i\. The factor l)!o(O) = .(0 10\ can now be 
determined by use of the normalization condition (7b). 
Indeed, 

l=b(OIO)b= jd:
a 

b(Ola) •• <aIO)b 

=!d:
a 

exp(-I aI
2
)ll)!o(a*W 

= lij,o(Owjd
2

1T
a exp(-l a I2 )exp(_h*a2 _ha*2). 

The last integral is a simple two-dimensional Gaussian 
integral. Immediate evaluation gives 

Integral=(1-1 T 1
2t l/2

• (21) 

Simplifying with the aid of (14), we have 

Since the phase of the new vacuum relative to the old 
vacuum can be chosen at will, we secure 

(22) 

The needed bracket .<01f3\=b(f310): [Eq. (20)], can now 
be obtained from Eq. (22) by invoking the inverse trans
formation. Indeed, Eq. (15) tells us that we have to 
replace i\ by i\* and Il by - Il in Eq. (22). Thus, 

• < 0 I f3)b = I i\ 1-
1/2 exp (- % IIW + ~: (32) . 

Substituting this result in Eq. (19) we obtain, with the 
aid of Eq. (14), 

• ( QI I p) b = I i\ I -1/2 exp (- % I a 12 -11 rW + a:f3 

(23) 

In the special case of the identity transformation (i\= 1, 
Il = 0), the overlap integral (23) reduces to Eq. (7b), 
as it should. 

An alternative way for obtaining Eq. (23) is to employ 
representation (4) for the new states together with 
expression (22) for the new vacuum. Since8 

exp(j3bt ) = exp[P(i\*at + Jl*a)] 

= exp(~f32 i\* Il *) exp(f3i\ *at ) exp(f3 fJ.* a), (24) 

we have 

.<yl(3)b=a(ylexp(-1f31 2/ 2)exp(IW)10)b 

= I i\ 1-1/2 exp( -I f31 2 /2) exp(f32i\* fJ.* /2) 

f d2 a x -11- exp(- I a 12/2) exp[ - (1l/2A)a*2] 

x.< yl exp(f3i\*at ) exp(f3Il*a) I a)a 

= 1i\1-1/2exp(-1f312/2)exp(_lyI2/2) 
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x exp(p2 A* /1 * /2) exp(j3A* y*) 

f d2 O' 
x IT exp(- I a 12) exp[(Y* + 13/1*)0'] 

xexp[- (/1/2A)O'*21. 

The last integral is equal by (12) to 

exp (- 2~ (y* + P1I*)2)' 

Simplifying, with the aid of (14), we regain Eq. (23). 

To obtain the transformation brackets in the occupa
tion number representation, we expand the last three 
exponentials in Eq. (23) in powers of 0'* and i3 and use 
Eqs. (10) and (11). The result is 

a\IlIN)b=O if (N-II) is odd, (25a) 

, . (n!N!)1/2(f.L*)(N-n)/2 \nl,'/) = -- ,- A-(N+nl/ 2 

a b I A I 2 

'" (_ 1)k (I /11 )2k XL.; - , 
(25b) 

k /'?!(n-2k)! lk+~(N-n)]! 2 

where /, is an integer satisfying 

Oc!?, -~(N-Il)~;/?c.;}I1. (25c) 

For A and Il real, we set A= coshy and Il = sinhy [to 
satisfy (14)]. Equation (25) reduces in this case to well 
known results. [See, for example, Ref. 6, Eq. (2.22).] 

To see what is implied by limiting A and I" to real 
values, let us go back to coordinates and momenta. 
Introduce 

x= [tl/(2m:.u)]1/2 (I1 t + (1) 

and 

(26a) 

where III and :.u are constants having the dimensions of 
mass and frequency. Similarly, let 

\' = lh/ (2m:.u )]1 1 2 (I} + h) 

P
y 

= i(lIlevh/2)1 12 (bt - h). (26b) 

With these definitions, transfor mation (13) takes the 
form 

\' = (ReA + Relib: - (ImA - Imll)/(m:.u)Px 

P y = IIl:.u(ImA + Imll)x + (ReA - Re 11) P x • (27) 

Thus, in general, transformation (27) is a full canonical 
transformation mixing coordinates and momenta. 
Equation (27) reduces to a point transformation if and 
only if ImA=Imli=O. 

4. APPLICATION TO QUADRATIC HAMILTONIAN 
IN ONE DIMENSION 

Consider the Hamiltonian 

with 00 = at and 0'3 = aj. The coefficients (l!i may be 
time dependent. Using matrix notation, we rewrite 
H in the form 
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(28) 

(29) 

We now seek a transformation 

A= C1A* ;) (30) 

with detA = I AI2 - I 111 2 = 1, such that A diagonalizes 
the Hermitian matrix 

That is, 

f/' = (KI)t f/A-1 = ((l!o~ 

Since f/' is also Hermitian, o'~ = o'~ - o'~ and o'~ are 
real. With 

C~t)=A(:t) 
and 

(0';0';*) = (O'1O'j')A -I, 

we have 

Equation (15) gives 

A- I =( A* - /1) 
- /1* A . 

Thus, 0'; is explic itly given by 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

The eigenvalue equation (32), is equivalent to two pairs 
of homogeneous equations for the unknowns A*, Il* and 
A, Il, namely, 

and 

(0'4 - o'~) A* - O'~ Il* = 0, 

(0'0- O'~)A- O'21l=0, 

O'r A - (O'b+ O' 4 )1l=0. 

(38a) 

(38b) 

A necessary and sufficient condition for the existence 
of nontrivial solutions to these equations is the vanishing 
of the corresponding determinants, i. e., 

and 

-(O'o-O'b)(O'~+O'4)+ 10'21 2=0. 

Hence, 

O'~ = H(O'o - 0'4) + [(an + ( 4)2 - 41 O'212]1/2} (39a) 

and 

(39b) 

We have used the plus sign in front of the square root 
to ensure O'~ - a o and O'~ - 0'4 in the limit 0'2 - O. The 
eigenvalues remain real as long as the perturbation 
satisfies 

(40) 
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From Eqs. (39) we have 

(41) 

hence, the two pairs of Eq. (38) reduce to a single pair, 
the second pair being the comptex conjugate of the 
first. Solving for jl we have 

(42) 

Substituting this expression in Eq. (14), the absolute 
value of "- is determined. Since A can be chosen real 
and positive, we Secure 

By way of iUustration, consider the following 
examples. Let 

(43) 

Our next example treats the time-independent 
Hamiltonian 

2 

H == /m + 1mw2~ + y(xp + px} 

== nw(at a + ~) + iIi,{at2 
_ a2

). 

This time we have D!o == ~D!3 == O!. == ~liw, O!l == 0, and 
C<2 == - iiiI'. Equations (39), (42), (43), and (35) give 

and 

with 

(48) 

H(t) = 2
P2 

exp(- 2yt)+ ~mw2x2 exp(2yt). 
m 

(44) Q=(w2 _4y2)1/2. 

Using Eq. ('loa), the time-dependent Hamiltonian for 
the damped harmonic oscillator takes the form 

H(t) = 11iw[sinh2yt(at2 + aZ
) 

Thus, O!O==10:3=0:.==11iwcosh2yt, C<1==0, and 
(]iz== t1iw sinh2yt. Equations (39), (42), (43), and (35) 
give 

"-=coshYI, /l==sinhyl 

and 

H =hw(btb + 1). 
Thus, the eigenvalues of this time-dependent 
Hamiltonian are time-independent 

En == IIw(n + 1). 

(45) 

(46) 

On the other hand, the eigenfunCtions are time depen
dent. Since the transformation in this case is a real 
point transformation, we expect that [see Eq. (27)] 

(47) 

where lJ!n(x) is the normalized free harmonic oscillator 
wavefunctiono Inspection of the Schrodinger equation 
HlJin=EnlJin, with H given by Eq. (44), shows that this 
is indeed the case. Thus, the transformation 
y == exp(yth which carries the classical damped harmonic 
oscillator equation of motion 

x+'lYx+w2 x==O 

into the free oscillator equation 

j;+(w2 _y)y=O, 

plays a similar rote in the quantum-mechanical case. 
Furthermore, from Eq. (47) we see that the total 
probability for finding the particle anywhere decays as 
exp(- 1'1). The decay of the probability for finding the 
particle at a given point x* 0, fOllows a more compli
cated rule. The last decay agrees qualitatively with the 
classical prediction. Finally, the expansion of the 
harmonic oscillator wavefunction lJiN(exp(yt)x) in terms 
of the functions l/Jn(x) is given by (25) with A and iJ. as 
deduced above. 
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The transformation in this case is a full complex 
canonical transformation. The energies of the perturbed 
Hamiltonian (48) are En ==1I~(n + ~). 

5. THE s-DIMENSIONAL CASE 
A. Conditions on the transformation 

Consider the transformation 
s 

bi =l~ ("-ijaj + /lila;), 

bi =t (ll;ja, + A;iaj) , i = 1, ... ,So 
)=1 

(49a) 

Using matrix notation we have 

(49b) 

The commutation relations satisfied by the boson 
operators and the requirement that the matrix A shall 
have an inverse, impose some conditions on the s by s 
matrices A and M. Thus, 

[b p bn= Oil 

imply 

AA t _ Il Il t == 1 , 

while [bp b i J = 0 leads to 

A!l= Ili. 
Similarly, the inverse transformation 

-1 (0: (3) 
A = f3* 0:* 

should satisfy 

Cl'CI't - {3{3t = 1 

and 

CI'{J = f3Q, 

while A-1A=AA-1 imply 

D!A+f3/l*=1, 

Cl'M + j3A* 0=0, 

and 
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(51) 

(52) 

(53) 

(54) 

(55) 

(56) 
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Aa + Mf3* = 1, 

'\i3+j.l.a*=O. 

(57) 

(58) 

It is shown in Appendix A that Eqs. (51)-(54), (57), 
and (58) alone determine a and f3 uniquely, namely, 

(59) 

Substituting these solutions into Eqs. (55) and (56) we 
have 

(60) 

and 

(61) 

From Eq. (51) it is clear that ,\ must have an inverse. 
Furthermore, the four conditions (51), (52), (60), and 
(61) are not independent. In fact, using A-I, it is easy 
to derive Eqo (60), say, from the remaining three con
ditions. In what follows, we will find it convenient to 
impose an additional reality condition on the matrix 
A, namely, 

In terms of the matrices 

0=,\-1 and T=,\"IJ..L, 

all conditions can be summarized as follows: 

and 

T= T (symmetric), 

oot + TTt = 1, 
r--....J 

oatT=(aa*T) (symmetric), 

aat = (aat )* (reality condition). 

(62) 

(63) 

(64a) 

(64b) 

(64c) 

(64d) 

The reality condition ensures that the symmetric 
matrices ReT and ImT commute. Indeed, by Eqs. (64b) 
and (64d) 

TTt = (ReT)2 + (ImT? + i(ImT' ReT - ReT' ImT) 

= real matrix. 

Hence, 

[ReT, ImTJ=O. (65) 

It is easy to demonstrate that matrices a and T 

satisfying Eqs. (64) do exist. Indeed, let C be any real 
diagonal matrix with elements C i satisfying 0 < C j -'S 1, 
and let T' be a complex symmetric matrix commuting 
with C and satisfying T'T'* = 1 - C. Thus, T' consists 
of square symmetric matrices along the main diagonal 
in accordance with the multipliCity of the C'so Choose 
an arbitrary real orthogonal matrix Q and an arbitrary 
complex unitary matrix U. Then 

T=QT'Q (66a) 

and 

(66b) 

is a solution of Eqs. (64). Indeed, as shown in Appendix 
B, any solution of Eqs. (64) is necessarily of the 
form (66). 
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As in the one-dimensional case, the condition for the 
transformation (49) to be a point transformation, is 

1m,\.= ImM = O. 

B. The transformation brackets 

We shall use the following condensed notation: 

I Q1> = I 0'1>' •• , as>, 
d2

Q1 = d2
a 1 ••• d2as> 

<t/J(er) = 4'8
1

, .... 8s (a 1, ••• , as>, etc. 

Thus 

(67) 

(68) 

Starting with the matrix element.( rlb i 1.8>b and proceed
ing exactly as in the one-dimensional case, we obtain 
the following system of differential equations, 

t(\ja~*iPa+J..Lija:~a\=f3i</Ja, i=I, ••• ,s (69) 
J-l 'j I) 

for the function 

Since ,\. is regular, system (69) can be brought to 
canonical form, namely, 

(71) 

where we have used definitions (63). From the fact that 
</J/l is an analytic function of its arguments and from the 
structure of Eq. (71), it is clear that a single number, 
e.g., </Ja(O)=.(OI.8>b determines </Ja(x) completely. 
Indeed, solving the i = 1 equations we obtain (dropping 
temporarily the index m 

4(x1 ,··o, xs )= 4'1 (x2 , ••• , xs ) (72) 

xexp[:0 0lj!3·X1 -:0T1jX.X1 - tTllxD 
J J=2 J 

with 

</Jl(X2"" ,x.)= </J(a, x2 , ••• ,x.). 

We now use the i = 2 equation to drive an equation for 

</JI> 

The solution for </Jl' namely, 

with 

4J1(X2 , ••• ,xs )= </J2(X3 , '" ,xs ) exp[:0 a2j !3jX2 

-:0 T2jXjX2 - 'h22X~J 
j =3 

</J2(X3 ,'" ,Xs )= I/Jl(O, X3' .• , ,xs ) 

is substituted in Eq. (72) and the i = 3 equation is used 
to derive an equation for 1/J2(X3' ••• , xs). Proceeding in 
this way, we finally obtain 

</J/l(x) = </Ja(O) exp[?f aij f3j xi - t?f TijXjXj ] • (73) 

Now the bracket 

</J/l(O)=a<ol~>b (74) 

has to be determined. SpecialiZing (73) to the case 
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~=O, we have 

</Io(x) = </10(0) exp(-~?t Tij'tiX) 

or, using Eq. (70) 

(75a) 

(O! 10 >b = </10(0) exp[ - i~ I a j \2 - ~~ Tij aj an (75b) 
• J ii 

Again, the normalization of the new vacuum state will 
be used to determine </10(0), namely 

1 = b ( 0 1 0) b = f ~~ b < 0 I a>. • < ell 0> b 

fd2 el 
=1</Io(OW 7exp[-~lajI2 

- i~ (Tji a i aJ + Tij aj an] 

f d2
el -

= I i)!o(oW 7 exp{- (a*)(a) 

- Re[ (~* )T(a* )]}. (76) 

The evaluation of the last integral is greatly simplified 
if ReT and ImT commute [Eq. (65)]. Indeed, this was our 
only reason for introducing the reality condition (64d). 
Since ReT and ImT are two commuting, symmetric, 
and real matrices, there exists a real orthogonal matrix 
Q, which diagonalizes both matrices. That is, 

- -
QReTQ=T~, QlmTQ=T} (77) 

with T~ and r; diagonal. Introducing the new integration 
variables 

(x)= Q(Rea) (78a) 

and 

(y) = Q(Ima) (78b) 

we have 
r-.; f"....) r--..J 

(a*)(a) == (Rea)(Rea) + (Ima)(Ima) 

== (;)(x) + (y)(y) 

and 
f"'....J "--1 r-v 

Re[(a*)T(a*)J = (Rea) ReT(Rea) - (Ima) ReT(Ima) 

+2(Rea)ImT(Ima) 

= (Xl T~(X) - (y)r~(y) + 2(X)T;(y). 

Moreover, since (78) is a real orthogonal transforma
tion, the Jacobian of the transformation is equal to 1. 
Thus, the multiple integral in Eq. (76) reduces to a 
product of s two-dimensional integrals, 

Integral = IT jdXidYi exp[ _ ~ _ )12 
i =1 7r 1. - 1. 

The two-dimensional integrals are precisely the ones 
evaluated in the one-dimensional case. Using Eq. (21), 
we obtain 

Integral=r1 [1 -\ T' 12]"1/2. 
i =1 '& 

The last result can be further simplified with the aid of 
Eqs. (64b) and (77). Since 

1- TTt = Q(1 - T'T'*)Q= aat , 

we have 
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(1-1 TW)-1/2=L i 

where 

L -2= QaatQ (79) 

is a diagonal matrix with positive elments L;2. Thus, 

Integral =.r1Li = [det(aat )r1/2 , (80) 
p:::l 

where the last equality follows from Eq. (79). Collecting 
the results and using the fact that the phase of the new 
vacuum relative to the old vacuum is arbitrary, we have 

.( ell O/b = [det(aat )]1 /4 

xexp[-1~lajI2-1~TiJajan. (81) 
J IJ 

Thebracket.<OI13)b=b(f:lIO): [Eq. (74»), can now be 
obtained from Eq. (81) by invoking the inverse trans
formation (59). Thus, replacing A by At and j1 by - ~, 
we obtain 

• (01 {j)b = (det(aat ) J1 /4 

X exp( -1~ 1 {3J 12 - ~~ TfA (3j) (82) 
J 'J 

where 

T= (Att1 M= at Ta-1. 

In deriving Eq. (82), the relation 

det( at a) = det( aat) 

has been used. Substituting the result for. (0 I f:l)b in 
Eq. (73) and using Eq. (70), we finally secure 

• ( a 1 ~)b = [det(aat )]l/4 exp[ -1~ I Q j 12 

-1~j IPjI2+L:aij Cl'7I3J 
'J 

(83) 

-i~T.Ja*a; +~~7'~J{3.{3JJ. (84) 
iJ t t ij t 1. 

The general expression for the transformation 
brackets in the occupation number representation is 
too cumbersome to evaluate, However, following the 
steps leading to Eq. (25), the quadratures for some 
special transformation, e. g., the two-dimensional 
Bogolyubov-Valatin transformation, 1,6 can be easily 
performed. 

APPENDIX A 

In this appendix we solve for the inverse transforma
tion 

Starting with Eq. (58) we have 

f3=-A-1j10!*. (Al) 

Inserting this expression into Eq. (57), we secure 

(A2) 

Using (AI) again in Eq. (54) we find, with the aid of Eq. 
(52), 

(A3) 

Employing the same expression in Eq. (53), we obtain 

aat _ i\.-lj1a*cxj1t(i\.trl= 1. 
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Thus, with the aid of Eqs. (A3) and (51) we find 

aat=,>,tA. 

Let 

(A4) 

(A5) 

be the solution of (A4), that is, define Y= (At)"ICl'. Then 

yyt = (At)-laat A-I = 1. 

Since y is regular, it follows that yl = yr. Substituting 
a = At yin Eq. (A2), we have 

a-I = yt(At)"1 = A _ ~A*-I ~* = A _ j..L j..Lt(At)"t, 

where the last equality follows from Eq. (52). Hence, 
by Eq. (51), 

yt = AAt _ ~j..Lt = I 
and 

Finally, using CI'=At in (AI), we have 

f3=_A-l~~=_A-IA;;=_ii (A7) 

where the second equality follows from Eq. (52). 

APPENDIX B 

Let a and T satisfy Eqs. (64). We want to show that 
these matrices are necessarily of the form (66) with 
T' and C as specified in the main text. Since 5:= aat 

is a real symmetric matrix, there exists a real 
orthogonal matrix Q such that 

Q5Q=C, (B1) 

where C is a diagonal matrix with elements C i' The 
matrix S is regular, hence, Ci > O. Moreover, since 
S = I - TTf, C i ~ L Thus, the diagonal elements C i 
satisfy 

(B2) 
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Now 

aar =5= QCQ= QC1
/

2C 1
/

2Q 

= (QCl/2)(QC1/2)t. 

Let a= QC 1
/

2 U be a solution of the last equation, that 
is, define 

U = C- 1/2Qa. 

Then 

U Ut = C- 1 /2Qoat QC- 1/ 2 = C-1 / 2CC-1 / 2 = 1, 

where the second equality follows from (B1). Since U is 
regular, U- 1 = Ut . Thus, 

rJ= QC1
/

2 U 

where U is unitary. Now define 

T' = QTQ. 

(B3) 

(B4) 

Since T is symmetric [Eq. (64a)}, T' is also symmetric. 
Moreover, since [T,S}=O [Eq. (64c)}, we have [T',C] 
= O. Thus T' consists of square matrices along the main 
diagonal in accordance with the multipliCity of the C's. 
Finally, since TTt=l-S [Eq. (64b)} we have 

T'T'* = I-C. (B5) 
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Diagonalization methods for the general bilinear 
Hamiltonian of an assembly of bosons 
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The problem of the exact diagonalization of the Hamiltonian of an assembly of N bilinearly interacting 
bosons is discussed in what concerns the eigenvalues as well as for the expression of the new boson 
operators in terms of the old ones. The method is equivalent to the standard equation-of-motion approach, 
nevertheless sensibly more concise. Three sets of operational rules are indicated, and their use is exhibited 
in some examples. In some particular cases of practical importance (for example, when all the coefficients 
of the Hamiltonian are real), the research of the eigenvalues has been compacted as much as possible. 

1. INTRODUCTION 

It is well known from long date (at least from the date 
of Bogolyubov's paper1 on superfluidity in 1947), that the 
Hamiltonian of an assembly of N bilinearly interacting 
bosons (or fermions) is susceptible of exact diagonaliza
tion, in terms of new noninteracting bosons (or ferm
ions). The standard method used to perform such a di
agonalization is the so-called" equation-of-motion ap
proach," proposed by Bogolyubov and Tyablikov2

- 4 in 
the years 1947-49 and by Bohm and Pines' in 1953. 
This approach is formally presented (see for example 
Refs, 6 and 7) and discussed8,9 by several authors. It 
is equally useful for fermion problems10- 13 (see Refs. 
14 and 15 for superconductivity) and boson problems1

,lS-18 

(phonon-phonon, 16 photon- optical phonon, is magnon
magnon, 16,17 phonon-pseudomagnon18 interactions, etc.). 
Because of the wideness of the applications of this di
agonalization problem, we thought it was worthwhile 
trying to put it in compact operational rules, and this 
is the purpose of the present work. However, only the 
boson case is extensively examined, as in the fermion 
case, the canonical transformation between old and new 
fermions is given by a unitary matrix with no further 
complications. This is not so for the boson case, where 
the canonical transformation is governed by a matrix 
related to a not necessarily positive metric, a fact 
which introduces a certain amount of "pathology" in the 
case. 

In Sec, 2 We present the Hamiltonian we are going to 
deal with; in Sec. 3 the basic ideas of the diagonaliza
tion appear, Which lead to the three sets of operational 
rules of Sec. 6; in Secs. 4 and 5 a particular canonical 
transformation and the treatment of particular Hamil
tonians respectively appear; we conclude in Sec. 7 with 
a practical comparison between the three diagonalizing 
methods exposed in this paper; finally the Appendix 
treats the cases N = 1, 2, 3 (N = 1 corresponds to the 
historical form of Bogolyubov's transformation). 

2. HAMILTONIAN 

Let us consider an assembly of N bilinear ly interact
ing bosons, which might be particles or quasiparticles. 
The most general19 quadratic Hamiltonian (which doesn't 
need to conserve the number of bosons) might be written 
as follows: 

H =t t (2Wjjb~bJ + v~Jb~bj + v~J bibJ}), 
i:1J:l 

(1) 

where the factor 2 has been introduced for future use; 
wij ' v~J' and vL are complex numbers, and the creation 
and annihilation operators satisfy 

[b j , bJ]=[b~, b;]=O V (i,j), (2a) 

rbi' bj] = Oij =Kroenecker's delta V (i,j). (2b) 

Our final purpose is of course to present this Hamil
tonian in the form 

N 

H =B 20 j BjB j , (3) 
j =1 

where OJ should be known real positive functions of the 
previous parameters, and the new boson operators are 
known linear combinations of the old ones. 

Let us use the notation w, vi, and v2 for denoting the 
matrix {wiJ}, {vL}, and {vL}, respectively. Because 
of commutation rules (2a) we may always consider v1 

and J as symmetric matrices. Furthermore, hermitic
ity of If implies hermiticity of W as well as J* = vi '" v, 
where * denotes the complex conjugate. Hence (1) may 
be rewritten as follows: 

H =.0 {wlj b7b j + wfjb, bj + V jj b7b; + vfJblJ}, (I') 
i ~j 

where w = w· and v = vT (+ and T denote the adj oint and 
the transposed matrix respectively.) Let us now intro
duce the nomenclature 
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We note that if H conserves the number of b bosons, 20 

then v = O. The Hamiltonian (I') and the commutation 
rules (2a), (2b) may be written as follows: 

H =<bIHlb), (1") 

1 b)(bl - (I b+)(b+1 f =J= [1:,,)_O:,,_J , 
LON :- 1NJ (2" ) 

where I .. 0 )( ••• I means the matrix direct product, and 
IN and ON denote the NXN unity and zero matrix re
spectively. We note that Ib;* Ib)+. 

3. DIAGONALIZING METHOD 

Let us first of all state a basic property: The Hamil
tonian given by (1 ') will be diagonal in b's operators 
(this is to say II = 0 and w is diagonal) if and only if 

[fI,b;l=-2w jj b j ~ io 

The proof is straightforward once we have remarked 
that in general 

This is the property we shall use to find the new boson 
operators B's which put H into diagonal form, this is 
to say 

where 

and 

o 0 

o 
o 

To perform the diagonalization let us propose 

where T is a 2NX 2N matrix to be found. In order to 
have that BI be the adjoint of B j , T must have a par
ticular form: 

(3') 

T~~~-~~. (4) 

As we want the B's to be boson operators, they must 
also satisfy the commutation rules 

IB)<B\- (IIr")(B+lf =J (5) 

which implies (once we have remarked that I B; 
= T* I b;) that 

T+JTJ = 12N hence T-1 =JT+J. (5') 

We see as a corollary that the modulus of the determi
nant of T equals one. It is also easily verified that the 
ensemble of the matrix T satisfying (4) and (5') consti
tutes a Lie group (in general non-Abelian). Relation 
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(5') may be written 

T1+T1 - T{T2* = IN, 

T2+T1- TITT2* = ON' 

To be sure that H is diagonal we impose 

[fI, Bjl=- 2R.j B J ~ j, 

[fI, Bjl=2njBj ~ j 

or more compactly 

[fI, 1 B) 1 = - 2JHD 1 B). 

Taking into account that 

[fI, 1 B)] = [fI, T+ 1 b) J 

=T[fI,lb)]=-2T+JHlb), 

relation (6) immediately implies that 

r+JH=JHDT+. 

Hence 

T-1HJT =HDJ, 

(5"a) 

(5"b) 

(6) 

(6') 

(6" ) 

where we have used relation (5'). And taking into ac
count the particular form of T, (6') may be rewritten 
as follows: 

[~~~~-~~Tj = ~~-~-~':~ , 
- RHI - PH ON' - 12 

, I 

where 

PH = TiwTl + T!w*Tt - TillTt - Tfll*T l =P;, (6 '11 a) 

Let us formulate in another way what we are dOing, 

H=(bIHlb) 

=(b 1 (TT-l)H(J(T(JJ)T-l)J) \ b) 

= «b 1 T)(T-lHJT J)(JT-1JI b» 

=(BIHD 1 B), 

where we have used relation (5') in the last step. 

Before going on, a few words about a frequent parti
cular case, namely when v = O. In this (and only this) 
case the solution is given by T2 = ON, and we have to 
deal with a standard NXN diagonalization problem, 

TiwT1 =12 with TiTl = IN' 

Let us now turn back to the general situation. The 
secular equation of our diagonalization problem is given 
by 

det(HJ - nj l2N) =Nth degree polynomial in n~ = 0 ~ j, (7) 

where the fact that only even powers of nj appear, will 
soon become cleaL So our problem will be practically 
solved if we find a matrix T which simultaneously di
agonalizes the matrix HJ and satisfies restrictions 
(5"a), (5"b). The discussion of the existence and uni
city of such a matrix T is beyond the scope of this 
paper. However let us point out a very suggestive fact: 
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The number of unknown real quantities is exactly the 
same as the number of real relations between them. 21 
We have indeed (4N2 +N) real unknown quantities: 2N2 
for the complex matrix T 1, 2N2 for the complex matrix 
T 2 , and N for the real diagonal matrix O. On the other 
hand, we have (4N2 +N) real equations to solve: N2 for 
(5"a) (notice that the concerned matrix is Hermitian), 
N(N - 1) for (5"b) (notice that the concerned matrix is 
antisymmetric), N2 for (6"'a) (notice that the concerned 
matrix is Hermitian), N(N + 1) for (6"'b) (notice that the 
concerned matrix is symmetric), and finally N for (7). 

Let us now prove that in the secular equation (7), only 
even powers of OJ appear. Relation (6') may be rewrit
ten as follows: 

HJT=THDJ 

in other words, the jth column of the left half of T is 
nothing but the eigenvector associated to the jth eigen
value of 0 (namely OJ), while the jth column of the right 
half of T constitutes the eigenvector associated to 
(- 0). Then we see that the eigenvectors associated to 
OJ and to (- OJ) are intimately related, and that the 
secular equation (7) contains only powers of O~. 

Let us assume we found a particular solution22 (noted 
1') of Eq. (6"'b). If we now write 

T=- 1'S with S-l = JS+J, 

relation (6") may be rewritten as follows: 

[
QH : ON U ~O: ON j S-1(T-1HJT)S=S_1 -o-T-Q-~ s= -0-1--.... -, 

N 1- H' N I -~, 

where 

QH =- Tiw1'1 + Tf w*Tf 

- rr!JTf - ¥Z!J*T 1 =Q~. 

The solution S may be written as follows, 

S= r~:.~_o~J' 
LON I Sr 

Therefore, 

Si1QHS1= 0 

with 

Si1 =Si, 

(8) 

In this way our problem, as in the case !J = 0, has been 
reduced to a standard diagonalization problem of the 
NXX hermitic matrix QH' The matrix T will be given 
by 

Tl = 1\Sl and T2 = T 2Sr. 

In all usual23 physical Hamiltonians, we want the {nJ 
to be real (and positive) numbers, therefore 
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N 
det(H) = TI O~ > O. 

j-l 
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(9) 

We can also see that 

- 2 r!"l: F2] 
F = (HJ) = LF"rT;i 

where 

Fl =- w2 
- !J!J* =F;:, 

F2 =- !Jw* - w!J = - 11. 
If a matrix T diagonalizes HJ necessarily it also di
agonalizes F (the opposite is not true24 ), therefore 

T FT=(HDJ) = __ + __ . _1 2 ~02: ON] 
o I 0 2 
NI 

(10) 

It follows then that all diagonal elements of Fl are posi
tive, this is to say 

N 

0{lwijI2_I!JuI2}>o "i. (11) 
j=l 

It is clear that conditions (9) and (11) are necessary 
but in general not sufficient. 

The general form (4) for T leads to 

with 

P F =- TiF1T 1 - TI FtTf + TiF2T f - TI FfTl =P;, 

RF =- TiF2T t - TI FfT2 + TiF1T2 - Tf FtTt = - R~, 

and relation (10) may be rewritten as follows: 

(lO'a) 

(10'b) 

If we assume we found a particular solution25 (noted r) 
of Eq. (10'b), the matrix T may be written as 

T=TS 

with S given by (8) and satisfying 

Si
1
QFS l = 0 2

, 

Si1 
=S;, 

where 

QF =-TiF1T 1 - Tr FtTf + TiF 2Tf - Tr FfT1 =Q;. 

Two immediate corollaries are 

QF=Q1 
and 

N 
det(F) = [det(QF) J2 = [det(0)]4 = TI 0'. 

j=l 

The prelimin~ry r~search of T might be of practical 
importance: T-1HJT might not be diagonal, but it is 
expected to be much easier to diagonalize than HJ. 

4. PARTICULAR SOLUTION f 
In this section let us discuss a general way to con

struct a particular solution T of Eq. (lO'b). We shall 
first of all treat the general case N = 2. Let us use the 
notation 
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where 111.J22,/12, and CP12 are real numbers, and let us Fl '" 
propose the following form for T, 

T, ~ COSh</;{: ~ JandT, ~ exp(;x,,) sinh</;, ~ : J 
with zfJ12 and X12 also being real numbers. We verify that 
restriction (5') is automatically satisfied, therefore it 
is enough to impose (10'b), which leads to the solution 

2712 
X12 = CP12 and tanh2zfJ12 =f:-f: . 

22 - 11 

We see however that our proposal for T is not satis
factory if 111 = h2' so let us make another one for this 
particular situation, 

- [1 OJ and T2 = exp(iX12) sinhzfJ12 , 
0-1 

where l/J12 and X12 are again real numbers. Restriction 
(5') is again satisfied and relation (10'b) leads to the 
solution 

2712 
X12 = CP12 and tanh2l/J12 =j-j>l< . 

12 + 12 

We see that we again have troubles in the particular 
case of 112 being a pure imaginary number (let us note 
112 = i/{2) simultaneously with 111 =/22 , In order to be 
complete let us treat this case by making a new 
proposal, 

- [1 OJ 7\ = COShzfJ12 0 1 

and 

'1', ~ i exp(iX,,) Sinh</;{: a 
where zfJ12 and X12 are once more real numbers. Once 
more restriction (5') is satisfied and (lO'b) leads to the 
solution 

and 

X12 = CP12 

112 tanh2 !/I12 = -:;it . 
l12 

Let us finally say that if /{2 vanishes also, then 712 must 
vanish, otherwise g~ should become a complex number.26 

So we may choose T = 14, as F will be diagonal by 
hypothesis. 

We are able now to make a proposal for T for any 
value of N. 

Let us use the notation 
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ftNHfv 

and 

0 

- 712 exp(iCPd 

F2 

- I IN exp(iCPlN) 

INN 

112 exp(iCP12) 

0 

- J2N exp(iCP2N) 

I1N exp(iCPlN) 

J2N exp(iCP2N) 

o 

whereVIJ}' ViJ}, and {CPIJ} are real numbers. Our pro
posal will be 

where we have tN(N - 1) factors and each Tii is a 2N 
x 2N matrix depending on two real numbers (namely ;PIJ 
and Xii) and its form is given by 

1 0 

o 1 

o 

t 

ith column 

o 

t 

jth column 
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1 0 

o 1 

(13) 
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and 

T~j = exp(iXij) sinhl/JiJ 

ith column jth column 
+ + 

o 0 

o 0 

x 

where the central matrix T is given by 

T 11 = T22 = 0 and T 12 = exp(iXlj) sinhlJ!ij 

if II I*-IJj, hence 
N 

B{JWikJ2-JWikJ2-JvikJ2+ Jvjk J2}*-0, 
k=1 

o 0 

o 0 
(14) 

(14a) 

if Iii = Ijj and Iii is not a pure imaginary number, hence 

N 

B{W/kWkj + WkiWjk - v/ltvfi - Vjltvtl} *-0, 
hi 

if Iii = In and Iii is a pure imaginary number. 

(l4c) 

It is easy to see that in all cases, T automatically 
satisfies restriction (5'). On the other hand, relation 
(lO'b) leads to N(N - 1) real equations which in principle 
enable us to find the N(N - 1) unknown quantities {lJ!li} 
and {xu}. 

5. PARTICULAR CASES 

We intend to expose here a few particular situations 
which deserve attention because of their practical im
portance. Let us express the matrix T which diagonal
izes HJ in the form 

T=LX 

with I t1 1- 1 j L= N 1 N T2 ---1--- . 
IN : IN 

Therefore, 

T-1HJT=X-1M L X 
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where 

I~W-W*)+(V-V*): (W+W*)-(v+v*~ 
ML =2" -------------:------------ . 

(w+w*)+(v+v*): (w-w*)-(v-v*) 

It follows that in what concerns ihe eigenvalues our 
diagonalization is equivalent to a standard diagonaliza
tion of ML , whose secular equation is given by 

det(ML - ,\12N) = O. (15) 

Now, if W + w* =± (v + v*) this leads to 

det[(w - w* + v - v*)2 - 4,\2IN] = 0, 

where we have used that the determinant of the matrix 
is invariant through transposition. Our work is now sim
plified as we have to deal with an NXN matrix. 

Another relatively simple situation occurs when W 

= w* and v = v*, as in this case Eq. (15) leads to 

_~~ __ J::-_w_~~_I_o 
- W - v: '\IN -. 

I 

A Simplified method for calculating such a determinant 
is given in Appendix D. 

Let us now turn to another situation. We shall now 
express T as follows, 

T=KY, 

with 

K = vi fI! ___ :_~ ~~~l. 
[- ilN: IN] 

Therefore, 

T-I HJT = y_1 MK Y 

with 

MK =~f(:u_-_~':! :!~~ ~:)-i~~~ ~~~~~~~_~*Jl. 
Dv* - v) - i(w + w*) : (w - w*) + i(v + v*) ] 

As before, and only for the research of the eigenvalues, 
we may use the secular equation 

det(Mk - ,\12N ) = O. 

In the case v* - v = ± i(w + w*) this leads to 

det{[(w - w*) - i(v + V*)]2 - 4,\hN } = 0 

which again is a Simpler problem. 

Finally, ifw-w*=V+V*=ON' Eq, (16) leads to 

1_'\_I~j~=~~1 =0. 

v+iw: '\IN 1 
This determinant can be calculated with the method 
indicated in Appendix D. Let us recall that the cases 
w - w* = v ± v* = ON are very frequent in physics. 

6. METHODS 

(16) 

From the ideas developed in previous sections, opera
tional methods emerge, which are exposed here. In all 
of them we must, first of all, present the Hamiltonian 
to be diagonalized, into the form 
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which defines the 2Nx 2N matrix 

~ I ~ W IV 
H= I • 

v* : w* 

The problem will be considered completely solved if 
we attain the knowledge (as functions of wand v) of the 
N real eigenvalues {n j } (which define the diagonalized 
Hamiltonian Hv), and of the 2Nx2N complex matrix T 
(which defines the new boson operators (B I = (b I T in 
terms of the old ones). We recall that T has the form 

which also gives the N first eigenvalues {Tj} by the 
NX 2N matrical relation 

where 

t; 

t2N 
. J 

So the knowledge of T implies the knowledge of 4N2 real 
numbers (only 2N2 if T is real). We recall that 

J= r~~+o~J . 
LON :-I~J 

Method I: 

(1) Find the roots of the secular e.QJ.lation 

det(HJ - ;\12N ) =Nth degree polynomial in ;\2 = O. 

Thennj=l;\jl V=I,2, ... ,N). 

(2) Write, for each value of j, the set of 4N real 
equations (only 2N if T is real) 

[(HJ - nj I 2N )Tj ]k = 0 (I? = 1,2, ... , 2N), 

where by [ ... ]k we are noting the kth component of the 
vector. Then eliminate an arbitrary one between them 
and replace it by the real one 

N 2N 

:01~12_ 0 ItJI2=1. (I7) 
k:l koN+1 

We have in this way a set of 4N independent real equa
tions (only 2N if T is real) which in principle leads to 
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the knowledge of the 2N complex numbers {~} associated 
to the chosen value of j. An example of how to use this 
method is given in Appendix A. 

(2') Alternativ~ possibility for step (2): Find a par
ticular solution T of the equations 

(TtwT2 + Tr w*Tt - TrvTt - Tr v*T2)ij = 0 (i O'-j), 

where by ( .. ')ij we note the ijth element of the matrix, 
and where the norm relation (I7) must also be satisfied. 

(3~ Calculate the matrix 

QH = ~WT1 + Tr w*Tf - TtvTf - Tfv*T1 

and solve the standard diagonalization problem 

(Si
1

QH S1)ij = njDiJ 

with Si1 
= st and D ij = Kroenecker' s delta. 

(4') T is given by 

T 1 =T1S1 and T 2 =T2St. 

Method II: 

(1) The same as step (1) of Method 10 

(2) Calculate the matrix 

fll flN 

F1 = =w2 _ VV*, 

ftN fNN 

o 112 exp(i<P12) 

- f 12 exp(i<Pd 0 

flN exp(i<PlN) 

72N exp(i<P2N) 

=vw* - wv. 
(3) Write, for each one of the iN(N - 1) values of (ij) 

[ij = 12, 13, ... , IN, 23, 24, ... , 2N, ... , (N - I)N], the 
2Nx 2N matrix 

r1'ij 
: 1'ii l 

1'1i =Cc~~j~*i (~:~)~J ' 
where 

Ttl is given by expression (13), 

and 

Til is given: 

by expressions (14) and (14a) if fii *fjJ; 

by expressions (14) and (14b) iffii=fJJ andR(f/j) *0; 

by expressions (14) and (14c) iffii=fjJand/~(fiJ)=o. 

(4) Calculate the 2Nx 2N matrix 

l' = 1'121'13 ••• TlN 1'231'24 ••• r2N •• • TN _1,N 
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which will now be expressed in terms of th~ N(N - 1) 
real numbers {<PH} and {xij}' Then present l' in the form 

=J7\:Tzl 
T=[Tii¥tJ 

which leads to the knowledge of 1'1 and 1'2 separately. 

(5) Determine {<Pu} and {Xii} by solving the N(N - 1) 
real equations given by the matrical relation 

r;FzTf - TfFtTz + TrF1Tz - T'fFfTt :=:ON' 

Substitute the solutions in the expression of T obtained 
in step (4), which will now be a function of Vij}, {ju}, 
and {<Plj}' 

(6) Calculate the NXN matrix 

QF = 'rrF/i\ - rf Ff'h + TrF2Tt - Tf FtT1• 

(7) Proceed to a standard diagonalization of the her
mitic matrix QF by a unitary matrix S1 presented in the 
following form: 

51'" (81)(82).0. (SN)' 

To perform this, write, for each value of j, the set 
of 2N real equations 

2 -[(QF-~1,lN)Sj]k=0 (k=1,2, ..• ,N). 

Then eliminate an arbitrary one between them and re
place it by the real equation 

IIS,II = 1-

The solution of this set of 2N real equations (only N if 
S1 is real) gives the vector S,. 

(8) Calculate the matrix 

T; = 1\51 and T~ = TzSf 
and then 

T' ~ ti;);~;~i)-;] . 
(9) Calculate the matrix 

H' = (T'r 1HJT'J 

and enter in step (2) or step (2 ') of Method I. 

An example of use of this method is given in Appendix 
B. 

Method Ill: This method is applicable only for the re
search of the eigenvalues {a,} and only for some par
ticular cases: 

1st case: 'w + w* = ±(v + v*) 

Find the roots of the secular equations 

det[(w - w* + v - v*)2 - M1N] = 0, 

then 

aj=t~ 0:=:1,2,o •. ,N). 

2nd case: w + w* =± i(v - v*) 

Find the roots of the secular equation 

det{[(w - w*) - i(v + v*)]2 - M1N} = 0, 
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then 

aj =t"r-p:; 0:=: 1,2, ... , N). 

3rd case: w - w* = v - v* = ON 

Find the roots of the equation 

N 

B(-l)"en MN ",,=O, 
n=O 

where en is given in Appendix D with 

A '" _ w + v and Boo - w _ v 

and then 

\1j=-I/I; 0=1,2, ... ,N). 

4th case: w - w* = v + v* = ON 

Find the roots of the equation 

N 

B(-l)"en MN
-

n =O, 
n=O 

where en is given in Appendix D with 

A=v-iw and B=v+iw 

and then 

\1j =.f/I; 0 = 1, 2, ... , N). 

Examples of the use of this method are given in Appen
dix C. 

7. CONCLUSION 

Let us conclude by saying that the exposed method for 
diagonalizing any Hamiltonian of N bilinearly interacting 
bosons is absolutely equivalent to the so-called "equa
tion-of-motion approach." However systematic exploita
tion of the peculiar boson properties had led to a con
cise mathematical formulation which allows for the 
establishment of operational rules. We have only spoken 
of N bosons; nevertheless the method is equally appli
cable to N families (or branches) of bosons, by simple 
identification of the boson operators (bi '" bq , bz = b.q, etc.) 
as it was done, for example, in Refs. 1, 16, 17, and 18. 

Finally let us compare the different methods present
ed in this paper. Method I [steps (1) and (2)] should be 
considered the most standard way of performing the 
diagonalization, however if the matrix H is rather com
plicated (low symmetry, no zeros), the more delayed 
procedure indicated in Method I [steps (1), (2'), (3'), and 
(4') 1 could be preferable. Furthermore, if H is very 
r;omplicated, the highly delayed procedure indicated in 
Method II could be worth while. If we are interested only 
in the eigenvalues (as it is frequently the case in sta
tistical mechanics), there is no doubt that Method III 
should be adopted if we are faced with one of its four 
cases; if not, the problem will be solved by Method I 
[step (1) J. 
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APPENDIX A 

Let us treat, by Method I, the cases N = 1 and N == 2. 
For N == 1 we have WE: JR and II = 1111 exp(icp) E' a:. The 
secular equation is 

w-i\ - 1111 exp(icp) 
=0 

I vi exp(-icp) - W - A 

hence A=±(wZ_llllz)1/Z hence U==(wZ_lvlz)l/Z. We see 
that it must be w > III I. Let us propose 

1\ = cosh~ and Tz == exp(ix) sinhl/!o 

Therefore [performing step (2') of Method I], 

X=CP and tanh2</!= Ivl/w, 

hence 

- 1 [w+(w2_lvlz)1/Z]1/2 

Tl=12 (w2_lvI2)1/4 

and 

We may then verify that QH = (WZ - 11112)1/2, as it is 
naturaL In this case, obviously T = T. 

For N = 2 we shall only find the eigenvalues. The most 
general situation is given by 

with wH, w22 being real numbers and the rest being 
complex. The secular equation is given by 

Wll- A w12 - 1111 - 1112 

wt2 w22 - i\ - 1112 - 1122 = A4 _ C1A2 + C2 == 0, 

IIt1 IIt2 - w11- A - wt2 

IIt2 IIr2 - W12 - W22 - A 

where 

C1 '" wi1 + W~2 + 21 w121
2 

- 1111112 - 1112212 - 21 111212 

and 

C2 '" wi1 W~2 + I W121
4 

- 2 W11 W221 W121
2 

- will 112212 - w~2lv 11 12 
-2(W11W 22 + IW1212)lv1212+ IvH 121v22 12+ h214 
- 2/Z (Wi2 v tlV22) - 2/Z (V 11V 22 Vfl) 

+ 4W11/Z (W12 V tz v 22) + 4W22/Z (W12 V 12 v f1). 

Th'::~~:': [~' ± (~l_ c,) "~ 'I'. 
We see that it must be 

C1 ?:: ° and Ci?:: 4C2 ?:: 0. 

The particular case v 11 = 1122 = ° and w12 = v 12 E: JR appears 
in Ref. 18. On the other hand, if we assume that W22 

= W12 = 1122 = v1Z = 0, we reobtain the case N = 1. 
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APPENDIXB 

We shall treat here the case N = 2 in the particular 
case W11 == wZ2 = 1, 1111 = v 22 = 0, and W12 == 1112 E' JR. The 
eigenvalues have already been obtained in Appendix A: 

U1 •2 =..j 1±2w12' 

Therefore, it must be I W12 I < ~. We verify immediately 
that F2 = °2, hence T == 14 , therefore 

QF ==F1 = fl 2W12] and H' =H. 

L2W12 1 

Now we enter into step (2) of Method I. The equations to 
determine Tare 

[(HJ -..j 1 + 2W12 14) T11k = ° (k = 1, 2,3), 

(th2 + (ti)2 _ (t~)2 _ (tt)2 == 1, 

[(HJ - V 1- 2w1214ii,\1..o (k = 1, 2, 3), 

(d)2 + (t~)2 _ (t~)2 _ (t~)2 == 1. 

The solution (attained through very boring calculationsl) 
is given by 

T 1 = ft~ t~ ] and b -t~ 
with 

t1_ I W12 1 

1- D1 ' 

ti-~ 1+W12-vl+2W12 

-IW121 D1 ' 

t3 W12 - 1 + w12 + V 1 - 2W12 

Z = I W1Z 1 Dz 

D1 '" 12 [Wi2 - (1 + W12 - V 1 + 2 W12)2 Y /2 , 

Dz =..[2 [Wi2 - (1- W12 - V 1- 2W12)Z]1/Z. 

APPENDIX C 

We shall treat here, by Method III, the case N = 3 for 
wand v a real matrix. The secular equation can be 
written as follows 

1J.3 - C 11J.2 + CzlJ. - C 3 =0, 

where 

C1 = wi1 + w~z + W;3 - vi1 - v~z - V;3 

+ 2(wi2 + Wi3 + W~3 - lIiz - vis - 1I~3)' 
C2 = 

(WllW22 + 11111122 - Wi2 -lIi2)Z - (wullz z + wzzv ll - 2W121112)2 

+ (WZZ W33 + V ZZ V33 - Wi3 - 1I~3)Z - (WZ21133 + WS3 1122 - 2W23 1123)2 

+ (WllW33 + IIU ll 33 - Wi3 - Vi3)2 - (Wil 1l33 + W 33V 11 - 2W13 11 13 J2 

+ 2[(W11W23 + 1111 11 23 - W12W13 -1112 11 13)2 

- (Wl1 1123 + 1111 W23 - W121113 - W13 1112)2 

+ (Wn W 13 + V2Z 11 13 - W12WZ3 - 11121123)2 

- (WZ2 1113 + II ZZ W 13 - W12 1123 - WZ3 V1Z )2 

+ (W33 W12 + 1133 111Z - W13WZ3 - 1113 I1z3 )Z 

- (W33 1112 + 1133W12 - W13 1123 - W2S 1113)2], 
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Wu- Vu W12 - 1'12 W13 - 1'13 

C3 = W12 - 1'12 W22 - 1'22 W23 - 1'23 

W13 - 1'13 W23 - 1'23 W33 - 1'33 

Wu + Vu W12 + 1'12 W13 + 1'13 

X W12 + 1'12 W22 + 1'22 W23 + 1'23 

W13 + 1'13 W23 + 1'23 W33 + 1'33 

The eigenvalues are given by 

rlj = + VIi; (j = 1, 2, 3). 

If in the present secular equation we take the particular 
case W33 = 1'33 = w13 = w23 = 1'12 = 1'23 = 0, we easily verify 
the consistence with the secular equation obtained in 
Appendix A for N = 2. 

APPENDIX D 

We want to calculate the determinant 

~ = I_A!~ ~ ~ _I ' 
B : AIN 

where 

A= 

B= 

with {au} and {bij} being complex numbers. A long, but 
not complicated, inductive process leads to 

N 
~ =6 (- 1)nCnA2 (N-n), 

n=O 

where 

N 

C1 =~ 0iibii + 26 0i}b ij , 
i=1 i<i 

a(n) = determinant of an nXn minor of matrix A, con
structed without touching the positions of the elements 
ail • 

(3(n) = determinant of an nXn minor of matrix B, which 
is obtained by making a ij - b Ii in a (n) 

In order to clarify the use of this method, we present 
here the results for N = 2 and N = 3; 
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A 0 au a12 

0 A a12 an 

bu b 12 A 0 

b 12 b 22 0 A 

4 2 b) 2 I au a121 I bll b121, = A - (allbll + a22b22 + a12 12 A + 
a12 ~2 b 12 b 22 

A 0 0 ~1 ~2 a13 

o A 0 a12 a22 aZ 3 

o 0 A a13 a23 a 33 

bu b 12 b 13 A 0 0 

b 12 b 22 b 23 0 A 0 

b 13 b 23 b 33 0 0 A 

= A6 
_ A4

(allbu + a22 b 22 + aa3 b 33 + 2a12b12 + 2a13b13 + 2a23b23) 

+A
2 {I:: ::II~:: ~::I + I::: :::1 \~:: ~::I 

+ I au a12 I \bu 
b

12 
\ 

a12 a22i b 12 b 22 

+ 21 a12 a231 

a13 a 33 

+ 21 a12 a2211 b
12 

b
22

1 + 21
al1 

a121 

a13 a Z3 b 13 b Z3 a13 a 23 

au a12 a13 bu biz b 13 

a 12 a22 ~3 b 12 b Z2 b 23 
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Remarks on the asymptotic behavior of the 't Hooft's 
magnetic monopole 

D. S. Chernavskii 
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We investigate the asymptotic behavior of the 't Hooft's solution at r--->O and r--->oo . Using the methods of 
the qualitative theory of ordinary differential systems, we are able to derive the asymptotic form of the 
solution up to a higher approximation than in 't Hooft's original paper [G. 't Hooft, Nucl. Phys. B 79, 276 
(1974], as well as show that the Prasad-Sommerfield's exact solution can be considered as an analytical 
limit of the 't Hooft's solution for 1-1-'--->0, A--->O. Some remarks on the stability of the monopole close the 
paper. 

1. INTRODUCTION 

The aim of this paper is to analyze some questions 
arising on the classical level in the theory of the sta
tionary Yang-Mills field coupled with the Higgs-Kibble 
scalar field. The main questions concern the existence, 
the asymptotic behavior, and the stability of the solu
tions of the type proposed by 't Hooft, 1 The methods 
adapted here are used widely in the qualitative theory 
of the nonlinear ordinary differential equations; to our 
knowledge these methods have not yet been utilized in 
the study of 't Hooft's magnetic monopole, The general 
properties of 't Hooft's or Prasad-Sommerfield solu
tions are quite well known now; still, the problem of 
existence and stability remains open, 

The notation hereafter closely follows the notation 
used in Refs, 1 and 2. 

The starting pOint of the theory is given by the follow
ing gauge- invariant equations: 

(1) 

and 

Here a,b,c=1,2,3; f-l,lJ=0,1,2,3; C~c=Eabc, jJ.2>0; 

F~v= 0l"~- eVV':, + cC~c W~ ~ (3) 

and 

D"ipa= 0l"ipa + eC~cwtipc, (4) 

In accordance with the Higgs-Kibble postulate we de
fine the stable vacuum state by 

(0 I ipaip a I 0) = F2 = const, (5) 

where 

f-l2 = AF2/e2• (6) 

Following 't Hooft, we seek the solution of the special 
form satisfying Refs, 1, 3, and 4, 

M 0 IV': = 0 oipa ( 
0=0, at ' at =0 i,j=1,2,3), 

where 

IV': =Eal"xkW(r), ipa =x"Q(r), r = (Xkx k)1 12, 

(7) 

(8) 

Inserting expression (8) into Eqs, (1) and (2) we obtain 
the following system: 

d 2W 4 dW 
-;:::z + - - - 3e W2 - e 2r2 W3 - eQ2 - e 2r2 WQ2 = 0 (9) 
& r& ' 

d2Q 4 dQ 
~ + - -- 4eWQ - 2e2r 2W2Q + f-l2Q - Ar2Q3= O. (10) 
dr r dr 

These equations can be quite Simplified by the following 
substitution ~ 

er2W=1-K(Y), er2Q = H(r), 

and then by the change of the variable r into t 

r = et , t = logr, 

r-O-t-- oo , r-oo~t-oo, 

Then we get the following equations for K and H: 

K = K + K3 - K + KH2, 

H=H+2HK2- f-l 2e 2tH+ ~H3 
e ' 

where K=dK/dt, etc, 

(11) 

(12) 

(13) 

System (13) is still nonautonomous (i, e" it contains 
the variable t) because of the factor e2t in the last 
equation, We can formally give it an autonomous and 
first-order form by putting 

X=e 2t , K=P, H=R, 

Then we get: 

X=2X, K=P, iJ.=R, 

P=P+K3_K+KH2, 

R=R+2HK2- f-l2XH+ :2H3o 

The set of equations (15) can be interpreted as the 
differential equation of a curve in the phase-space of 

(14) 

(15) 

fi ve variables (X, K, H, P, R), the parameter of the curve 
being t, - 00 < t < + 00 0 

2. ASYMPTOTIC BEHAVIOR AT r ...... 0 
The energy of our system is given by the Hamiltonian 
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H = 41T f I dr (dK)2 + iK2 + 1)2 + H2K2 
e2 0 L dr 2r2 r2 

+ r- - H 2r2 - 1!:.. H2 + -2- , ( dH); 2 XH
4 

] 
dr 2 4e r2 (16) 

The finite energy condition imposed on this expression 
will give us the acceptable asymptotic behavior of the 
functions K and Hat r - 0 and r - 00, The integral (16) 
will not diverge at r - 0 if the following conditions are 
satisfied: 

K=1+0(rO), a>~atr-o, 

H=O(r'\ (3> t at r-O, 
(17) 

Now, when r - 00, the function H has to approach the 
value H - Fr, in order to get the vacuum- expectation 
value at the limit, according to (5), Then the integral 
(16) will behave at infinity as 

(18) 

and can be renormalized by subtracting a constant from 
the Hamiltonian density, Then the difference will re
main finite as long as lim .... ""K(r)=O, 

However, the condition on the behavior of H(r) at 
r - 00 can be made more precise. Namely, if we assume 

H=Fr+C+H(r) 
with 

H(r) - 0 as r - 00, 

(19) 

(20) 

then inserting this expression into (16) we will get the 
crosS term of the type 

2 2 f "" :~ R FC dr (R large compared to 1/ Il) (21) 

which can never be removed by subtraction of a constant 
energy density of the vacuum, Therefore, we ought to 
have 

H - Fr+ii(r) (22) 
r~'" 

and C = 0, Of COurse this argument fails to be valid if 
alsoIl2 -0, X-Oo 

As it has been already pointed out, the solution of 
system (15) can be regarded as a curve in our phase 
spaceo It is convenient to have a look at the Singular 
points of our system and to classify them. The singular 
points are the points in phase space in which all the 
right-hand terms of (15) vanisho It is clear that this 
is possible if 

X=O, P=O, R=O, 

K(K2 + H2 -1) = 0 and H(2K2 + ~H2) = 00 

(23) 

The singular pOints and the isoclines (the lines along 
which the direction of "velocities" is constant) are dis
played in Figo 10 The only Singular pOints are K = ± 1, 
H = 0, and K = 0, H = 00 Along the circle K2 + H2 = 1 and 
the H axis the "velocities" are horizontal; along the K 
axis they are vertical. We note that this image is valid 
for X = 0, i. e., t = - 00 or r = 0; there can still exist 
some singular points at r - 00, which we shall investi
gate later. 
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It is clear that the trajectory satisfying conditions 
(17) at r - 0 has to start at the singular point K = + 1, 
H = 0 0 In order to see what the asymptotic behavior is of 
such a solution at r - 0 we have to linearize our system 
in the vicinity of K = 1, H = 00 Then we get (we use the 
same letters for the infinitesimal variations of K, H, P, 
etc. ): 

X=2X, K=P, H=R, P=P+2K, R=R+2Ho 

(24) 

The characteristic exponents are given by the equation 

det (2 ~ i3 ~{3 _~ {3 ! 
o 2 0 1-i3 
o 0 2 0 

~ )=0, 
1-{3 

which gives the following solutions: 

i3j=i32=i3s=2, i34=i35=- 10 

(25) 

(26) 

The point K = 1, H = 0 is an unstable saddle point (with 
both positive and negative exponents). The asymptotic 
solutions compatible with condition (17) are 

(27) 

other solutions being incompatible with the finiteness of 
energy at r - 00 The corresponding eigenvectors are 
directed at the angles tancpjjz2 = 2 in the RH plane and 
tancpBo2:= 2 in the PK plan eo Of course, the eigenvectors 
directed at the angle tancp a..~j = - 1 in the RH or in the 
PK planes correspond formally to asymptotic solutions, 
but they have to be eliminated because of condition (17)0 

Let us make this point clear. In general, the solu
tions of the system (9), (10), or the equivalent one, 
(15), form a four-parameter continuum, If two bound
ary conditions are fixed, like K = 1, H = 0 at r = 0, we 
are stiUleft with a two-parameter continuumo The con
ditions of type (17) should not, in general, restrain this 
continuumo This would be the case if all the charac
teristic values (26) satisfied (17), or if the point K = I, 
H =0 were a nodal point, i. e., a point through which 
there pass multiple trajectories under the same angle. 
However this is not the case, and as we have seen, con
dition (17) is equivalent to a strict equality, f3 = 2, 
Therefore we have at our disposal one and only one 
traj ectory starting at K = 1, H = 0 and corresponding to 
a finite energyo 

3. ASYMPTOTIC BEHAVIOR AT r -'> 00 

Now we want to see what happens once our trajectory 
leaves the KH plane and r - 00 0 In order to do this let us 
assume that K - 0 as r - 00 and 

H = Fr + H(r), ii(r) - 0 0 (28) 
r-'" 

It is convenient to write down our system as (C = 0) 

r2K" =Ks - K + K(Fr + ii)2, 

r2H" = 2K2(Fr + H) - 1l2(Fr + ii}r2 + \ (Fr + ii}3, 
e 

As J.L2= (x/e 2)Fl, we get 

rK" =K3 - K + KFlr2 + 2HKFr + KH2, 

r2jjll = 2K2jj+ 2K2Fr + 21l2y2H + 3~2 rH2+ :2iiS. 
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t 
t 
t 
? 

• .. 
! 
1 

K 

-- Fig. 1 

If we change the variable r into ~ = r-t , we get the 
following system (now r - oo~~ - 0): 

f=- ~2, K'=P, ii'=R, 

P' = (K3 _ K)~2 + ~K + 2FKii~ + Kjj2~2, (31) 

R' = 2K2jj~2 + 2FK2~ + 2jJ.2ii 

+ 3jJ.2 jj2 t + 2::.. jj3 t2 
F s e2 s. 

Clearly there is only one singular pOint at r - <;(), i, e, , 
~ - 0, This singular point is given by 

-
~=O, P=O, R=O, K=O, and H=O, (32) 

The linearized system in the neighborhood of this point 
is 

~'=O, K'=P, jj'=R, P'=?K, R'=2jJ.2H. (33) 

This system is split up (independent systems for K, P 
and il, R). and the characteristic exponents are 

i3t = F, i32= - F, i33= jJ.f2, i34 = - jJ.f2, (34) 

Only the values i32 = - F and i34 = - jJ. f2 are compatible 
with the asymptotic conditions (20), Our singular point 
at r - 00 is also a saddle point. Once more the condition 
of the finite energy turns out to be equivalent to choos
ing one and only one trajectory out of a four-parameter 
continuum. 

4. REMARKS ON THE UNIQUENESS 

Let us consider carefully the number of restrictions 
following from the above-mentioned behavior of the 
trajectories. 

II 

Fig. 3 
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II. 

Fig. 2 

H 

(a) If our system was autonomous, conditions (17) and 
(34) would cut out of the parameter-parameter continu
um of trajectories one and only one at r = 0 and one and 
only one traj ectory at r - 00, This would mean that our 
system is over defined, Indeed, we have only six de
grees of freedom: four initial conditions and two free 
parameters jJ.2 and F, For the autonomous systems the 
change in quantities At and A2 in (27) do not change the 
corresponding trajectory, because this can always be 
reduced to a change t - t + t::.t (or r - Cr). 

(b) For the nonautonomous systems this is not true 
in general, The corresponding situation is illustrated in 
Fig, 2 and Fig, 3, As Fig, 2 shOWS, for an autonomous 
system the generalized trajectories in the space con
taining the t variable all project on the original trajec
tory T in the phase space, In Fig, 3 and Fig, 4 we see 
how for a nonautonomous system the generalized trajec
tories, corresponding to different shifts of t, project 
onto different trajectories on the phase space. 5 

This means that in our case the changes of At. A 2 , 

etc" will really change the trajectories in the phase 
space. That means, in turn, that our system is not 
necessarily over defined. The same kind of figures can 
be drawn at r - 00. The problem is to find one smooth 
trajectory starting in the original bundle at r= 0 and 
ending up in the final bundle of trajectories at r= 00, 

(c) However, in general, between r=O and r=oo both 
bundles can reduce themselves to the very narrow 
beams. Such a phenomenon is known under the name of 
phase autosynchronization in the theory of nonlinear 
parametric excitation. In such a case a smooth trajec
tory may not exist (see Fig. 5), That is why our linear 
approximation is still not conclusive and we have to 
analyze the situation in more detail. 

Fig. 4 

H 
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Fig. 5 

H 

5. THE PRASAD-SOMMERFielD LIMIT 

We want to see now what happens in the limit ).l - 0, 
i\ - 0, where an exact solution is known to exist. 

The analysis of the asymptotic behavior at r - 00 can 
be continued by taking into account the terms corre
sponding to the next orders of magnitude. As Ii = H - Fr, 
let us call 

cp=H/r=H/r- F. (35) 

Then we get (~= 1/r) 

K" = (K3 - K)e + KF2 + 2KFcp + Kcp2, 

cp" = 2FK2~2 + 2cpK2e _ 2cp'~ +2).l2cp + l::. cp3 + 3Fi\ cp2 
e2 e2 ' 

(36) 

The approximation we propose now consists in keeping 
the following terms: 

2m' 
K"=KF-+2KFcp, CPIl+-;-=2).l2cp, (37) 

The second equation gives the Yukawa potential 

=A exp().lv2r) +B exp(- ).lv2r) 
cp r r' (38) 

If ).l is finite, we can keep only the second term; how
ever, if ).l- 0 (and ).lr is very small) the function rp 
tends to 

A+B 
cp= -Y- + ).lv2(A-B)o (39) 

In the limit 11. - 0, A - B is arbitrary, and A + B = D is 
some constant; cp approaches (A+B)/r=D/ro At this 
limit the first equation in (37) becomes 

K" =KF- + 2K;D =K(F- + 2~D). (40) 

F being just a scaling parameter here, we can put 

p=Fr 

and write 

~:~=K(1+ 2:)0 
Now we seek our solution in the form 

K = Ci (p)e P + {3(p)e-P 

with 

Q = :0 anP", {3:=:0 bnpR. 
n=O ... 0 
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(41) 

(42) 

(43) 

(44) 

Then we get (e P and e-P being linearly independent) 

0."+20"- 2Dj3=0, 0. 
P 

which gives 

:0 n(n -1)anpn-2 + 2:0 (n - D)anP"-1 = 0, 
n=O nlll'O 

~ 

'0 n(n-1)bnpn-2_2'0 (n+D)b nP"-I=Oo 
n=O ... 0 

The recurrence formulas are then (ao = 0, bo = 0) 

n- D 
a n+1 = (- 2) (n + 1)n an= 000 

= (_ 2)n (n - D)(n - D - 1) 00 0 (1 - D) 
(n + 1) In! at, 

= 2n (n + D)(n + D - 1) 00 , (1 + D) b 
(n+1)ln! b 

(45) 

(46) 

(47) 

and we have still the freedom to choose two parameters, 
al and bj, at will. 

Had we started the same development at another 
singular point, L e., cp = H/Y + F, we would get 

a = (_ 2)n (n + D)(n + D - 1) ... (1 + D) 
"+1 (n + 1) ! n I a j , 

_ n(n-D)(n-D-1),00(1-D) 
bn+I -2 (n+1)!n! bj, 

(48) 

Q and {3 being interchanged. The series are particularly 
simple if D takes on the positive or negative integer 
values. Namely, in the first case (47) for D = m 
= positive integer, Q' becomes a polynomial and {3 
becomes 

() "cn+m 1 (2p)"+1 b 
(3 p = ~o m 2(n + 1) --:;:;J- 1, 

e. g., for m = 1 

(49) 

(50) 

and K is badly divergent If D is a negative integer, D 
= - m, then {3( p) reduces to a polynomial of order m, 
whereas for O'(p) we get 

O'(p)= i: cn+m_1_ (- 2p)n+l (51) 
,:0 m 2(n + 1) n I 

Kg., for D = - 1 

(52) 

and 

a(p) = - ajpe-2p = - alFrexp(- 2Fr). (53) 

Now K(r) is equal to 

K(r) = Fr(b j - aj) exp(- Fr) (54) 
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which exactly gives the asymptotic behavior of Prasad
Sommerfield's solution. It seems at this stage that we 
have lost one degree of freedom (both independent solu
tions become coincident for D:::=-I), and instead of two 
independent constants ah b1 there is only one left: 
b1 - al. It remains true for any D = negative integer. 
However, for an arbitrary negative D we still get two 
independent solutions. This last statement can be illu
strated as follows: Suppose D:::=-1 +e, E very small. 
Then we get 

,,(n + 1 - E){n - d" . (2 - c) (55) 
an+l = (- 2) (n + 1) InI al 

and 

, (n - 1 + E)(n - 2 + e) , .. (1 - E )E b 
b,,+1=2 (n+l)lnI 1· 

Developing these expressions in the powers of E and 
keeping only the linear term, we get 

(- 2)" , 4~:1 (l/lQ. a 
an+l=-n-I-al-d-2) 2nI(n-l)I h 

bn+l =E2
n 

2n I (! -1) I b1• 

Therefore, we find two independent solutions 

K = Fr(b1 - al) exp(- Fr) +e[bd2(r) exp(- Fr) 

- adl(r) exp(Fr)], 

where 

00 (_ 2Fr),,+12:t:l (11K) 
fl(r) = Eo (-4)nI(n-l)! 

and 

(2Fr),,+1 
f2(r) = Po 4n! (n - I)! 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

All these series are absolutely convergent, The 
Prasad-Sommerfield solution corresponds to the case 
D = -1. Since series (60) behaves asymptotically as a 
polynomial, we have to put a1 :::= 0, and we are left ex
actly with two degrees of freedom: D and b1, 

6. STABILITY 

The problem of stability can be approached by a 
method proposed by Derrick, 1 in which the knowledge 
of the exact solutions is not necessary. We choose the 
variations of the functions K(r) and ii(r) in the form 
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dK 
oK:::=Er

dr ' 
- dH 

oH(r) =Er- with E «1, 
dr' 

(62) 

This is equivalent to the transform K - K(Xr), X = 1 +E. 

The Hamiltonian is then equal to 

H= 4:fTdr (K,)2X+ (K;~1)2 X+ PK
2 

e 0 l r X 

jj2K2 (rjj, - ii)2 i\ (jj2 jjs jj)] 
+ -2- X + 2- X + '2 P- + F- + '2 X • 

r 2r e X r r (63) 

The second variation o2H lox2 over X at X = 1 is equal 
to 

@1=4rrfJ.2 [OOdr[K2+ ~ jj2J 
OX 1(01 J 0 A e 

(64) 

and is positive. This means that the solution is stable 
with respect to the variations of the ~ype in Eq. (62), 
We point out that in the case F= 0, H = 0, any autolo
calized solution would be unstable under this kind of 
variation, and is hence absolutely unstable. In the 
't Hooft model the stability follows from the minus Sign 
of the "mass term" of the Higgs-Kibble field. 6 
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WKB approximation for bound states by Heisenberg matrix 
mechanics 
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The WKB approximation for bound states is derived from Heisenberg matrix mechanics. It is shown that 
the result can be obtained from the Bohr-Sommerfeld quantization of a suitably chosen solution of the 
classical equations of motion. It is also derived from the commutation relation and from a quantum form 
of Hamilton's variational principle. 

I. INTRODUCTION 
The traditional approach to the WKB approximation 

has been through the study of the Schrodinger equation 
in configuration space, giving rise to the apparatus of 
connection formulas. This approach has perhaps 
reached its most satisfactory form in the monograph 
of Froman and Froman. 1,2 Quite independently, recent 
times have witnessed an expanding study of semiclassi
cal approximations by means of path integral meth
ods3 ,4; this study has served as a prime stimulus in the 
development of quantization procedures for nonlinear 
systems by Dashen, Hasslacher, and Neveu. 5,6 

Other contributions in this new field have revealed 
alternative techniques which may provide increased 
understanding of semiclassical approximation methods. 
At least two additional distinct approaches may be 
cited, the method of canonical quantization about a 
classical solution, 7-9, and the method of Heisenberg 
matrix mechanics. 10,11 The purpose of this note is to 
show how Heisenberg's method may be used to give a 
novel and completely elementary discussion of the 
WKB approximation which makes contact with the 
earliest ideas about the quantization of bound, periodic 
motions. 

It is noteworthy that Heisenberg's matrix mechanics 
has remained almost dormant as a practical tool for 
most of the history of quantum mechanics. Recent ef
forts suggest that this has been a matter of taste rather 
than necessity. 12-14 Even these limited efforts suggest 
the availability of powerful nonperturbative methods for 
some strong coupling situations. 

In the approach to WKB, it is natural within the 
Heisenberg framework to define semiclassical as the 
domain of a large quantum number, n» 1. We look for 
an expansion of the form 

E(n) = E elass (n) (1 + ~ +"; + ... ) , (1. 1) 
n n 

together with a similar expansion for various matrix 
elements. Here E elas• (n) is the result emerging from 
the Bohr quantization condition; we intend the implica
tion that it can be obtained from a suitable classical 
solution. Within this framework, the WKB result means 
that we can rewrite (1. 1) as 

(1. 2) 

alSupported in part by the Energy Research and Development 
Authority throug-h contract AT(Ell-1) 3071 Theoretical. 

Viewed thus, it suggests that the full WKB can be de
rived from a suitably defined classical solution. 

The proof of (1. 2) is given in Sec, III after a careful 
account of the Bohr-Sommerfeld quantization in Sec. 
n is used to lay most of the necessary groundwork for 
our prooL Section IV contains some observations sup
plemental to the main prooL In Sec. V, we describe 
several alternative, but equivalent proofs, the most 
useful for further work utilizing a quantum version of 
Hamilton's variational principle in classical mechanics. 

II. PRELIMINARIES AND REVIEW OF THE BOHR· 
SOMMERFELD QUANTIZATION 

Consider a Hamiltonian for a system with one degree 
of freedom, x ('If = 1), 

H =~p2 + V(x), (2.1) 

[x,p]=i. (2,2) 

We find it convenient to eliminate the operator p from 
the problem by utilizing the equation 

p =x= - i[x, H]. (2.3) 

The equations of motion and commutation relations 
which follow from (2. 1) and (2.2) are then taken in the 
form av 

[[x, H], H] = ax' 

[x, [x, H]] = - 1, 

and the energy may be calculated as the expectation 
value of 

H =Hx, H][H, x] + V(x) 

in the bound eigenstate n, 

(n I H In,> = E(I1) 6"" . 

(2.4) 

(2.5) 

(2.6) 

(2,7) 

Weare interested in the limiting value of E(I1) for 
large 11. The usual method of obtaining this result is to 
apply the Bohr-Sommerfeld condition 

§pdx=27Tn, (2.8) 

taken over a complete classical period, and p is the 
solution of 

(2.9) 

with the appropriate sign. In the remainder of this sec
tion we shall describe some not-quite-so-well-known 
aspects of this procedure which will be helpful in under-
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standing how to carry out the extension from Bohr
Sommerfeld to WKB. 

One well-known alternative to (2.8) makes use of the 
correspondence meaning of the classical frequency, 
namely 

dE(n) 
w = wen) =--a;;-' (2.10) 

If the classical frequency is known as a function of E, 
w = weE), then (2.10) can be integrated 

n = f w~;) . (2. 11) 

The equivalence of (2.8) and (2.11) is established by 
utilizing the formula for the classical period 

T=27T =~ fpdx 
w dE 

which follows from the energy integral (2.9), 
combining (2.10) and (2.12), we see that 

dn =l=-.!=~~ [pdx. 
dE w 27T 27TdE J' 

(2.12) 

Indeed, 

(2.13) 

Although superfluous in practice in the one-dimen
sional case, it is important in principle for this case 
and essential also in practice in the multidimensional 
case to recognize that to find weE) we need an explicit 
periodic solution of the equation of motion 

x(t) = _ av(x) 
oX (2.14) 

in the form x =x(t, w) =x(t + T, w), We then compute 

E=E(w) =~;:T H(x(t, w), x(t, w»dL (2.15) 

(Though computation of the time average is redundant 
here, it plays a role later.) The inversion of (2.15) 
gives w(E) to be inserted into (2. 11). 

So far we have considered only the energy. We can 
obtain information about matrix elements by re-express
ing (2. 15) in terms of the Fourier coefficients of 
x(t, w), 

~ 

x(t, w) = E x,.(w) exp(ipwt), (2.16) 
p= ... oo 

where we choose the xp(w) =x_p(w) and real. If we think 
of Vex) as a power series in x, it has the Fourier 
representation 

~ 

V(x(t, w) =,0 Vp(w) exp(ipwt), (2.17) 

and a similar expansion may be written for H =~x2 + V. 
In terms of these definitions, (2.15) is of course equi
valent to 

~ 

E(w) =Ho(w) = .0 ~(pw)2 x_p(w)xp(w) + Vo(w). (2. 18) 
p=_00 

Progress now consists in comparing (2.18) with the 
diagonal matrix (n I H In), computed from (2. 6) in the 
large n limit. Let us work with Vex) = ;\.x4 as an illu
stration. We then have 
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="E~(En+P - En)2(n I x In + p)(n + p I x I n) 
p 

+ "E A(nlxln+p)(n+plxln+p') 
PP'P" 

X(n +p' Ix In + p")(n +p"lxln). 

To reduce (20 19) to the form (2. 18), several points 
must be considered. First we must restrict the expan
sion of (En.p - En) to linear terms, 

dE(n) 
En+p - En "'--d-P = w(n)p. 

n 
(2.20) 

Second, since the xp(w) are real and even in p, we must 
equate the upward and downward-going transitions, for 
comparison of classical and quantum expressions leads 
us to require (p > 0) 

(nl xl n +p)(n + p Ixln) =xpx_p, (2.21) 

(2.22) 

There are many ways of satisfying (2. 21) and (2. 22). 
One of these will correspond to the Bohr-Sommerfeld 
quantization and another to WKB. In this section we 
shall consider the following identification, which, as 
argued below, corresponds to Bohr quantization, 

x1(n)=xl(w(n»=(n-llxln), (2.23) 

(2.24) 

Here np is a number which depends on p, which we are 
not free to prescribe, The reason is that, with the 
reality conditions imposed, the xp(w) in (2.16) are uni
quely determined functions of wand thus the single as
signment (2.23) determines wen). Therefore, (2.24) is 
merely a definition of I1p. It is obvious that IIp is a num
ber differing little from n for sufficiently small p. 

All matrix elements (2.19) are now expanded about 
the values (2.23), (2.24) as a leading approximation, 
To the leading order the interaction is treated in the 
cavalier fashion indicated by the approximation 

<n +p Ix In + p') "'-xp..p' =xP'_p' (2.25) 

Putting (2.20)-(2.25) together, we have for (2.19) 

E(n) "'-"E~ (Pw)2x _p (n)xp(n) 
P 

(2.26) 

which is precisely of the form (2. 18) for the chosen 
potential energy. The corrections, as will be clear in 
the next section, are of relative order n-1 compared to 
the term eXhibited, for the definition (2.23). Only for 
the different choice of xp(n) are the corrections as 
small as the relative order n~2 

We must now discuss the most crucial point of our 
considerations: Why does the choice (2.23), (2.24) and 
no other correspond to the Bohr-Sommerfeld quanti
zation (2. 8) or (2. 11)? The transition from (2. 10) to 
(2,11), in particular, makes it clear that a constant of 
integration has been dropped. In particular these for
mulas give the leading large n dependence for E(n) as 
a function of n, in general, of the form 
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E(n) -na
, a> 0, (2.27) 

i. e., the Bohr-Sommerfeld quantization must yield an 
energy which vanishes when n = O. This means that the 
proper identification of xp(w) with an approximate matrix 
element xp(n), which is an integral part of the corre
spondence principle procedure, must in this case be 
such as to yield the stated property E(O) = O. 

Of course the quantum expression for E(O), 

E(O) = Z i(Ep - EO)21 (0 1 x Ip) 12 + (0 1 V(x) 1 0), (2.28) 
p>o 

does not vanish, but we are here instructed to replace 
(0 I x 11) by (- 11 x I 0) and (0 I x I P), p"* 0 by (Op - P I x lOp) 
according to (2.23) and (2.24). But it is part of the de
finition of the physical Hilbert space that 

(2.29) 

This further implies that for n = 0 we are dealing with 
the solution x(t) = 0 of Newton's law (assuming that we 
have chosen this point as minimum of the potential 
energy) and therefore also the xp(w(O» = 0, p if' 1. Thus 
E(O) = 0 as required. 

In understanding the previous discussion it may be 
helpful to emphasize the distinction between the defini
tion of the Bohr-Sommerfeld approximation and its 
domain of validity. The approximation is, after all, 
defined for all n; this definition carries with it the im
plications attendant upon (2.29). The approximation is 
valid for n sufficiently large so that the quantum sum 
(2.26) in which p takes on both positive and negative 
values may for all numerical purposes be extended to 
Ip I = 00 and therefore identified with the Fourier se
ries (2.18). 

We have not yet exhausted our interest in the Bohr
Sommerfeld approximation, but shall return to the dis
cussion in Sec. IV, since we have now laid the frame
work for the derivation of WKB, to which we therefore 
proceed directly. 

III. PROOF OF WKB 

As another statement of the results of the previous 
section we have shown that if in the classical expres
sion (2.18) for the energy, we replace the classical 
Fourier coefficients xp(w) by the matrix elements of 
(2.23) and (2.24), then the resulting expression 
Eclass(n) is the same as obtained from the formula 

(3.1) 

[Actually to the leading order in n we could have been 
less careful and simply assigned xp(n) to (n - p Ix In), 
since the error is again O(n-1). ] In this section we shall 
show that with the symmetrical identification 

xp(n) =xp(w(n» = (n - p + ip 1 x I n +ip) 

=(n - ~p I xln +~p) 

(3.2) 

(3.3) 

the resulting classical expression for E(n) (and there
fore the solution to Newton's equation) reproduces the 
quantum theory except for errors which are 0(n-2

). 
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Considering the real value p = 1, we see that (3.3) is 
obtained from the Bohr-Sommerfeld classical solu
tion (2.23), (2.24) by the replacement n-n+t, Le., 
the formula 

.f p(x, E) dx = 211(n +~) (3.4) 

is derived. We therefore turn to the proof of the asser
tions made concerning Eqs. (3.2) and (3,3). 

We start with as precise a statement as we can make 
on the definition of semiclassical limit: Let A and B be 
monomials in x and consider the diagonal element 

"max 

(nIABI n) '" 2]{(nIA 1 n + lJ)(n + lJ 1 BI n) 
">0 

+(n IA In-lJ)(n-lJIBln)}. (3.5) 

We assume that n is both large and strategically located 
so that: (i) The maximum value vmax needed for numeri
cal convergence satisfies lJ max« n. (ii) All relevant 
matrix elements in (3.5) are defined. (iii) Most vitally, 
the sum is symmetrical with respect to upgoing and 
downgoing transitions. 

Treating n as a continuous variable, we define the 
symmetrical matrix element (n = n + i) 

(3.6) 

We then prove the theorem, Q! an integer, 

(n \ X, .. I \ n) = 6 X pi (n) Xp2 _
PI 

G:Z)X
P3

-
P2 

(n) 
PI··· Po< 

(3.7) 

As emphasized in the previous section, this expression 
can be rewritten as a time average if we view xpGi) as 
the Fourier coefficients of a classical dynamical vari
able x(t, n) given by the Fourier series 

00 

x(t, n) = B xp(n) exp(ipwt). (3.8) 
p =_00 

We already know that 

(211/T) = w = w(n) =dE(n)/dn. (3.9) 

With the definition (3.8), (3.7) becomes 

1 IT(') 
(n 1 x"'+11 n) = T(n) 0 dt [x(t, n) ]"'+1 

x[l +0(n-2)], (3. 10) 

We turn to the proof of (3.7). We write 

(n 1 x'" +11 n) =~ {(n I x I n + p)(n + p I x'" 1 n) 
p)O 

+ (n I x 1 n - p )(n - p \ x'" In)}. (3.11) 

Let us expand 

(3.12) 

and note that a derivative with respect to n implies an 
additional factor of n-I. For example, then, in the con
sideration of (3. 11) and (3.12), we encounter 
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:0 ~p()"xp(n)«n + p I ~ In) - (n - P I x'" In» 
1»0 

"'-.0~P()nxp(n)[p()"x~Gi)], (3.13) 
p 

and this is smaller by a factor of O(n-2) compared to 
the leading term of (3.11). 

We thus have 

(n I x"'.l\ n) 

'" .0 {xp(n)(n + P I x'" In) + x..p(n)(n - P Ix'" In)} 
p>o 

., 
= '0 .0 {xp(n)(n + P I x I n + Pl)(n + P11 x'" _11 n) 

P>oP1=_00 

+ x_p\n)(n - P I x I n - P1)(n _ p1lx'" _lip)} 

=:0 .0{xp(n)xp _p(i1)(n + P11 x'" _11 n) 
p>o p 1 1 

+ x ..p(n)xp_P1 Gi)(n - P11 x'" _11 n)} 

X[l+0(n-2)], (3.14) 

the argument being a repetition of (3.13). The continued 
repetition of this argument results in (3. 7). A similar 
theorem may easily be developed for monomials con
taining the momentum to an even power. 

Insofar as V(x) can be represented as a formal power 
series in x, (3.7) or (3. 10) gives its expectation value 
to the order required. To calculate the energy we also 
need the expansion 

E(n + p) - E(n) =pw(n) + ~p2(dw(n)/dn) +. ". (3.15) 

The kinetic energy term is then easily seen to share 
the accuracy of the potential energy term. Altogether, 
then, up to terms of relative order n-2

, we find 

(n I HI n) = Ecl .... (n) 

=.0 [pwGi)]2x;Gi) + V(x(ri))o 
P)o 

1 (TG) 
="T (ri) J 0 dt [~x2(t, ri) + V(x(t, ri))] 

=-f fo T dt H{x(t, n), x(t, ri». (3. 16) 

According to the introductory remarks of this sec
tion, this completes a proof of the WKB bound state 
formula. Alternative proofs are given in Sec. V. It may 
be objected that our derivation is misSing some cases. 
For example, it does not cover the "one-sided" 
potential 

v = V(x) (analytic), x> 0, 

V=oo, x<O, 
(3. 17) 

for which the WKB result is known to be 

§pdx==(n+f)h. (3.18) 

We easily obtain this result, however, by reflecting 
V(x) with respect to the origin and considering the sym
metric problem in the full space. Let P and X be the 
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canonical coordinates for the latter problem. Then we 
write 

(3.19) 

Two remarks transform (3.19) into (3.18), namely 

(3.20) 

and 

n'=2n+l, n=0,1,2,···, (3.21) 

i. e., the odd solutions of (3. 19) are the solutions of 
(3.18). 

The adaptations of WKB to a radial coordinate come 
out in a standard way and need not be discussed sepa
rately. It is also clear that the present approach via 
the correspondence principle and Fourier series can 
be extended to systems which are multiply periodic. 

IV. ADDITIONAL REMARKS 

In the usual discussion of semiclassical quantization, 
the emphasis is on the energy quantization (3.4). In 
this paper we have reminded the reader that if one has 
an explicit classical solution x(t, w), one also has in
formation about matrix elements. For example, in the 
Bohr-Sommerfeld quantization the quantity xp(w(n», 
which can be computed by substituting w = w(n) = [dE(n)/ 
dnl after the energy quantization has been carried out, 
has been identified as the matrix element (n - P I x In). 
The corresponding identification in the case of WKB 
was made in the previous section. 

Confining ourselves in this section to the Bohr ap
prOXimation, we remark that there is a well-known 
method of obtaining the energy and the matrix elements 
in a joint procedure. 

In the discussion of the previous sections, we made 
no apparent use of the commutation relation (2.5). 
Treated in the same manner as the equations of motion, 
the diagonal element yields in leading order the "quan
tization condition" 

d
d E 2p2w(n) x;(n) = 1. 
np>o 

(4.1) 

In conjunction with the solution of the classical equa
tions of motion which we utilize in the form 

xp =xp(w), 

this equation will determine asymptotic solutions 

w(n) -n"', xp(n) -r/'. (4.3) 

The procedure for solving (2.18) (after quantum tran
scription) and (4.1) together is a more exact version of 
the often-quoted approximate argument which deter
mines Ee1ass(n) by minimizing the classical energy 
E(P, x) subject to the "uncertainty relation" 

px -t nil. (404) 

Indeed minimization of (2.18) with respect to the xp for 
fixed w, subject to (4. 1) is the precise version of this 
calculation and is once more eqUivalent to Bohr 
quantization. 
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One may wonder finally that the quantization condition 
(4.1) did not enter explicitly in the previous sections, 
This conundrum is resolved by noting that (4.1) and the 
correspondence principle (2.10) are equivalent. This 
can be seen by differentiating (2,18) with respect to n. 
We find 

w(n) =dE(n)/dn 

=~~(Pw(n»2x!]+~(oV) 5 
p)Odn p oX p on 

= w(n) dd 6 2p 2w(n)xp(n)2 = w(n), 
n p 

(4.5) 

The essential, not previously noted ingredient in this 
derivation is the recognition of the Fourier transform 
of the equation of motion 

(PW)2Xp (W) = (~:\. (4.6) 

Thus the quantization condition (4. 1) which seemed to 
play no overt role in the previous considerations was 
present all along in the guise of (2.10). 

V. OTHER DERIVATIONS 

In the light of the concluding observation of the pre
vious section, one may ask if it is possible to transform 
the commutator (2.2) or (2.5) more directly into the 
phase quantization condition. We now show how this can 
be done. 

The first step in the procedure is repetition of the 
derivation of (4. 1), but now expanding all matrix ele
ments about the symmetrically defined matrix element 
xp(n), We again find (4.1) with n-n. Integrating, we 
have 

S(n) = 6 2p2w(n)x;(n) = n + c, (5.1) 
p>O 

where c is a constant of integration. The constant c 
must be chosen to have the value one-half for the rea
son explained in Sec. II: The corresponding Bohr
Sommerfeld sum is a sum over the squares of the ele
ments xp(17) which, as we have explained, vanish when 
17 = 0, i. e., S(17) =n with no additive constant; 
consequently 

S(n) = S(n + i) = 17 + t < (5.2) 

We may now easily transform (5.2) into the phase 
integral condition, since 

T(n) " ]2 S(n) =-2- '0 [pw(n) xp(n)x,I>(n) 
11 all p 

1 IT(ii) -
=211 0 dtx

2
(t,17) 

=~ jPdx 211 ' 
(5,3) 

sincep=x. 

Though this derivation directly from the commutation 
relation is more succinct than that given previously, at 
least some of this terseness comes from taking for 
granted the matters discussed in detail in Sec. II. It 
appears moreover that the direct approach through the 
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commutation relation does not readily generalize to 
problems in field theory, whereas the approach through 
the energy and the correspondence principle does. 

It is therefore of interest to describe yet another 
approach to the derivation of (4,1) or (5,1) which can 
be carried through, not only in a field theory context, 
but can be applied as well to continuum states, We shall 
describe this method quite briefly here since we plan to 
develop it in future publications to field theory bound 
state and scattering problems and to particle scattering 
and reactions. The essential steps are: 

(i) Expand the matrix elements of the Heisenberg 
equations of motion in powers of 17-1 to the desired ac
curacy. In the problem defined by (2. 4) we have 

[E(n±p) - E(n)]2(nlxln±p) =(17I~: I 17±P), (5.4) 

Using the method described in connection with the deri
vation of (3.7), we find that both of Eqs, (5,4) lead to 
the equation 

Dp(n) = {[PvJ(n) j2xp(n) - (d~~X») J = 0, (5.5) 

and that corrections to this equation are O(n-2
), [This 

can be seen from the fact that each of (5.4) is corrected 
to O(n-1) by the same absolute quantity appearing with 
opposite sign, ] Equation (5.5) is, of course, a Fourier 
component of the classical equations of motion. 

(ii) Now recognize that (5,5) can be derived from the 
variational principle 

(5.6) 

Len) = 6i[Pw(n)]2xp (n)x-p(n) - (V(x»o 
p 

=6[Pw(n)]2 xp(n)x-p(n) - E(n), (5.7) 
p 

or 

(5.8) 

where E(n) is the energy given in (3.16). In this varia
tion w(n) is held fixed, Since w(n) is a semiclassical 
approximation to an energy difference, this constancy 
can be related to the Rayleigh-Ritz principle, 

(iii) The essential final set of steps emerge from the 
observation that because of (5,6) the derivative of L(n) 
with respect to n can be computed in at least two differ
ent ways since 

dL(iz) oL(n) 
--;t;l=an' (5,9) 

To compute the left-hand side we use the second form 
of (5.7), namely 

dL(n) = dC(n) _ w(n) 
dn dn ' 

which doesn't use the variational principle, On the 
other hand, 
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in which we differentiate w(~) only. One sees then that 
the equation 

1 __ 1_ (dC(n) _ aC(n) + aE(~») (5. 12) 
- w(n) dn dn on 

is precisely (4.1), from which the derivation of WKB 
proceeds as before. 

The reader may be surprised that we have been able 
to derive a quantization condition from the variational 
principle, which is basically Hamilton's variational 
principle in Fourier form. It follows from previous 
work, 11,14 however, that this variational principle can 
be derived from a Rayleigh-Ritz principle (for the en
ergy) with constraints which build in the commutation 
relations. It is therefore not that astonishing that this 
information can be extracted by a suitably chosen 
variation. 

It is perhaps not at all surprising that time-dependent 
versions of the variational principle can also be con
structed. We postpone discussion of such principles to 
a future occasion, however, as they are most useful 
for the continuum state problem. 
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Phase space path integrals, without limiting procedurea) 
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This paper defines path integrals in phase space without using a time-division approach followed by a 
limiting process. thereby generalizing a similar procedure used in configuration space. This is useful since 
the path integral approach cannot always be formulated in configuration space (e.g.. when the 
Hamiltonian is arbitrary) but can always be formulated in phase space. The most general Gaussian 
measure, absorbing the quadratic portion of the functional to be integrated, is constructed, and large 
classes of path integrals are evaluated with respect to it. Applications are given to the perturbation 
expansion and the semiclassical (WKB) expansion for arbitrary Hamiltonians. 

I. INTRODUCTION 

The quantum-mechanical propagator (qb' tb [qa, fa), or 
probability amplitude that a particle at position qa at 
time ta will be at position qb at time lb' can be written 
as a phase space path integral: 

(qb' tb I q a' ta) = K 

~ f [d:1T~qJexpw fib {P(t)q(t)-H(P(t),q(t),tl}dt, 

p la (1) 

where H is the classical Hamiltonian of the system, or 
a quantity suitably related to it, I and P is the space of 
phase space paths (q,p) satisfying q(fa) =q. and q(fb) =qb' 
with p(t) unrestricted. The integral is usually defined 
by the time division procedure, 2 i. e. , 

K= lim f 
lR2m+1 

dql' o. dqm dPodPI 000 dPm 
(21Tll)m+l 

(2) 

withqm+l=qb' qO=qa' to=t., andtm+l=tb' We work in 
one dimension to simplify the discussion. The results 
can be easily generalized to n dimensions. The con
vention of summing over repeated indices is used 
throughouL 

The limiting process makes the scheme difficult to 
use for computational purposes, not to mention ques
tions of mathematical legality. It has been done away 
with in the case of the Wiener functional integral,3 and 
the method was later extended to Feynman path integrals 
in the configuration space of quantum mechanics. 4-9 

The new formalism rests on defining what plays the role 
of a measure in path space by its Fourier transform, 
which is a simple closed-form expression. This is all 
that is needed to completely define the object and 
reduce many path integrals to ordinary definite inte
grals. 10 We do not treat the mathematical problems 
here, as we are mainly concerned with developing com
putational techniques. 

The purpose of this paper is to extend this limiting-

a)Paper presented at the NATO Advanced Study Institute on 
Path Integrals and Their Applications in Quantum, Statistical, 
and Solid State Physics, Antwerp, Belgium, July 17-30,1977. 

procedure-free formalism to phase space. This is nec
essary not only from the point of view of completeness, 
but also because phase space path integrals are more 
basic than configuration space path integrals. Indeed, 
the latter provide a solution to the Schrodinger equation 
only for Hamiltonian operators quadratic in the mo
menta, whereas the former apply to arbitrary Hamil
tonian operators, 6, II a useful generalization. Further, 
the principle of democracy, which states that all paths 
contribute with the same amplitude (although with dif
ferent phases) is realized only in phase space: There 
is no infinite "normalization factor" preceding the ex
ponential in (1), only the natural volume element in 
phase space, dp dq/lz. Finally, once the problem is cast 
in phase space, it is easy to go from there to configura
tion space (which is a subspace of phase space) if need 
be, but not vice-versa. 

After constructing the most general Gaussian mea
sure in phase space, we evaluate large classes of path 
integrals with respect to it, and present applications to 
the perturbation expansion and the semiclassical 
expansion for arbitrary Hamiltonians. 

II. CONSTRUCTION OF THE PHASE SPACE MEASURE 

We wish to construct the most general Gaussian 
measure w(p, q) in phase space, the one which will 
absorb the entire quadratic term in the functional to 
be integrated. To be more specific, this measure will 
be equivalent to 

_ 1 [dPdq] i 
dw(p, q) Ko 21T1z exp!i 

x fib {P(t)q(t)-Ho(P(t),q(t),t]}dt, (3) 

where ta 

and Ko is the normalization factor, ensuring that 

f· dw(p, q) = 1. 
• p 

It is readily observed that Ko must be the propagator 
associated with the Hamiltonian H o. The functions 

(4) 

(5) 

g(t), /(t), and ,?(t) depend on the problem investigated. 
If one wishes to write a path integral for a Hamiltonian 
of the form Ho + CiHj, where HI contains the terms 
beyond quadratic, then the measure U' enables one to 
obtain the propagator as a perturbation expansion in 
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powers of 0'. If, in a more useful application, one first 
expands the action functional about the classical position 
and classical momentum, qe(t) and PeW, then the mea
sure w yields the terms of a semiclassical (WKB) ex
pansion of the propagator. The functions g, j, and k 
then contain q e(t) and Pe(l). All this will be further 
examined below. 

A proper way to define (and use) w without the time
slicing procedure that (3) entails is to build its Fourier 
transform. The Fourier transform of w can be written 
as 

]w(J-L, v) = f exp(- i(J-L, q) - i(v,p» dw(p, q), 
p 

(6) 

where J-L and v are elements of /!1, the space of bounded 
measures on the time interval T = [ta, tb)' Notation: If 
J-L is induced by a function, i. e., dJ-L (t) = jet) dt, then 

if J-L is 1\, the delta function at s, then 

(os, cj) =q(s). 

(7) 

(8) 

The fundamental observation is that if we put dJ-L (t) 
= B(l) dt/n and dv(t) =A(t) dt/n, then the Fourier trans
form (6) is nothing other than K/Ko, where K is the 
propagator corresponding to the auxiliary Hamiltonian 

H(p, q, l) =g(t) p2 /2m + tj(l) l + k(t) pq 

+A(f)p +B(t)q. (9) 

Both K and Ko can be calculated exactly given the as
sociated classical paths. Indeed, since both correspond 
to quadratic Hamiltonians, their semiclassical (WKB) 
approximations are exact. The latter are given by 

KWKB = (M/2rrin)1/2 exp(iS/n), (10) 

where Se is the action functional evaluated at the classi
cal position and momentum qe and Pc, and M is the Van 
Vleck-Morette function - a2s/aqa aqb' Thus, the prob
lem of determining the phase space measure w reduces 
to solving the classical problem for Hand H o. Note that 
the quantum operators corresponding to the pq terms 
in Hand Hoare the symmetrized12 HPQ + QP). 

We first state the main theorem, then we prove it. 
An intuitive justification for it is found in the Appendix. 

Theorem 1: The normalized Gaussian measure 
w(p, q) in phase space P corresponding to 

1 [dPdq] dw(p,q)- Ko 2rrn 

{ . Jtb 1 
xexp -k [P(t)q(t)- 2m g(f)p2(t) 

ta 

- tj(t)q2(t) - k(t)p(t) q(t») dt} 

has the following Fourier transform13 : 

JW(J-L, v) = exp I - i(J-L, (j) - i(II,jj) 

-i: / 1 Gab(t,t')dJ-L(t)dJ-L(t') 
T T 

- in i i G(t, t') dJ-L(f) dv(f') 
T T 
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(11) 

-i: [1 Gp(f,t')dV(f)dV(f')} 
T T 

(12) 

= exp {- i [ ret) da(f) 

-i: 11 dO'(W;J(t,f')da(t')} ' 
T T 

(13) 

where: 

(1) P={[P(f),q(f)] on T=[fa,fb)lq(ta)=qa, q(tb)=qb, 

p(f) unrestricted}. (14) 

(2) The normalization factor Ko is the propagator cor
responding to the Hamiltonian 

Ho = [g(f)/2m) p2 + tj(l) Q2 + t k(f){PQ +QP), 

for which the WKB approximation is exact. 

(3) dO'(f) = (d/J. (f),dll(f», da(t)= (:~gn . 
(4) ret) = fij(t), p(f» , 

the average path in P with respect to the 
measure w, 

where qeo and PeO are the classical position and mo
mentum corresponding to H o. They are related by 

(15) 

(16) 

(18) 

(19) 

is a Green function of the small disturbance operator 
in phase space corresponding to H 0: 

o ( -jet) - k(f) - d/dt) ( 0) 
= _ kef) +d/df _ (l/m)g(t) , 2 

i. e., 

Og<t,f')=O(f-f') (~ n . (21) 

get, f') is independent of qa and qb' 

(6) Gab(f, f') is the (symmetric) Green function of the 
small disturbance operator in configuration space which 
vanishes at both end points: 

S = ;t; [~- t~~~ it -k(f) 

+ ~ jet) (t) k2 (f) + g(t) k(f) ] m g - g(t) , 

(Note that qeo satisfies Sq cO = O. ) 

I. e., 
S Gab (t, t') = oCt - t'), Gab (f, t') = Gab(t', t), 

Gab (fa, f) = Gab (tb , t) = O. 

(Note that qco satisfies Sqco=O.) 

(7) G(f, t') = gU/) L~, -k(t')] GabO, t'). 

(22) 

(23) 

(24) 

(8) Gp(t, f') = g(t~(t') [:t - k(t)] 

- mg-l(t) o(t- t'). 

Ll~' -Hf')] Gab(t, t') 

(25) 
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The 6 function term in (25) is always cancelled by a 
sim~ar term. When t = t', Gab and Gp are continuous, 
but G has a jump of magnitude 1: 

( lim -lim)C(t, t') = 1. (26) 
t - t' t' ... t 

Note that the measure w(p, q) does not split the path 
integral into an integral over momentum space followed 
by an integral over configuration space, each with its 
own measure. Thus one truly has a "phase space" path 
integral. However, the measure w induces in a natural 
manner measures wab and wp on configuration space 
alone and momentum space alone by 

JWab(/J) '" JW(/J, 0) and Jwp(v) =Jz('(O, v). (27) 

The measure wab in the configuration space of paths 
such that q(ta)=qa and q(tb)=qb is studied in Refs. 
7 and 9. 

Proof of Theorem 1 

The Lagrangian Lo corresponding to H 0 in (4) and the 
Lagrangian L corresponding to the auxiliary H in (9) 
are 

L(q, q, t) = [m/2g(t) ][q - A (I) - k(t) q]2 

- tj(t) q2 - B(t) q, 

Lo(q, q, t) = [m/2g(t)](q - k(t) q]2 - t/(t)q2. 

The classical paths qc and qco satisfy the Euler
Lagrange equations 

Qqc(t) =u(t), 

Qqco(t)=O, 

(28) 

(29) 

(30) 

(31) 

where Q is a second-order linear differential operator: 

() '" d
2 

_ i;(t) .!! _ k(t) + ..!.. j(t) !f(t) 
~ dF get) dt m 

_ k2 (t) + l;-(t) k(t) (32) 
get) 

and tI(l) depends on A(t) and B(t): 

u(t) ",A(t) - (l/m) B(t)!?"(t) + k(t)A(t) 

-A(t),'k-(t)/g(t). (33) 

Both classical paths go through qa at ta and qb at tb' 
The substitutions 

qc(t) =Dc(t)~(t)/g(ta)]1/2 and qco(t) = D co(t)[g-(t)/g(ta)]1/2 

(34) 

eliminate the d/ dt term in Q, and replace (30) and (31) 
by 

j) D c(t) = - lI(t) [g(ta)/ get) ]t/2 

j)Dco(t) =0, 

where 

d2 

j) '" - df - wet), 

with 

(l) - 1. get) ~ J! (t) + get) k(t) _ k2 (t) 
w - 2 get) - 4 7ft) get) 

+ 1.. jet) get) - k(t). 
m 
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(35) 

(36) 

(37) 

(38) 

Note that, for an arbitrary function F, 

Q [v'g{ij j(t)] = -,rg:m 1J j(t). (39) 

Let Dt(t) and Dz(t) be two solutions of (36), subject 
to the boundary conditions 

Dt(tb) =1, D1(tb)=0, 

DZ(tb ) = 0, DZ(tb ) = - 1. . . 
(40) 

The Wronskian W=DtDz -DtDZ is constant for equations 
of the form 1J D(t) = 0. In this case the boundary condi
tions indicate that W is equal to 1. Since W is different 
from 0, Dt and Dz are linearly independent, and the 
general solution of (36) is a linear combination of Dl 
and Dz• If we define the antisymmetric kernel J(l, t') by 

J(t, t') ",Dt(t') Dz(t) -Dt (t)D2(t'), (41) 

then the classical path qco can be written as 

_ v g(t) [ J(t, tb) J(ta, t) ] 
q cO (t) - J(t t) q a ~( ) + qb ~() • 

a' b vg(ta~ . tb 

(42) 

The classical path qc can be easily shown to be 

(43) 

where G is the (symmetric) Green function of 1J which 
vanishes at both end points: 

j) G(t, t') = 6(t - t'), G(t, t') = G(t', I), (44) 

G(ta , t) = G(tb , t) = 0. (45) 

This Green function can be built from the solutions 
Dl and D2 of 1J D = 0. It is6, 8, 9 

G(t, t') 

_ J(ta, t) J(t', tk) Yet' - t) + J(tg , t/) J(t, tb ) yet - tl) 
- J(t., tb ) 

(46) 
Y(t) being the Heaviside step function, equal to 1 for 
t> ° and ° otherwise. This can be verified by direct 
substitution. If tI(s) is replaced by its expression (33) 
in terms of A and B and the A term is integrated by 
parts (the integrated term vanishes), then the differ
ence ~ (t) of the classical paths depends linearly on A 
and B as follows: 

~ (t) "'q c(t) - q co(t) 

=iTA(S)W(s,t)ds+ iTB(s)a(s,t)ds, (47) 

where 

_ (g(t») 1/2 [1 g(s) il ] 
w(s, t) = g(s) "2 g(s) - k(s) + as G(s, I), (48) 

a(s,t)"'..!.. vg(t)g(s) G(s,t). m . 
(49) 

As we established earlier, the Fourier transform of 
the measure w is the ratio K/Ko of the propagators 
corresponding to Hand H 0, which in turn happened to 
be exactly equal to their WKB approximants. If d/J (t) 
'" B(t) dt/Ii and dv(t) ",A(t) dt/Ii, then 

Jw(B,A) =K/Ko =v M/Mo exp{(i/Ii) iT L(qc, qc, t) dt 

(50) 
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The Van Vleck-Morette functions M and Mo are equal 
since Hand H 0 differ only by terms linear in P and q. 
We give their value for completeness. It is 

M = M 0 = m/ J(ta, tb) -J g{ta) g{tb) • 

This can be easily proved. Indeed, 

M=-~ = ape(ta) 
aqa aqb aqb 

(51) 

(52) 

since Pe(ta) = - as/aqa' The momentum corresponding 
to the Lagrangian L in (28) is 

P= ~~ = gU) [q-A(t)-k(t)q], (53) 

and hence aPe(ta)/aqb = mg -1 (ta) aqe(ta)/aqb' The result 
can then be easily established by using (42), (41), and 
(40), along with the fact that the Wronskian of D1 and 
D2 is 1. It is verified by direct differentiation of So[q co], 
which is shown explicitly in (121b). 

Substituting (28) and (29) in (50) yields 

]w(B,A) =exp (~){ (;)[ g~~) [~(t) - k(tH(t) -A(t)] 

xU (t) + 2Qeo(t) - A(t) - k(t) ~ (t) - 2k(t) qeO(t)] 

-f B(t) [q eO(t) + Ht)] -1 f f(t) ~ (t) 
T T 

x [Ht) + 2q eO(t)l } • (54) 

Now substituting for ~(t) its expression in (47) yields 
the full explicit dependence of ]w(B,A) on A and B, 
which is of the form 

]W(B,A)=exp(~){-l q(t)B(t)dt-i p(t)A(t)dt 

-111 Gab(t, t')B(t)B(t')dtdt' 
T T 

-~jl Gp(t,t')A(t)A(t')dtdt' 
T T 

-i1. C(t,t')B(t)A({,)dtdt'} . (55) 

The various functions entering this expression are cal
culated below one by one and found to be as given in the 
statement of the theorem. Since they will involve small 
disturbance equations, we think it useful to first exhibit 
these equations. 

Equations of small disturbances 

The small disturbance equation (or Jacobi equation, 
stability equation, or equation of geodesic deviation in 
the language of curved spaces) is that satisfied by a 
small deviation from the classical path. Thus, since the 
Euler-Lagrange (or Hamilton) equations yielding the 
classical path are obtained by setting the first variation 
of the action functional equal to zero, the small dis
turbance equation is obtained by setting the second vari
ation of the action equal to zero. For Lagrangian 
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actions, it is 

Sa(t)=O, (56) 

where 5 is the small disturbance operator in configura
tion space: 

S={-~ ~- [:t (~)]~ 
+ ~ - [d~ (a!2~)] L=qe . 

For Hamiltonian actions, it is 

o (~~~D = (~) , 

where 0 is the small disturbance operator in phase 
space: 

In the case of H 0, 5 and 0 are given by (22) and (20). 
An interesting observation: the elements of 0 can be 
used to form 5 as follows: 

5 = - f(t) + [k(t) + ~J [gU)] [k(t) - :'] 
Note also that 5 and e are related by 

5 = [ - m/ g(t)] e , 

(57) 

(58) 

(59) 

(60) 

(61) 

1. e., the Euler-Lagrange and small disturbance equa
tions are the same-a characteristic of quadratic 
Lagrangians. The solutions of the small disturbance 
equations, 1. e., a (t) and (3(t) in (56) and (58), are ob
tained by differentiating the classical position and mo
mentum qe(t) and Pe(t) with respect to qa, qb' or any 
other constant of integration. 6,8,9 

Calculation of the elements of the measure w 

All the calculations below involve integrations by 
parts where the integrated term vanishes due to (45). 
The comma denotes differentiation with respect to the 
variable indicated. Thus with reference to (55), we 
have: 

The BB term 

Gab (t,t')=2a(t,t')+j [f(s)- ~~:\s)}(t,s)a(t"s)dS 
T 

-m 1 g~:) a,s(t,s)a,s(t',s) 
T 

+ m f g~:) k(s)[a(t, s) a(t', s) J,s 
T 

=2a(t,t')+ 1 dsa(t,s) 
T 

x {f(S) + m aas [gl(s) a] [d k(S)] as - m ds g(s) 

_ mk
2
(s)} aCt' s). (62) 

g(s) , 
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The operator between curly brackets can be easily 
shown to be mg-1(t)Q, i. e. -5. From (39), (45), and 
(49) we can establish the relation: 

5 t O'(u, t) = 6(u - i). (63) 

Substituting in (62), we have 

Gab (t, i') = O'(i, t') = m-1 ..; g{t) g(t') G(t, t'). (64) 

Therefore, Gab(t, t') is indeed a Green function of 5 
which vanishes at fa and tb' Since it is symmetric, it is 
continuous across the diagonal t = t' • QED 

TheAB term 

G(t, t') = w(t', t) + gU') [a~' -k(t')] O'(t, t') 

+;: O'(t,s) w(t', s) [f(S)- n~~:\s)JdS 

+m;: g~~) k(s)[w(t',s)o(t,s)],s 

-m£ d(S) w s(t',s)fJ s(t,s) 
T g S' , 

= w(t', t) + g(7/) [a~' - Htl)J fJ(t, t') 

-£ w(t' , s)5sO'(t, s) 
T 

= gU') L~, -k(t')J Gab(t, t') 

in view of (64) and (23). 

(65) 

(66) 

(67) 

QED 

Using the specific expression [(64) with (46)] of Gab' 
we have 

- -1 [g(t)J
1
!2{[g(i') 'J G(t, tf) =J (ta, tb) g(t') 2g(t') - k(t ) 

x [J(ta, t) J(t', tb) Y(t - tf) + J(ta, t') J(t, tb) Y(t' - t)] 

+ J(ta, t) J, t' (t', tb) YU - tf) 

+ J, t' (ta, tf) J(t, tb) y(tf - t) } • (68) 

It is readily verified that G has a discontinuity of mag
nitude 1 across the diagonal t=tf:(limt_t,-limt'~t)G(f,t') 
= 1. For this, one only needs (41) and the fact that the 
Wronskian of D1 and D2 is 1. QED 

TheAA term 

i [ mk2(v)] 
Gp(t, t') = dv w(t, v) w(t', v) !(v) - g(v) 

T 

-m 1 g~~) w,v(t, v) W,v(t', v)- gU) 6(t-t') 
T -

+m1 d(V) k(v)[w(t', v) w(t, v)] v 
T g 11 ' 

+ :(;) [a~' -k(t')] w(t,t') 
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= :(~) [a~' -k(t')] w(f, t') - g(t) 6(t - f') 

-1 w(f, v)5v W(t f, v)dv. 
T 

(69) 

Using (63) and (64), we have 

5 (t ' t) m [k( f) ):-0') a] ~( ) 
t w , = g(t) t - g{t') - at' u t - t' , (70) 

which gives 

Gp(t, t') = gU') [a~' -k(t l )] w(t, t') - g(t) 6(t - t') 

= ~ [1 k(O _ k(t) +~] G(/, t') _ m6(f - f') 
,rgm 2 g(t) af vg([) g(t) 

m [a ] - , m 6(t - t') 
= g(t) at - k(t) G(f, t ) - g(t) 

= g(t~(t') Ut - k(t)] [a~' -k(tl)] Gab(t, t') 

m 6 {t - t') 
g(t) 

Using the specific expression [(64) with (46)] of Gab' 

(71) 

(72) 

we find that the 0 function term cancels another similar 
term (due to the fact that the Wronskian of Dl and D2 
is 1), and we are left with the following expression for 
GM symmetric and continuous across the diagonal t = i': 

Gp(t, t') = [mY(t - t')/v g(f) g{t')] r1 (fa, fb) 

X [J(ta, t) J(t', tb ) y(t) y(t') + J(fa, t) J. t' (t', tb) y(t) 

+ J, t (ta, t) J(f', tb ) y(t') + J, t(ta, t) J, t' (t', tb)] 

+ t- t', (73) 

where y(t) = - k(t) + g(t)/2g(f) and F(t, t') + t- i' =F(t, t') 

+ FU', 0. 

The B term 

(j(t) =qeO(t) + 1 dt' qeO(t') o(t, t') [!(t') - n~~:~r)] 
T 

+m J. [~~:)] [k(t')qeO(t')fJ,t,(t,t') 

+ k(t');/co(t') O'(t, t') - q eO(t') 0', t' (t, t')] 

= qeO(t) + m ;: [gt:f)] o(t, t') e t' q eo(f') =qco(t) (74) 

by virtue of (31). QED 

TheA term 

p{t)= g(;) [:t -k(O] qco(t) + f dt'w(t,t')qco(i') 
T 

x [f(t l ) - m~:~;/)] + ml g~~:) [Ht ' ) w(t, t') qeO(t') 

+ k(t')qeO(t') W,t,(t, t') - (ho(t') W,t' (t, t')] 
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= ;(0 [d~ -l?(0] qco(t) 

= Pco(l) (75) 

by virtue of (31) and the fact that Pco= (aLo/aq)q=qco' QED 

The relations we have derived so far make it simple 
to verify that qu, f') in (19) is indeed a Green function 
of the small disturbance operator (20) in phase space. 
The "11" term of the resulting matrix is 6(t - f') be
cause of (67) and (60). The "12" term is ° because of 
(25), (60), and the fact that (a/af + a/af') 6(f - t') = 0. 
The "21" term is ° because of (67). Finally, the "22" 
term is 6(t - t') because of (71). The fact that ((j, p) is 
the average path will be proved later in the paper. 

Example 1: The free particle 

For a free particle, l,(t) =f(t) = 0, g(t) = 1, H 0 = p2 /2m, 
5 = - I/1d2 / df2, D1 (t) = 1, D 2(t) = tb - t, J(t, t') = t' - f, 
and 1\1 = miT. The covariance of the corresponding 
measure in phase space is (19), where 

Gab (t, t') = [(t' - la)(tb - t) YU - t') 

+ (f - fa)(tb - t') Y(t' - f)]/mT, 

C(f, t') = [(tb - t) Y(t - f') 

- (t - fa) Y(t' - f)]/T, 

(76) 

(77) 

(78) 

We have 5 Gab(t, t') = 6(f - I'). The average position and 
momentum are the classical ones: 

qco(t) = [qb(t - fa) +qa(tb - t)]/T, 

Pco(t) = m(qb - qa)/T. 

(79) 

(80) 

The Wiener measure for a free particle in Brownian 
motion, defined on the configuration space of paths 
C={q(t) on T=[ta,fb]lq(ta)=O, q(tb) unrestricted} can 
be readily extended to the phase space P_ defined by 

P_={[p(f),q(t)] on T=[/a,tb]!q(fa)=O, 

q(tb ) and p(t) unrestricted} (81) 

by letting tb - 00. The covariance g Jt, f') is then 

9_(t, t') = ((l//11)[(t' - ta) Y(t - t') + (t - fa) Y(t' - t)] Y(t - f,»). 

Y(f' - t) ° 
(82) 

The "11" term is a (symmetric) Green function of the 
small disturbance operator - /11d2 / dt2 such that G(ta, f) 
= 0. It is discussed in Refs. 4-6. Since the Wiener 
measure is real, the i must be removed from the ex
ponent in (12) and (13). 

Example 2: The harmonic oscillator 

For a harmonic oscillator, k(f) = 0, g(f) =: 1, I(f) 
= mw2, Ho =p2/2m + mw2q2/2, 5 = _ m(d2/df + w2), 
D1 (t) = cosw(tb - t), D2 (t) = w-1 sinw(tb - t), J(t, t') 
= w-1 sinw(t' - t) and M = mw/sinwT. The covariance 
of the corresponding measure in phase space is (19), 
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with: 

Gab (t, f') = [sinw(fb - t') sinw(t - fa) Y(t' - t) 

+ sinw(tb - t) sinw(t' - fa) Y(t - f')]/mw sinwT 

(83) 

G(t, f') = [sinw(tb - t) cosw(t' - tal Y(t - t') 

- cosw(fb - f') sinw(f - fa) Y(t' - f)]/sinwT 

(84) 

Gp(t, t') = (- mw/sinwT)[cosw(tb - t) cosw(t' - fa) Y(f - t') 

+ cosw(tb - f') cosw(t - fa) Y(t' -I)]. 

(85) 

We have 5 Gab (t, f') = 6(t - t'). The average position and 
momentum are the classical ones: 

q co(t) = (sinwT)-l[qa sinw(tb - t) + qb sinw(t - fa)], (86) 

Pco(t) = mw(sinwT)-l[qb cosw(f - fa) - qa cosw(fb - t)]. 

(87) 

III. PATH INTEGRATION IN PHASE SPACE 

We now show how to carry out the path integral of a 
cylindrical functional with respect to an arbitrary mea
sure in phase space given by its Fourier transform. A 
cylindrical functional is one which depends on only a 
finite number of terms of the form (J.l,q) or (v,p), i. e., 
fTq(t) dJ.l (t) or fTP(f)dv(t). 

Theorem 2: Let w be a measure in phase space P 
defined by its Fourier transform Jw(J.l, v). A cylindri
cal functional F on P can be integrated over P with 
respect to the measure U' by reducing it to an ordinary 
integral as follows: 

1=.£ F(J.l1, q), ••• , (J.l n, q), 
p 

(v1,P), ••. , (vm,p»dw(P,q) 

= 1 n+m F(U1,· •• ,Un, V1, •• ,vm) dU1 0.0 dUn 
m 

X dV1 • 0 0 dllm (27T)-n-m 

Xl Jw(~lJ.l +.,o+~nJ.l 7] l v +"'+7]m v ) lRn+m - 1 -",1m 

X expi(~lUl +, , , + ~nUn + 7] lV1 +.0 0 + 7]mllm) 

Xd~l •• ·d~nd7]l •• ·d7]n. (88) 

Proof: This proof is similar to the ones used for 
similar formulas in configuration space path integrals 
without limiting procedure. 5,7 Consider the linear con
tinuous mapping P n, m: 

Pn,m:P-lRn+m by (q,p) I-(u, 1') 

{ 

Ui = (J.l;, q) for i = 1 to n 
where . 

vj=(vj,p) for 1=1 to m 
(89) 

Under this mapping, we have 

I=Jmn+mF(U1"",U",V1, ••• ,vm)dwp (u,v), (90) n,m 

where wPn,m is the image of wunder P n, m' This image 
is a measure in lRn+m. By theorem, 3 Ju;P (~, 7]) 

=Jw[pn,m(~' 7])], where ~ E lRn, 7] E lRm, arid' Pn,m is the 
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transpose mapping from ffin+m to;)J, the space of bound
ed measures on the time interval T = [ta , tb J. We have 

<i\,m(~' 1); (q,p» 

'" «E, 1); P n, m (q, p» = ( (~, 1); (u, 1!» 

= ~ '11 + 1) • 11 = ~i (Ill, q) + 17i (Vi' p) 

= «~ifli' 1)i vj ); (q,p» 

and hence i\,m(~' 1) = (~illi' 1)i Vj ). Therefore, 

dUJp (u, v)=]{ln(]U'(~ill;, 1)i Vj )] n,m , 

= (21T)-n-m dUi • o. dUn dVi •• 'dvm 

X imn+m exp(i~iUi +i1)i vi ) 

(91) 

X ]UJ(~ iU ;, 1)i Vi) d~l ..• de d1)l 0 , 0 d1)m 0 QED 

(92) 

Corollary 1: If F depends only onp (resp. q), the path 
integral reduces to an integral over momentum (resp. 
configuration) space. In compressed notation: 

[,F«V, p» dUJ(p, q) 

1 dv I' 
= (21T)m F(v) L, 

m,m m.m 

X exp(i1J 0 v) dT], 

fF«fl, q» dw(p, q) lrl 

]w(O,1) 0 v) 

=1 (;;:;n F(u)i JUJU; 0 fl, 0) exp(i~ 0 u)d~. 
mt'i lR" 

(93) 

(94) 

Thus, in the second case, the measure w(p, q) in phase 
space has the same effect as the measure U'ab(q) in the 
configuration space Cab of paths such that q (ta) =q a and 
q(tb) = (fb' i< e. , 

[ F«fl,(f»dw(p,q) = r F«J-L,q»dwab(q). (95) 
. f' • C ab 

Cab and u'ab were introduced and studied in Ref. 7. 

.1Ioll1cnfs formula. 

[<1l1> q) ••• (Iln> q)(V1> p) 0 00 (11m, p) dUJ(p, q) 
I 

X lld~lfli+···+Cfln>1)lvl+o,o+1)mvm)ll=n=O. (96) 

Proof Theorem 2 and the fact that fR x exp(ikx) dx 
= - 21Ti6'(x) are needed. 

Application to the Gaussian measure 

If we apply Theorem 2 to the Gaussian measure de
fined in (12) in Theorem 1, we obtain 

i F«M1> q), 0 0 0 , (fl n, q), (Vi' p), ••• , (Vm , p» dw(p, q) 
p 

304 J. Math. Phys., Vol. 19, No.1, January 1978 

X exp(i!21i){(S-1)i} (Vi - bj)(vj - bj ) 

- 2(W-1CS-l )IJ(U; - a;)(vj - bj ) 

+ (W-l + W-1cs-1EW-1)i j (Ui - ai)(uj - ajn, 

where 

al = (Ill, (j), 

bi=(v;,Ji), 

W;j'" iT iT Gab(i, t') dlJ.i(t) dfl j(t') (n x n), 

Cij = iT iT G(t, t') dMi(t) dvj(t') (n x m), 

Vij = iT iT G pet, t'l dVj (t) dvj(t ' ) (m x m), 

s",v-CW-lc 

(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

C being the transpose of C. As far as we know, every 
path integral which has been evaluated exactly in the 
literature can be shown to be a special case of (97). 

Proof: The proof is straightforward with repeated 
use of the formula14 

ilRn rp(biuj) exp(-~A i jUjU j) dUi 0 0 0 dUn 

if (104) 

where c2 "'b i bi (A-i)ij' Here rp(U) = exp(iu) and one needs 

im exp(ax2 + bx) dx = (- 1T / a)l/ 2 exp(- b2 /4a), Re(a) ~ 0, 

(105) 

If the functional to be integrated does not have a p 
dependence, then Corollary 1 gives 

1 F«IJ.j,q),o 0', (Iln,q»dw(p,q) 
p 

= f F«Ml,q), 0 •• , (Iln,q»dwab(q) 
Cab 

-f F(Ul, ••• I Un) dUl 0" dUn 
- (21Tili)"/2(detW)1J2 

m" 

X exp { 2iti (W-l)ij(Ui - ai)(u, - a)}, (106) 

which is formula (59) in ReL 7. If F has no q depen
dence, then 

jF«V1,P)" .. , (vm,p»dUJ(p,q) 
r 

Xexp [2~ (V-i )ii(Vi - bj)(v, - bJ)l 
Averages and covariances 

(107) 

The moments formula (96) applied to the Gaussian 
measure UJ readily gives the average position and 
momentum for w; 

1 q(t) dw(p, q) =q(t), 
p 

r p(t) dw(p,q) =p(t), 

(108) 

(109) 
'p 
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indicating that p and q were correctly identified in the 
statement of Theorem 1. The covariances are 

1 [q(t) - (j(t)][q(t') - (j(t')] dw(p, q) = iliGab (t, t'), (110) 
p 

f [P(t) - p(t) ][p(t') - p(t')] dw(p, q) = iliGp(t, t'), (111) 
p 

J [q(t) - (j(t) ][p(t') - p(t')] dw(p, q) = meet, t'). (112) 
p 

G(t, t') is the only covariance not to be continuous across 
the diagonal t = t'" It has a jump of magnitude 1 there, 
as established earlier. Thus, the correlation between 
p and q at a given time t with respect to the measure w 
can only be established to within iii. 

The set of "important paths" 

The variances iIiGab(t, t) and iIiGp(t, t), squares of the 
"standard deviations" t.q(t) and t.p(t), provide a mea
sure of the degree of dispersion of the Feyman paths 
about the average position and momentum. We now cal
culate t.q and t.p for the free particle and the harmonic 
oscillator, using the results established earlier for 
these two systems. 

Free particle: 

t.q(t)= [iff (t-t~l~-t)J 1/2, 

[ 
ilimJ 1/2 

t.p(t)= - T 

(t.p ot.q)(t) = f [(t - t.)(tb - t)P/2. 

Harmonic oscillator: 

t. (t) = [ilisinw(tb -~) sinw(t- tal] 1/2 
q mw SlnwT ' 

t. (t) = [- ilimw COSW(~b - t) COSW(t - tg)] 1/2 
P smwT ' 

Ii 
(t.p 0 t.q)(t) = 21 sinwT 1 

x [sin2w(t - ta) sin2w{tb _ t)]1/2 • 

In both instances, we have 

(113) 

(114) 

(115) 

(116) 

(117) 

(lIS) 

(119) 

A first glance at this relation might give the impres
sion that we have obtained the uncertainty principle 
backwards. In fact, this relation has nothing to do with 
the uncertainty principle. If t.q and t.p are calculated 
with respect to 1/J(q, t) and ¢ (p, t), the wavefunctions of 
the particles in configuration and momentum spaces at 
time t, then they reflect the effect of measurement, 
and (t.p' t.q)(t)? 1i/2 o But if t.q and t.p are calculated 
with respect to the phase space measure w(p, q), then 
they simply reflect which paths are weighed more 
heavily (i. eo, contribute the most) in the sum over 
paths. To be more precise, they determine how far 
one must deviate from the average (here, classical) 
path to still find paths which contribute appreciably to 
the sum over paths. In these two cases (as in most 
cases), these "important" paths are so close to the 
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average path in phase space that (t.p' t.q)2 is never 
larger than 1i2/ 4. 

Note that the average square velocity in configuration 
space is infinite, indicating that the "important" paths 
in configuration space are the nondifferentiable ones, 
a well-known result. For example, in the case of the 
free particle, 

[(t.q)(t)]2 = 1 [q(i) -~(tJfdw(p,q) 

= \i~ 0/02t' ;; [q(t)-q(t)][q(t')-q(t')]dw(p,q) 

[
- ilim ] = lim -T- +ilimB(t-I') 

t -t' 

~ 00. (120) 

Comparison with (114) shows that we do not have 
t.p(t) =t.mq(t); nor should we expect it, since no rela
tionship is assumed between p and q in the unrestricted 
sum over paths in phase space. 

IV. APPLICATIONS 

A. Perturbation expansion 

The propagator corresponding to H = Ho + aHb where 
Ho is given by (15), is 

(q., tb /qa, ta> 

=Ko f exp [- ~a f tb H 1[P(t),q(t), t]dt] dw(p,q), 
p to 

(121) 

where Hi is the classical equivalent1 of Hi> Ko is the 
propagator corresponding to Ho, and w is defined in (12). 
This is a direct application of Theorem 1. By expanding 
the exponential and carrying out the resulting path 
integrals by use of the moments formula (96), one ob
tains the propagator as a power series in a. 

Calculation of Ko 

K o, the propagator corresponding to Ho in (15), is 
given exactly by its WKB approximation. Thus, we only 
need to calculate the classical action. The action 
functional is 

So[q] = 1 Lo(q, q, t) dt 

= ;: {2;0 [q(t) - k(f) q(t) J2 - ~f(t) q2 (t)} dt 

= ~f q(t)Sq(t)dt+~ { (i) [q(tb)-k(tb)qb] 
T g b 

- g(~a) [q{ta) -l?{ta)qal } I (121a) 

where S is the operator (22). This can be easily estab
lished by integrations by parts of the q2 and (q2)' terms. 
At the classical path q co, the first term vanishes since 
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S qeO=eqeO= 0, and only the integrated term remains. 
Thus, no integrations are required to obtain the action 
functional at the classical path. (42) gives qeo in terms 
of the kernel J, and we get 

So[q oj = m {A [J. 2 (ta, tb ) + g(tb ) - k(t
b
)] 

e 2 g(tb ) J(ta, fb ) 2g(tb ) 

- ~ [J'l(ta,fb ) + ketal - k(f)] 
g(ta) JUa, fb ) 2g(ta) a 

2q qqb } 

- J(ta,tb)!g(f.liCFJ ' (121b) 

where we have used the fact that J,2 (fa, tal = - J,l (tb' tb) 
= ~o Note that J,2(ta, to) =D1(ta) and that J,l(t., to) 
=D2 (ta) (J,i denotes derivative with respect to ith argu
ment). Finally, 

Ko = lIN /2rriliJ(la, to)]l /2 g -1/4 (ta) g-l!4 (t
b

) 

x exp{(i/Ii) SO[qeO]}' (121c) 

B. Semiclassical expansion 

A more useful application of Theorem 1 is to use it 
to expand the ratio of the propagator to its WKB approx
imation in a power series in 11: 

(122) 

This is the semiclassical expansion, treated in configu
ration space in Refs. 6, 8, and 9. The terms Ki are 
path integrals of cylindrical functionals, which can be 
evaluated exactly using (96). 

For example, in the case of a particle in a time
dependent potential, with Hamiltonian H = p2 /2m 
+ V(q, t), one finds3 

K = - i 1 V(4)(t) G2 (t f)dt 1 8 ab ,. 
T 

where 

+ 2i4 r dids 0 3)(t) 0 3)(s) 
)T2 

x [3Gab (t, t) Gab (t, S) Gab (S, S) + 2G~b (f, S)] 

v(n)(t) = [a"V(q, t)/aq"lq.q . 
e 

(122a) 

(122b) 

Such an expansion has been applied to the anharmonic 
oscillator. 6,9 Sometimes, due to the peculiarities of the 
Hamiltonian, a configuration space path integral scheme 
is not possible. A phase space path integral scheme is 
always possible. We now show how to generalize the 
path integral treatment of the semiclassical expansion 
to arbitrary Hamiltonians (for the cases when the 
Hamiltonian lends itself to a WKB approximation for 
the propagator15). 

Theorem 3: The propagator corresponding to an 
arbitrary H [see Eq. (1) 1 can be expressed as the fol
lowing path integral: 

K=KWKB f exp{(i/fi) n(qc,Pe)(x, y)}dw(y, x) (123) 
Po 

if K admits a WKB approximation KWKB ' We have: 

(1) K = (-=--!... a2
s(qczpc») 1/2 [i S( )] 

WKB 2rrili oqaoqb exp Pi qe,Pe 

(124) 
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(2) (X,Y)E Po={[x(t),y(t») on T=[ta, tbll 

x(/.) =x(tb ) = 0, y(t) unrestricted}; (125) 

(3) n(qe, Pc) is an operator resulting from the expan
sion of the action functional about the classical path 
(qc,Pc): 

S(q,p) =S(x +qe, y + pel 

=S(qc, Pc) + SI (q co Pe)(x, y) 

+ (1/2!) S"(q e' Pe)(x, y) + n(q e' Pe)(x, y); (126) 

(4) the Gaussian measure w is as in Theorem 1, 

get) 22H I 
-;;; = W q=q , 

c 
P=Pc 

with 

(127) 

(128) 

(129) 

Thus, the average path Wco(t), PeO(t) of Theorem 1 is, 
in this context, the solution of the small disturbance 
equation corresponding to H, which vanishes at ta and tbo 

The path integral can be evaluated by expanding the 
exponential in a power series, which can then be re
arranged to yield a power series in n where the terms 
depend only on the classical path (q c' PeL 

Proof: In the expansion (126) of the action, the term 
Sf (q e, p~)(X, y) is 0 by definition of the clas sical path 
(qc,Pe) (it yields Hamilton's equations). The term 
S"(qe,Pe)(x,:y)/2 is 

(130) 

where 0 is the small disturbance operator (59). Ex
panding this term, integrating the - ~ fTx(t) y(t) dt term 
by parts to get 1 fTy(t)x(t)dt, and lumping the resulting 
expression (quadratic in x and y) into the measure by 
using Theorem 1 yields the desired result. The expres
sion of the measure given in (A3) and the expression 
(121c) of Ko can be used to establish that the normaliza
tion is indeed KWKB as given in (124). The Ii in the 
denominator will always be cancelled by higher powers 
of Ii in the numerator, due to the fact that the moments 
formula needed to evaluate the various path integrals 
arising in the expansion of the exponential in (123) 
yields products of covariances; each of which is 
multiplied by If. 6,8,9 The needed solutions of the small 
disturbance equation can be obtained by differentiating 
the classical position and momentum with respect to 
the constants of integration of the classical equations of 
motion. 6,8,9 ThUS, all the terms of the semiclassical 
expansion can be expressed as definite integrals of 
known functions once the classical problem is solved 
in closed form. 

V. CONCLUSION 

The generalization of the path integral scheme to 
arbitrary Hamiltonians, which can only be done in 
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phase space, is best carried out without the limiting 
process which makes the integrals ambiguous and dif
ficult to compute. This paper has built Gaussian phase 
space measures which do not require any reference to 
such a limiting process, shown how to integrate with re
spect to them, and given examples of how these mea
sures can be of use in solving problems. It would be 
useful to find non-Gaussian measures, which would 
absorb larger parts of the functionals to be integrated. 
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APPENDIX: INTUITIVE JUSTIFICATION OF 
THEOREM 1 AND OF PATH INTEGRATION 
WITHOUT LIMITING PROCEDURE 

A Gaussian measure on rnn which can be written as 

dy(y) = (27T)-n/2(detC)112 exp(- tc iJYiYj)dY1" 'dYn (Al) 

has as its Fourier transform the exponential of a 
quadratic form involving the inverse of the matrix C: 

(Jy)(x) = f nexp(- ix 'y)dy(y)=exp[- t(C-t)ijXiXJ]. (A2) 
lR 

How does this carryover to infinite-dimensional 
spaces? This is the question answered in Theorem 1. 
The phase space measure w(p, q) in (11), after integra
tions by parts, can be written as16 

dw(p, q) - K"ol [ d:7T~q ] exp 2in {j wet), p(t» 0 (;gn dt 

+ [qbp(tb)-qap(ta)] } ,T (A3) 

where 0 is the operator defined in (20). 0 is seen to 
play the role of the matrix C above. Therefore, by 
analogy, one expects the Fourier transform of w to be 
the exponential of a quadratic form involving the inverse 
of 0, L e., one of the Green functions of 0, so that 

1 Ot get, l')dt' = G n . (A4) 
T 

This is precisely what was proved. Which Green's func
tion is used depends on the path space considered (for 
example, in the free particle case we saw that consid
eration of the space P_ instead of P led to a Green func
tion 9- different from 9). The terms involving qa and 
qb enter when the average path is non-zero. The reason 
why 0 was called the small disturbance operator in 
Theorem 1 is that this is what it is when the action is 
expanded about the classical path, as we have seen. 

To illustrate this intuitive justification further, we 
consider the free-particle measure wab in configuration 
space. It is (N is the "normalization" necessary in the 
time- slicing approach): 

dWab (q) - [dq/N] exp[(im/2ff) fTq2(t) dt], 

which can be rewritten as 

(A5) 

dwab(q)- [~J eXP{2inI q(t) (-m!;z) q(t)dt 

+ ~; [qbq(tb) - qiJ{ta)] } (A6) 

The Fourier transform of wab indeed has as its co
variance an inverse of - md2 

/ dtz, namely the Green 
function Gab in (76).17 The form (A6) can be easily gen-
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eralized to the more general configuration space mea
sure wab(q) induced by w(p,q) in (11): - md2/dt2 is re
placed by S in (22)-as shown in (121a)-and the 
covariance is Gab. the Green function of 5 introduced 
in Theorem 1. 

lIn most cases of physical interest, e. g. , when the quantum 
Hamiltonian operator is H= [p- (e/c)A(Q)]2/2m+l?<t>(Q), H 
in (1) is the classical Hamiltonian He. For stronger couplings 
of Q and P, e. g. , when there is a metric I«Q) to be con
sidered, H in (1) is of the form He + 0(/z2). In M. M. Mizrahi, 
J. Math. Phys. 16,2201-06 (1975), it was shown that H 
could be the Weyl transform of H. Other possibilities, all 
yielding the same propagator, are being investigated. At 
any rate, we always have H=He+O('ft2) for Hermitian Hs. 

In this paper, we assume that H=He. 
2See , e.g., R.P. Feynman, Phys. Rev. 84, 108-28 (1951). 
Appendix B; H. Davies, Proc. Camb. Phil. Soc. 59, 147-55 
(1963); C. Garrod, Rev. Mod. Phys. 38, 48.3-94 (1966); 
and M. M. Mizrahi, Ref. 1. 

3See , e. g., N. Bourbaki, Elements de malhfu"aliques 
(Hermann, Paris, 1969), Vol. XXXV, Book VI, Chap. IX. 

4C. DeWitt-Morette, Comm. Math. Phys. 28, 47-67 (1972). 
5C. DeWitt-Morette, Comm. Math. Phys. 37, 63-81 (1974). 
6M. M. Mizrahi, "An Investigation of the Feynman Path Inte
gral Formulation of Quantum Mechanics," Ph. D. disserta
tion, the University of Texas at AUstin, August 1975, 
unpublished. 

'M.M. Mizrahi, J. Math. Phys. 17, 566-75(1976). 
BC. DeWitt-Morette, Ann. Phys. (N. Y.) 97,367-99 (1976). 
9M. M. Mizrahi, "WKE Expansions by Path Integrals, with 
applications to the Anharmonic Oscillator," preprint, Uni
versity of Texas at Austin and Center for Naval Analyses of 
the University of Rochester. 

lo0nly in the case of the Wiener integral (no "i's" in the expo
nent) is a bona fide measure obtained. In the case of the 
Feynman path integral, the imaginary Gaussian measures on 
IRn

, building blocks of the promeasure one hopes to turn into 
a measure, are not bounded. This fact makes this attempt 
at mathematical legalization fall through. However, when one 
works with the Fourier transforms of the promeasure. the 
boundedness requirement is no longer needed, and progress 
can be made for computational purposes. C. DeWitt-Morette 
calls the resulting objects "pseudomeasures, "P. Kree 
[Bull. Soc. Math. France 46, 143-62 (1976)) calls them 
"prodistributions. " For simplicity we call them "measures," 
as they are formally used as such. 

111\1. M. Mizrahi, J. Math. Phys. 16, 2201-06 (1975). 
12This is a very simple application of more general restric

tions on the use of the given WKB approximation formula to a 
certain class of correspondence rules between the classical 
and quantum Hamiltonians, found in M. M. l\lizrahi, J. 
Math. Phys. 1B, 786-90 (1977). 

13ln "Path Integration in Phase Space," by C. DeWitt-Morette, 
A. Maheshwari, and B. Nelson, preprint (to appear in Gen. 
Rel. Grav.), a similar measure is presented lIsing a different 
approach. This paper and the present one, written indepen
dently, complement each other and should be read 
concurrently. 

14This formula ean be proved by path integrals-see He£. 7. 
15That some Hamiltonian operators do not admit a WKB 

approximation of their corresponding propagators is shown 
in Ref. 12. 

16A double integral, corresponding to the double summation in 
(AI), can be easily obtained by replacing (qW, p(t)) in (A3) by 
.r T0(t -t') (q(t') , p(t'» dt'. 

l7rn the case of the free particle in momentum space, a rare 
case where a measure in momentum space alone can be used, 
we have 

dw(P) ~[dP/N'Jexp[(i/2mmI p2(t)dtl. 
T 

The operator corresponding to C is then simply the constant 
mol. Its inverse in the sense of (A4) is the constant miT. It 
is the negative of Gp(t, t') for the free particle [Eq. (78)] be
cause p2/2m appears with a different sign in (11). 
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The linear potential: A solution in terms of combinatorics 
functions 
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The mathematical formalism recently developed for solving multi term linear recursion relations is used to 
obtain a solution of the linear potential problem, for any value of the orbital quantum number I, in terms 
of combinatorics functions. The wavefunctions are given as power series expansions and the energy 
eigenvalues as the roots of an infinite order polynomial. 

I. INTRODUCTION 

For a long time the quark confining potential has been 
taken as a harmonic potential (mainly because it is ex
actly soluble in both the relativistic and nonrelativistic 
cases). But, during the past few years, strong theoreti
cal reasons! have emerged favoring a linear central 
confining potential. This gave the linear potential the 
same importance in particle physics as the Coulomb 
potential in atomic physics and the harmonic potential 
in solid state physics, But, while series solutions of the 
Schrodinger equation for these latter potentials lead to 
two-term recursion formulas, that of the linear poten
tialleads to a three-term recursion formula with 
variable coefficients, 2 

The importance that the linear potential has acquired 
recently, motivated the development of a general for
malism for solving multiterm linear recursion relations 
with variable coefficients. 3 In this paper, we use this 
formalism to obtain a solution for the linear potential, 
with arbitrary values of the orbital quantum number l, 
in terms of combinatorics functions. Previous to this 
work, and in the context of the Charmonium model, 4 

Harrington, Park, and Yildiz5 obtained an exact solu
tion in the case l == 0, and a WKB solution for l *- 0. A 
numerical solution for the combined Coulomb and 
linear potentials has been given by Eichten et al. 6 Ex
tensive work on confining potentials in general, in both 
nonrelativistic and relativistic cases, has been done by 
Miiller-Kirsten7 in the frarrework of the WKB approxi
mation. Gunion and Li8 as well as Tryon9 have obtained 
analytic asymptotic results in the l'elativistic case. 
Finally, Critchfield!O studied the problem of scalar 
linear potentials in the Dirac equation and solved the 
resulting recursion relations using numerical methods, 

The problem is set up in Sec, n, In Sec, ill, we give 
the explicit expressions for the coefficients of the power 
series expansion of the wavefunction, In Sec, N, we 
derive the energy eigenvalue equation, The computa
tional details are left to Appendices, 

a) Supported in part by the National Research Council of 
Canada. 

b)Present address: Department of PhysiCS, Villanova Univer
sity, Villanova, Pennsylvania 19085. 

II. GENERAL SOLUTION AND BOUNDARY 
CONDITIONS 

Consider a quark-antiquark system interacting via a 
linear potential 

V(r) = Vo + Kr, (2.1) 

The sum of the quark masses is M = In! + m2 and their 
reduced mass is Jl = 1i1!1112/(m! + 1fl2)' Let x and tn' be 
the dimensionless distance and energy parameters 
defined through 

([(2)1/3 
E = - t +(H+V) and x=(2I1K)!/3r nl 2)l nl" 0 ,... 0 

Enl are the energy eigenvalues and are labelled by the 
radial and orbital quantum numbers nand 1, respec
tively, The eigenfunctions of the Hamiltonian for this 
system are then given by 

iJ!nt11l(r) =Rnl (r)YT(8, 1» with Rnl(r) = Unl(x) , (2.3) 
x 

where YT(8,1» are the spherical harmonics, Un' (X) 
=ul(X,tnl ), and u,(x,t) is a solution of the radial differ
ential equation, 

[
d2 l(l+l) J 

dx2- ---xr-- (x-t~Ul(x,t)=Oo (204) 

For 1 = 0, the solution5 of Eq, (2,4) with the correct 
asymptotic behavior is the Airy function Ai (x - triJ)' 
Imposing physical threshold behavior gives the energy 
eigenvalue condition 

Ai(- tnO ) = 00 (2.5) 

For l *- 0, the solution of Eq, (2,4) cannot be related to 
known tabulated functions, A new class of functions have 
to be conSidered, These are related to the special com
binatorics functions of the first and second kind which 
were introduced in Ref, 3, 

A. General solution 

The general solution of Eq. (2.4) is11 

where Wt and w2 are two linearly independent solutions 
that are given by 

W! =x'·l 6 b"",m, 
moO 

(2,7a) 
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W2 = KWl (x) lnx + x-' :0 C",x"', (2.7b) with 
m.O 

The coefficients bm are given by 

m(m+21+1)bm+lbm_2-bm_3=0 form>O 

with the initial conditions 

bm = bOomO for m -'" 0 

and the coefficients cm are given by 

(2.8a) 

(2.8b) 

m(m - 21-1)cm + lC m _2 - cm _3 =0 for 0 -'" m -'" 21 (2, ga) 

and 

m(m + 21 + 1)cm+21 +1 + tCm+2!_1- C",+21_2 = (2m + 21 + l)Kbm 

for m;;, 0 

with the initial conditions 

K = K(l, t) is given in Appendix A, and is in general dif
ferent from zero. 

B. Boundary conditions 

(i) Condition at the origin: As can be seen from Eq. 
(2.3), u!(x, t)/x has to be regular at the origin. 

(ii) Condition at infinity: Asymptotically, the differ
ential equation (2.4) goes into the equation 

u,' - (x - t)u! =0. (2.10) 

That is, the term 1(1 +1)/x2, but not t, can be neglected 
with respect to x. The reason is that t enters in the 
leading term of the asymptotic solution of Eq. (2.4), 
while I does not. The solution of Eq. (2.10) which is 
regular at infinity is the Airy function12 Ai (x - f). There
fore, the boundary condition at infinity can be expressed 
as 

. u,(x, t) _ 
hm A' ( _ t) - const, ,,_00 10" 

(2.11) 

The constants A and E can be determined from the 
boundary condition at the origin and the normalization 
of the wavefunction, The boundary condition at infinity 
then determines the eigenenergies. 

III. WAVE FUNCTIONS 

The boundary condition at the origin requires that the 
coefficient E, in Eq, (2,6), vanish. Hence u!(x. t) is 
given by 

00 
u,(x,f)=x'+1V !(x,t), v,(x,t)=:0 bm(l,t)xm, (3.1) 

m·O 

where the coefficient A has been absorbed in v, (X, f). 

The recursion relation for the bm is given, through 
Eqs, (2. Sa) and (2.8b) as 

b". = fz(m)b m_2 + fs(m)b m_3 for m> 0 

with the initial conditions 

(3.2a) 

(3.2b) 

where AD is the normalization constant. The functions 
{{,em); i = 2, 3} are given by 

f2(m) = - tf(m, l), f3(m) = f(m, I) (3,3a) 
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1 
f(m, Z) = m (m + -'2Z"-+-1-)- (3,3b) 

The theory of Ref, 3 gives explicit expressions for 
the expansion coefficients bm (Z, t), This in turn provides 
an explicit solution for u! (X, f), and, once the eigen
energies are determined, gives the wavefunctions 
through Eq, (2.3). 

According to Ref, 3 the solution of Eq, (3,2) is 
related to the partitions of the interval (0, m) into sub
intervals of lengths 2 and 3, We note that for m integer 
the only interval that cannot be partitioned in parts of 
lengths 2 and 3 is (0,1) thus leading to the vanishing of 
the coefficient b1• This can also be easily seen from the 
recursion relation (3. 2a) and the initial condition (3. 2b). 

Consider one possible partition of (0, m) into n parts, 
say (°1,°2, •.. ,On), with 

OJ Ec{2,3}, j=l,.",n (3.4a) 

and 

(3.4b) 

Let p be the number of 2-subintervals in the partition, 
then, (n - P) is the number of 3-subintervals involved, 
and, according to Eq. (3.4) 

2p+3(n-p)=m or p=3n-m, (3.5) 

From Eq, (3. 5) it is seen that there is a unique number 
p of 2- subintervals in a partition of (0, m) having n 
parts. Therefore, the number of distinct partitions of 
(0, m) into n parts is the binomial 

(n) nl nl 
p = p ! (n - p) r = (3,-z ---y;""'1 ):-:-r'7(I-/1-_--'2;:'","7z )"7'"r ' (3,6) 

Consequently if we label by q the distinct partitions of 
(0, m) into n parts, q will range from 1 to qmax(n) = (;), 
The values of n for which a partition is possible are 
included in the intervaL 

[nz + 2J [mJ nm1n = --3- - °m1 ..; n"; "2 = nmax for m >0, (3,7) 

where the square brackets refer to integer division, n 
decreases from nmax to nmln by successively exchanging 
three 2- subintervals by two 3- subintervals, Thus as n 
changes by units of one, holding 1/1 fixed, p changes by 
steps of 3 as can eaSily be seen from Eq, (3,5), 

Associated with the qth partition of (0, m) into n parts 
we introduce the set of integers S j given by, 

j 

so=O, Sj=:0 oj, Sn=lIl, 
i~l 

and define the functions 
n 

(3,8) 

~(o, m) = n f6 ,(S f)' (3,9) 
j.1 J 

Combining Eqs, (3,3), (3,9), and the preceding analYSis 
on the number of 2-subintervals in a partition we can 
rewrite this as 

n 
.Fh(0, m) = (- t)3n-m n f(s j, I). 

h1 
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The special combinatorics functions of the first and sec
ond kind are then given by3 

"max ltmax qmax(n} 

C2(0,m)= ~ C1(0,m,n)= ~ ~ ~(O,m) 
n~nmin mtr1min q:li 

(3.11) 

and according to Theorem 4 of Ref. 3 the solution of the 
recursion relation (3, 2a) subject to the initial condi
tions (3.2b) is given by 

bm =AOC2(0,m). 

This can be rewritten as 

"max 
bm(l,t)=Ao ~ pz(O,m;n)(-t)3n-m, 

where the "structure" functions 13, are given by 
.111",,(n) n 

(3.12) 

(3.13) 

m=8 nrnin=[«f]=3 nmax=[WJ=4 

n ~= 3n-m n 
qmcrx (n)= ( p) 

3 I 3 
4 4 I 

FIG. 1. The partitions and parameters necessary for the 
evaluation of the coefficient b8 as given by Eq. (3. 15a). 

By considering even and odd values of m separately, 
(31(0,m;n)= ~ nf(sj,l) 

q=l j.l 

(3. 14a) Eq. (3.13) can be rewritten in a form that brings out 
the polynomial dependence of bm on t as follows: 

and 

.B z(O,O;O)=1. (3. 14 b) 

If the interval (0,11/) cannot be partitioned into n parts, 
then 131(0, rll; n) = O. We thus obtain an explicit expres
sion for the coefficients of the power series expansion 
in terms of two parameters: the normalization constant 
Ao, and the energy parameter t. 

Before proceeding any further, it may be instructive 
to explicitly calculate one of the coefficients bm• In Fig. 
1 we give the various intervals and parameters related 
to the evaluation of bB• Using this figure and Eqs. 
(3.10), (:L 11), and (3.12) we find 

4 qma.x(n) 

b8 = Ao ~ '0 F;,(O, 8) (3. 15aJ 
n=3 •• 1 

or 

(3. 15b) 

with 

310 

F~(O, 8) = - tf(2, l)f{5, l)f(8, l) 

-t 
-2.5.8.(2+2l+1)(5+2Z+1)(8+2l+1) , 

(3.16a) 

.Fi(0, 8) = - tf(3, l)f(5, nt(8, l) 

-t 
= 3.5,8(3 +2l +1){5 +2l +1)(8+2l +1) , 

~(O, 8) = - tf(3, l)f(S, l)f(8, l) 

-t 

(3. 16b) 

= 3.6.8(3+2l+1)(6+2l+1)(8+2l+1) , 

Fl(o, 8) = tY(2, l)f(4, l)f(6, l)f(8, l) 

t 4 

(3. 16c) 

= 2.4.6.8. (2 + 2l + 1)(4 + 2l + 1)(6 + 2l + 1)(8 + 2l + 1) 

(3. 16d) 
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[. /2 J 
b2k =AO ~ Bl(0,2h;k-}j(-W-3i forh~l, (3. 17a) 

}.~ 

[(k-1) /3J 
b2k+1 = AO '0 13, (0, 2k + 1; k - j) (- t)k-I-3} 

}.o 

for k ~ 1. (3. 17b) 

The upper limit on j essentially guarantees that only 
positive powers of t are included. Thus bm is a poly
nomial in positive powers of t of order m/2 for m even, 
and «m - 1)/2 - 1) for m odd, and with sucessive powers 
differing by three units. In Appendix B we present, and 
illustrate, a method for obtaining explicit expressions 
for the structure functions 13, (0, m; n). 

IV. EIGENVALUE EQUATION 

To derive the eigenvalue equation we need to express 
bm(l, t) in terms of higher order coefficients. This can 
be done by an extension of the methods of Ret 3 0 We 
first invert the recursion relation (3. 2a) to obtain 

bm =gl (m)b m+1 + g3(m)bm+3 for m ~ - 2, 

where the functions {gj (m); i = 1,3} are given by 

gl(m) =t, g3(m) =g(m,l) 

with 

g(m,l)= (m +3)(m +2l +4). 

(40 la) 

(4.1 b) 

(4.1c) 

As shown in Appendix C, the solution of Eq. (4.1) is 
2 

bm=~ C{(N+j,m,j)b N +j , 
},O 

(4.2) 

where N is greater than In but otherwise arbitrary, and 
the C~ are, what we call, the conjugate combinatorics 
functions. The eigenvalue equation is obtained by relat
ing the initial condition at the origin to the boundary 
condition at infinity by using Eqo (4,3). 

Using Eqo (2.8a), the initial conditions (2. 8b) can be 
expressed as, 

(4.3) 

It is not difficult to see that this is related to the bound
ary condition at the origin. On the other hand, the 
boundary condition at infinity, as expressed by Eq. 
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(2,11), determines the coefficients bN(l,t), for large 
values of N, in terms of the expansion coefficients, an, 
of the Airy function, Ai, according to 

~ (N" + i + 1 + 1) I bN(l,t) - LJ a N+hl +1 . (-t). 
N~~ 1.0 1 

(4.4) 

The Airy expansion coefficients, an, satisfy the re
cursion relation12 

a -~ for n~ 3, (4,5a) 
n- n(n-1) 

subject to the initial conditions 

a1 __ r(iL 31 / 3 -0 (4,5b) 
ao - rm ' a2- • 

The solution of Eq, (4, 5) is given by 

_ (-l)lr(i)(l- Oiu.. a 
a3p+1- 32/>+2l/3p! r(p + i(l + iIT 0 

fori=0,1,2, andP=O,l,,,.,oo. 

(4,6) 

Setting m = 1 in Eq, (4.2), using Eq. (4.3) for bll 
taking the limit as N - 00, and using Eq. (4. 4) for the 
b N+j, we obtain the energy eigenvalue equation as 

~ 2 - (N + j + i + 1 + 1) 
lim 6 6 2(1 + 1)C1(N +j, 1,j)aN+J+I+I+1 . 
N~~ 1.0 i=O Z 

X (- t)I-1 = O. (4.7) 

The conjugate combinatorics functions, C1, appearing 
in Eq. (4.7) are polynomials in t. Therefore, the left
hand side of this equation is an infinite order poly
nomial in t, which will be denoted H, (t), and can be 
written as 

H,(t) = limH:N)(t) = 0 (4. Sa) 
N~~ 

with 
00 

H?)(t) = 62(1 + 1)K~N)(lW-1, (4,8b) 
",,0 

Combining Eqs, (4, 8a) and (4,8b), exchanging the limit 
and summation signs, and defining 

K n(l) = limK~N) (l), (4.8e) 
N~oo 

we obtain the eigenvalue equation as 
~ 

H, (t) = 6 2(l+ 1)Kn(lW-1 = 0, (4,8d) 
noO 

ThuS, to complete the derivation of the eigenvalue 
equation, one still has to determine the coefficients 
K~N)(l), This is done by a reduction of C1; that is factor
ing out its t dependence, 

According to Appendix S:, the constrained conjugate 
combinatorics functions C1(N+j,1,j), j=0,1,2, are 
related to the partitions of the interval (1, N + j) into 
parts of lengths 1 and 3 subject to certain constraints, 
Consider one possible partition of (l,N+j) into n parts, 
(Ob,. , , on), subject to the three conditions 

(i) Ot E {1, 3}, i=l,.,. ,n, 
(ii) 01> j, for j=O, 1, or 2, 
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(4.9a) 

(4,9b) 

n 

(iii) ~01=N+j-1, forj=O, 1, or2, (4,9c) 
1.1 

As in the above equation, j will always be restricted to 
one of the values 0, 1, or 2, Let P be the number of 
parts of length 1 in the partition, then, (n - P) is a num
ber of parts of length 3, and, according to Eq, (4,9), 

p+3(n-p)=N+j-1 or 2P=3n-N-j+1, (4,10) 

From Eq. (4.10) it is seen that, in a partition of 
(1, N + j) into n parts, there is a unique number P, and 
therefore a unique number (n - P), of parts of length 1 
and 3 respectively. Hence, the number of distinct par
titions of (l,N+j) into n parts subject to the constraints 
(4, 9) is the binomial 

(n-1/0 jo) 

_ (n-1 + liM..!.. 
- [(N +j - 1- n)/2 - 1 + ° iO] ! . ."..,[ (;-3n-+-1:---,-=-=N"-_-:-:-j)/2iT ' 

(4,11) 

where OjO is the Kronecker delta and j = 0,1,2, Conse
quently, if we label by q the distinct partitions of 
(1, N + j) into n parts subject to the constraints (4,9), 
q will range from 1 to a qmax(n) given by the binomial 
of Eq. (4,11), The values of n for which a constrained 
partition is possible are included in the interval 

. [N +j -lJ nm1n = N + J - 1 - 2 --3 - "" n "" N - 1 - ° i1 = nmax 

forN?-3, (4,12) 

where as usual [v] refers to the largest integer less 
than or equal to v, n decreases from nmaJ< to nm1n by 
successively exchanging three parts of length 1 by one 
part of length 3, Therefore, II changes by steps of two 
units, The corresponding change in p, holding (;V + j) 
fixed, is in steps of three units. In addition, the mini
mum and maximum number of parts of length one is, 

. [N+i- 1] Pmln =(lv+J-1)-3 3-' 

(4 0 13) 

while the minimum and maximum number of parts of 
length three is 

(n - P)mln=t(N+j -1- Pmax) = 1- 0'0 for N:;, 3, 

(4. 14a) 

J (. [N+i -lJ (n-P)max=3 N +J-1-Pmln)= --3-- forN~3o 

(40 14b) 

Due to the above discussion, the possible values of p 
and n are given by 

P=Pmin +3n', 

n=nm1n + 2n', 

where 

n' = 0, 1, 0 0 0 , n:"ax 
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and 

[
N+j -1] n' - --- + 0· - 1 max- 3 JO for N?- 3. (4. 15d) 

Associated with the qth partition of (1, N + j) into n 
parts subject to conditions (4.9), we introduce the set of 
integers Sj given by 

I 

so=N+j, SI=SO- 60" s.=I, 
rd 

and define the functions 
n 

(;~(N + j, 1) = n g6r (Sr), 
r.l 

(4.16) 

(4.17) 

Combining Eqs. (4.2), (4,17), and the preceding analy
sis on the partitions of (I,N+j) into parts 0, E{I,3L 
we can rewrite this as 

• 
G~(N + j, 1) = tP n' g(s., l), 

.. 1 
(4. 18a) 

where nl~1 stands for the product over only those values 
of i that satisfy the constraint 

SI_l- s;=3. (4. 18b) 

The constrained conjugate combinatorics fUnctions, 
Cr, are then given by (see Appendix C) 

1Zmu qmax(n) 

Cr(N+j,l,j)= 6 6 G~(N+j,I), (4.19) 
1l=i"min q=l 

where it is understood that n will range from nmin to 
nmax by steps of two units. To reduce the C~, we in
!.roduce the constrained conjugate structure functions, 
13t, by 

qmax(n) 

i3j(N+j,l;n)= 6 n'g(St,l). (4,20) 
q.l i 

Using Eqs. (4.15), (4.18), and (4.20), we can rewrite 
Eq. (4.19) as 

n max 

C2 (N +j, l,j) = tPmin ~ t3n'~t(N +j, 1; nmin + 2n') 
n';:>O 

for N~ 3, 

This completes the reduction of the Cr. 
(4. 21) 

Combining Eqs. (4.7), (4.8), and (4,21), we obtain 

'" 2 n;"ax 
H;N)(t) = 0 '06 2(l+I)(-I)i+li3j(N+j,l;nm1n +2n') 

i:sO i=O n'mQ 

(N +j +i +1 + 1)tp +3.'+1-1 x a N+J+;'I + 1 i min. (4.22) 

To proceed further in the reduction of (4.22) it is con
venient to choose N = 3k + 1, where k is a positive in
teger. Equations (4.12), (4.13), and (4. 15d), then lead 
to nmin=k +j, Pmin=j, andn~ax=k+oiO-L Thus, set
ting i = 3r' + j', Eq. (4.22) can be rewritten as 

~ 2 2 k+6jo-l 
H~3k+1)(t)= '0 00 0 2(l+I)(_I)J'+r'+i 

r'oO J'=O J.o "..0 

X(3j(3k + j + 1, 1; I? + j + 2n')a3k+i+i'+1+2+3r' 

x(3k +j +j' +l + 2 + 3r')t3(T'+n')+J+}'-t (4,23) 
3r'+j' ' 

We now make the change of variable r' -r=r' + n', and 
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follow this by eXchanging the resulting summation over 
r with that over n' to obtain 

'" 2 2 [r, ~+6 Jo-ll< 
Hj3k+U(t) = 0 B 6 0 2(l + 1)(_1)'-·'+1'+1 

r~O 1=0 j'=G n'=O 

x (3j (31? + j + 1,1; k + j + 2n')aS<k_n'+T)+ j + j' + 1 + 2 

(
3(k - n' +r) +j +j' +1 + 2\ tSr +}+i'-1 

x 3r _ 3n' + j' J ' (4.24) 

where [J..L, v]< stands for the smaller of J..L and v, It is 
worthwhile remembering that, the conjugate structure 
functions "fj (3k + j + 1,1; k + j + 2n') are evaluated over 
partitions that are constrained by condition (4 0 9b)o This 
constraint requires that all partitions of (3k + 1 + j, 1) 
into (k + j + 2n') parts have their first part li1 greater 
than j, For j = 0, 01 can be either 1 or 3; that is, the 
constraint is automatically satisfied. On the other hand, 
if j == 1 or 2, then 01 has to be of length 3, Thus, 

Bj(3k + j + 1,1; k + j + 2n') I i=O = f3t(3k + 1,1; k + 2n'), 

(4.25) 

Bt(3k +j + 1, l;k +j + 2n') 

= (3k +j + 1)(3k +j + 2l + 2)f3t(3k - 2 +j, l;k +j -1 + 2n') 

forj==1,2, (4,26) 

where M' is an unconstrained conjugate structure func
tion. A detailed study of these functions will be given in 
Appendix D. 

Finally, by comparing Eqs, (4. 8b) and (4.24), and 
making use of Eqs. (4,25) and (4,26), we obtain the 
the coefficients K~N)(l) as 

K~;!;ll (l) 
(r, k)< 

= 6 (-lr-n'+i+t!3i(3k+l,l;k+2n')a3(k_n'+T)+'.2.1 
n'!!IO 

x (3 (k - n' + r) + 1 + 2 + i) _ (3k + 2) (3k + 2l + 3) 
3r-3n'+z 

[r-6 iO,k-l)< 
X 6 (-lr-n'+l+1{:3{(3k-l,1;k+2n') 

n'~O 

(
3(k - n' + r) + 1 + 2 + i) 

xa3 (k_n'+rl+1+2.1 31' - 3n' - 1 + i 
[r-l+6;2' k-ll < 

+ (3k + 3)(3!? + 2l + 4) 6 (- lr-n'+i'! 
".=0 

x{3t(3!?, 1; k + 2n' + 1) 

(
3(k- n' +r) +l + 2 +i) 

xaS(k_.'+r)+1+2.i 3r- 3n'- 2 +i for i ==0, 1,2, 

(4.27) 

It is interesting to remark that using Eq. (4,6) one 
immediately obtains the results 

K~~k+1>(3l')=0, K~;!2l)(31' +1)=0, K~~:11>(31' +2)=0, 

(4,28) 

where l' is a nonnegative integer, Since Eqs, (4.28) re
main evidently valid in the limit, !? - 00, then for every 
value of l, there is a whole set of coefficients, in the 
eigenvalue equation (4,8d), that vanish, 

This completes the formal development of the eigen-
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value equation. A detailed study of the coefficients 
K~~~jll(l) will be given in Appendix E. 

V. CONCLUSION 

We have given explicit expressions for the nonrela
tivistic linear potential wavefunctions and eigenenergy 
equation. The wavefunctions were obtained by a direct 
application of the general formalism for solving linear 
recursiOn relations, 3 As such, they provide a first con
crete application of this method, and the techniques in
volved in the reduction of the combinatorics functions, 
which form the basis in which the solution is expressed. 

To obtain the eigenenergy equation, a general ap
proach to the eigenvalue problem was used, The usual 
method of quantizing by terminating the power series 
expansion after a finite number of terms only works 
when the coefficients in the expansion are related by a 
two- term recursion relation. The coefficients in the 
power series expansion arising in the linear potential 
problem are related by a three-term recursion relation, 
and hence the series cannot be terminated. Instead we 
directly connected the initial conditions at the origin to 
the boundary conditions at infinity, thus obtaining the 
eigenenergies as the roots of an infinite order poly
nomial. The boundary condition at infinity in this case 
requires that the wavefunction goes over asymptotically 
into the Airy function Ai(;\; - t). 

To connect the boundary conditions at the origin and 
at infinity we had to generalize the results of Ref, 3 to 
the case of inverted recursion relations, and obtained 
their solution through the conjugate combinatorics 
functions. 

APPENDIX A: GENERAL EXPRESSION FOR 
THE CONSTANT K.(t, t) 

By requiring that w2 be a solution of the radial equa
tion (2.6), we arrived at the recursion relations, 

=0 fo[" m'?- 0 

and 

m (m - 2l - 1) cm + tCm_2 - c m_3 = 0 for 0 ~ m ~ 21 

with the initial conditions 

(AI) 

(A2) 

(A3) 

Equation (A2) is more conveniently separated into three 
equations: 

m (m - 21 - 1 )cm + tCm_2 - C",_3 = 0 for 0.,; m .,; 21 and l'?- 2, 

(A4a) 

m(m - 3)c,. + tCm_2 = 0 for 0.,; m .,; 2 and l "" 1, 

0= 0 ~co = arbitrary for 1 =0. 

If we now set m = 0 in Eq. (AI) we obtain 

(2l + I)Kbo + fC2/_1 - C2I_2:=: 0, 

(A4b) 

(A4c) 

(A5) 

The explicit expreSSions for cu_! and c2/.2 can be ob
tained by solving the recursion relations (A4), For 1 = 0, 
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Eqs. (A3) and (AS) give Kbo = 0, and since bo"* 0, this 
implies that 

K(O, t) = O. (A6a) 

For 1 = 1, Eqs. (AS), (A4b), and (A5) give 

1£D 
K(l,t)=3 b

o
' (A6b) 

For I? 2 we note that Eq. (A4a) is of the same type as 
the one appearing in Eq. (3.2), and can be rewritten as 

cm = f2(- m)Cm.2 + f 3(- m)cm_3 for 0 < 111 .,; 2l, (A7) 

where the functions f2 and fa are the same as the ones 
defined by Eq. (3.3) and Co is arbitrary. Thus the whole 
discussion given in Sec. III follows through, leading to 
the solution of Eq. (A7) as 

"max 
c",=co "6 i3;(0,m;n)(-f)3n-m forO<mz21, (AB) 

115nmin 

The structure functions 13;(0,111; n) are given by 
qmax(n) n 

13;(0, m;n) ="6 II f(- sj,l), (A9) 
0=1 j=1 

where the functionf is given by Eq, (3 0 3b), nmin and 
nmaJ. are given by Eq. (3.7), and q",..,.(n) by Eq. (3,6). 
The expression for 8;(0, m; n) is analogous to that for 
13/(0, m;n) given in Eq. (3.14), and the underlying set 
of partitions is the same in both caSes, Combining 
Eqs. (AS) and (AB) we have 

C '.1 
K(l,t)= (2l+\)b "6 {)3/(0,21-1;n)+i3;(0,2l-2;n)} 

o no[21/3J 

X (- t)3n-2Z+2, l'?- 2 (AlO) 

where [v J stands for the largest integer less than or 
equal to v. In evalualing the lower limit of the summa
tion it should be noted that when 2l + 1 is an exact mul
tiple of 3, the interval (21 - 1) cannot be divided into 
[2Z/3] parts belonging to the set {2,3}, and hence the 
corresponding structure function 13;(0, 2l-l; [21/3]) is 
zero. 

As an example we will evaluate Eqo (AlO) for 1=2. 
We find 

K(2, t) = ;~o [f32(0, 3; 1) + f32(0, 2; 1)J(- tl o 

From Eqs. (A9), (3.3b), and (3,6) we find 

(:lHO,3; 1) =f(- 3, 2) =- L 
f:lHo, 2; 1) =f(- 2,2) == - L 

leading to 
t Co 

K(2, t) = 15 b
o 

' (All) 

APPENDIX B: THE STRUCTURE FUNCTIONS 
PI (0, m; nl 

According to Eq, (3014) the structure functions are 
given by 

qma.x(n) n 

i31(O,m;n)="6 II f(sj)l). (Bl) 
0=1 j,j 

Comparing Eq. (Bl) with Eqo (3,11) and making USe of 
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Eq. (3.10) we find that 

C1 (0,111,11) = (- l)3n-mt3, (0, Ill; n). (B2) 

Consequently by using Eq. (3.3) and the recursion 
relation obeyed by the combinatorics functions of the 
first kind as given in Theorem 1 of Ref. 3, it is easy 
to derive the following recursion relation for the struc
ture functions, 

/3,(0, m;n) = [8,(0, In - 2;n -1) + i3,(O, m - 3; n-l)J!(m,l), 

(B3) 

By construction the structure functions {3, (0, m; Il) 
are evaluate Over the partitions of the interval (0, m) 
into IZ parts of lengths 2 and 3. If P represents the num
ber of parts of length 2, then, according to Eq. (3.5), 
the only intervals that can be partitioned into a given 
number, n, of parts are those of length 

111=3/1-/) forp=O,I, .•. ,I1, (B4) 

We will therefore study the structure functions 
(3,(0,31l-jJ;n) for the above range of values of p, the 
other structure functions being zero. 

There are two special cases in which the structure 
functions take a simple form. These correspond to p = ° 
and p=n, where qmax(n)=1, leading to 

n-1 
PI (0, 3n; n) = n f(311 - 3j, l), (B5a) 

j=O 

n-1 
13,(0, 2n; n) = n f(2n - 2j, l), (B6a) 

j=O 

lVhking use of Eq. (3. 3b) we then obtain 

. _...L r(l + (2l + 1)/3) 
{3,(0,3n,n)-3 2n r(n+l)r(n+l+(2l+1)/3) , (B5b) 

1 r(1 + (2l + 1)/2) 
(3,(0,2n;n)= 22n r(n+l)r(n+1 + (21 +1)/2)' (B6b) 

In the general case we derive a relationship between 
the structure functions corresponding to partitions with 
P parts of length 2, of a given interval, and those cor
responding to partitions with (p - 1) parts of length 2, 
of its subintervals. Let Pi be the set of distinct parti
tions of (0, m) into n parts, P of which are of length 2, 
and subject to the two following conditions: (i) The last 
i parts are all of length 3, and (ii) the (n - i)th part is 
of length 2, as shown in Fig, 2. Thus if P is the set of 
all distinct partitions of (0, /11) into n parts, P of which 

!---2(p-I)+3(n-p-il--1 >---- 31----1 

1 m"F,f+EE3 
Ii: 

'

1-.8,(0, m-31- 2 ; n-I-J)~-i----rrf(m-3 J,' )-------1 
Jto I 

FIG. 2. The partitions belonging to the set Pi and their corre
sponding representation by structure functions. 
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are of length 2, we have 

(B7a) 

since the maximum possible number of parts of 3 is 
It - p, and the minimum is 0. Notice that the second 
condition on the elements of the set P" on the one hand 
requires that P ~ 1, and on the other hand guarantees 
that these sets are disjoint, 

(B7b) 

The sum over q in Eq. (B1) is a sum over all distinct 
partitions of (0, m) into n parts belonging to {2, 3}. Thus 
due to Eqs, (B7a) and (B7b), we can rewrite Eq. (B1) 
as 

11-f> n 

0,(0, lI1,n)= '0 ~ nf(sj,l). 
;=0 partitianSEPj j=1 

But as can be seen from Fig. 2, 

=[ 6 
partitionsE.P. , 

Furthermore 

n .. i .. l 
'0 n f(sj>Z)={3,(0,JII-3i-2;n-i-l) 

part H ionsE.P i j=l 

and 
n i 

n f(sj,l)= n f(m - 3j,l). 
J= n-i j,O 

(B8) 

(B9) 

(BlOa) 

(BlOb) 

Combining Eqs. (B8), (B9), (BlOa), and (BlOb) we 
obtain 

n ... p i 

i31(O,iIi;n)= 6 t3r(O,m -3':- 2;11- i-I) 11 f(iII- 3),1) 
i~ bD 

Alternatively we can prove Eq. (Bll) by mathematical 
induction on 11, holding P fixed, and remembering that 
111 = 3Jl- P. The proof is straightforward and simple and 
is based on Eq. (B3)o 

We now rewrite Eq. (Bll) in a form that is more 
convenient for calculations by using Eq. (B4) and 
making the changes of variable i - 11- J) - i and.i -11 - P 
- j, to obtain 

~ 
f3z(O,311-p;n)=(j (3l(O,3i+2P-2;i+j>-1) 

;eD 

n-p 

X n f(3j + 2p, l). (B12) 
}=; 

Furthermore 

n-l>. 32(P+i-0 1'(i + 2p/3)r(i + (2P + 21 + 1) 3) 
j~ f(3} + 2p, l) = 32nr(n + 1- p/3)r(n + 1+ (21 + 1- P) 3) • 

(B13) 

Substituting (Bl3) in (BI2) we finally obtain the desired 
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expression, 

1 
13,(0, 3n - p;n) = 3fnr(n + 1- p/3)r(n + 1 + (21 + 1 - p)/3) 

x f! 22 (1'+1-1>13,(0, 3i + 2p - 2; i + P - 1) 
1=0 

xr(i + 2p/3)r(i + (2P + 21 + 1)/3) 

for P = 1, 2, 0 0 • , n. (B14) 

Since we have an explicit expression for 13/(0, 3n; n), 
that given by Eqo (B5b), we are then able, in principle, 
to calculate explicit expressions for 13/ (0, 3n - 1), and 
so on. 

In order to illustrate this method, we will calculate 
f3/ for p = 1. Making use of Eq. (B5b), we obtain 

r(1+(2l+1) 2) 
J3/(0,3n-1;n)= 32nr(n+~)r(n+1 +21 3) 

x n-1 rei + t)r(i + 1 + 2l 3) E r(i+1)r(i+1+(2l+1) 3)' 
(B15) 

In the case 1 = 0, this expression can be further sim
plified by using the identity13 

t r(j +b) _ r(n + 1 + b) 
j.1 r(j + a) - (b + 1 - a)r(n + a) 

r(b + 1) 
(b + 1 _ a)r(a) (B16) 

to obtain 

1 (r(t) ret) \ 
i30(0,3n-1;n)= 32nn! r(n+t) - r(n+t)j' 

APPENDIX C: INVERTED RECURSION 
RELATIONS AND CONJUGATE 
COMBINATORICS 

(B17) 

In this Appendix, we would like to extend the proof 
presented in Ret 3 to solve the inverted recursion 
relation, 

N 

bm =6g. (m)b m+., 0<a1<a2 <000<aN, (C1) 
"=1 It " 

where g. (m) are a set of N functions conveniently 
" labeled by ak' Essentially, we would like to express bm 

in terms of higher order coefficients, say, bio' 

bio+!> ••• ,biO+.N-t> for jo > m. 

The solution of this problem is related to what we 
shall call the conjugate combinatorics functions of the 
first and second kind o The word "conjugate" does not 
refer to complex conjugation but rather to the relation 
that the inverted recursion relation and its solution bear 
to the original recursion relation and its solution in 
terms of combinatorics functions o 

As in Ref. 3, the distinct partitions of (mt> m2) into 
n parts (oj, 0." on) belonging to the setA ={a,,; k = 1, 0'" 

N}, are labeled by the index q=1, 0 •• ,qrnax(n). Corre
sponding to each partition we introduce the function 
G~(m2' m1) given by 

n 

G~(m2' mt) = n g6 j (S/), 
;=1 

where 
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(C2) 

(C3a) 

or explicitly 

I 

s/ = m2 - "0 0". 
kat 

(C3b) 

Equations (C2) and (C3) are to be compared with Eqs. 
(2011) and (2.13) of Ref. 3. 

By summing the functions G~(m2' m1) over all distinct 
partitions of (m!> m2) into n parts subject to the con
straint that the ath part is greater than d we obtain the 
constrained conjugate combinatorics function of the 
first kind, 

(C4) 

where Q",=Q,,(m2- mt,n,d) is the subset of the q's 
labelling those partitions of (mb m2) whose ath part, 
0", is greater than do 

On the other hand, by summing the functions 
G~(m2' m1) over all distinct partitions of the interval 
(mj, m2), subject to the constraint that the first part, 
oj, be greater than d, we obtain the constrained con
jugate conbinatorics function of the second kind, 

C{(m2, mb d) = 6 6 G~(m2' m1L (C5) 
n qE Q

1 
Then the analogs of Theorems 1 and 2 of Ref. 3 are: 

L Given an interval (j,m), j~jo, and a setA of parti
tioning subintervals, then 

q*(j,m,n,j-jo)= "0 g. (m)Cl*(j,m+a",n-1,j-jo) 
."EA k 

for m <jo and n~ 1. 

II. Given an interval (j,m), j~jo, and a setA of 
partitioning subintervals, then 

C~(j,m,j-jo)= 6 g. (m)C~(j,m+a",j-jo) 
a"EA k 

for m <jo. 

The proofs of the above two theorems follow from 

(C6) 

(C7) 

the Lemmas 1-4 of Ret 3, and are very similar to the 
proofs of Theorems 1 and 2, given thereo We will 

THE CONJUGATE REPRESENTATION OF PARTITIONS 

Sum of Two 
Element, 

Partition 
'4 om, '3 '2 • I '0" m2 

~la~I~I __ ~a3~I~a=2~I~a~2~1 -0 

Union of Two Partition, 

'"' '3 '2 'I m2 m, .'2 .', 

I 341 33 I 32 I 8, 1 u I 33 32 
G4(/n2 ,m,) + G3 (m2 ,m,) 

FIG. 3. The partitions of an interval (ml, m2) into n parts are 
represented by the functionals 0,(1112,ml)' The functions 
ga/X) corresponding to the partitioning subintervals ak , are 
arbitrary. 
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PARTITIONING (5,16) INTO {3,5,8 } 
n q 

5 13 IS 
2 I I 8 I 3 I G~ (IS, 5) '93(3)9e!5} 

5 8 16 
2 2 I 3 I 8 I Gl (IS, 5).'98(8)9-$(,) 

5 10 13 16 
3 1 5 1 3 1 3 I G~(16,5)'Q3(13)Q300)Q5 (5) 

5 8 13 16 
3 2 1 3 1 5 I 3 I ~ (IS, 5) • Q#3)Q5(8} 9-J5) 

5 8 II 16 
3 3 1 3 1 3 1 5 1 Gi OS,5) • Q5(IIIQ3 (8) Q3 (5) 

FIG. 4. The partitions of the interval (5.16) into the parts 
{3, 5,8}, and the ir carre sponding conjugate functionals. 

therefore skip the proofs and refer the interested read
er to Sec. ill of Ref, 3, 

Similarly, the analogs of Theorems 3 and 4 of Ref. 
3 lead to the following general solution of Eq, (C 1): 

'N-l 

b",= 6 C{(jo+i,rn,i)b j +1> 
1=0 0 

(C8) 

where bio ' bio+!>"" biO+. trl are taken as initial condi
tions, 

In the special case of the linear potential problem, 
the inverted recursion relation, Eq, (4.1), leads to a 
setA containing two elements, al=1 and a2=3. If, in 
addition, we set jo = N (which should not be confounded 
with the N used above to signify the number of elements 
inA) in Eq. (C8), we obtain the result given in Eq. 
(4,2), 

The conjugate combinatorics functions provide a 
representation of partitions leading to the recursion 
relation (Cl), To further clarify the essentials of this 
representation, we give in Figs, 3, 4, and 5, the 
analogs of Figs, 1, 2, and 3 of Ref. 3. The differences 
and Similarities between the two types of representa
tions will become clear on comparing the two sets of 
figures. 

APPENDIX D: THE CONJUGATE STRUCTURE 
FUNCTlONSj3r(m,1;n) 

The unconstrained conjugate structure functions are 
given by 

qmax(n) n 

i3t(m,l;n)="0 Il'g(Si,l), (Dl) 
0-1 i-I 

where the values of si associated with the qth partition 
are given by 

i 

so=ln, Si=SO- 6 6r , s"=I, 
r-l 

and 6r E {1, 3}. Il7~1 stands for the product over only 

(D2) 

By construction the conjugate structure functions 
M (m, 1; n) are evaluated over partitions of the interval 
(m, 1) into n parts of lengths 1 and 3. If P represents the 
number of parts of length 1, then according to Eq. 
(4.10), the only intervals that can be partitioned into a 
given number n of parts, are those of length 

m - 1 = 3n - 2p for p = 0, 1, , 0 , , n, (D4) 

We will therefore study the conjugate structure func
tions f3i (3n - 2P + 1, 1; n) for the above range of p, all 
the others being zero. 

There are two special cases for which the above func
tions take a simple form. These correspond to p = 0 
andp=n, In both cases qmax{n)=1 and we obtain 

n-l 
J3t(3n+l,l;n)= Il g(3j+1,1) (D5a) 

j-O 

and 

J3t(n+l,l;n)=1. (D6) 

Making use of Eq. (4.2b) we have 

* . _ r(n + t)r(n + (21 + 5) 3) 
i3! (3n + 1,1, n) - 32n r(} )r«2l + 5) 3) , (D5b) 

In the general case we derive a relationship between 
the conjugate structure functions corresponding to 
partitions, having p parts of length 1, of a given inter
val, and those corresponding to partitions, having p - 1 
parts of length 1, of its subintervals, Let Pl be the set 
of distinct partitions of (m,l) into n parts, P of which 
are of length 1, and subject to the following two condi
tions: (i) the last i part are of length 3, and (ii) the 
(n - i)th part is of length 1, as shown in Fig. 6. Thus 
if p* is the set of all distinct partitions of (m, 1) into n 
parts, p of which are of length 1, we have 

n-l> 
P*= U Pi, 

i::!lO 
(D7a) 

since the minimum number of parts of length 3 is zero 
and the maximum is n - p, Note that the second condi
tion on the elements of the set Pt, on the one hand re
quires that p ~ 1, and on the other hand guarantees that 
these sets are disjoint, 

(D7b) 

The sum over q in Eq. (D1) is a sum over all distinct 
partitions of (112,1) into n parts belonging to {1,3}. Thus 
due to Eqs, (D7a) and (D7b), we can rewrite Eq, (D1) 
as 

(D8) 

those values of i which satisfy the condition s'_1 - SI = 3, 86 FIG. 5. Notation for the par
tition of an interval (m • .1) Following the same steps as in the derivation of Eq. I-r--+--+--i-r----r-,---j 

(B3) we obtain the following recursion relation, Q2 

M' (m, 1; n) =!3t (112 - 1,1; n - 1) + /3j(m - 3,1; n- l)g(m - 3, I), 'I' 

(D3) 
, 
'6 
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into parts, subject to the con
dition 51 <io• or equivalently 

i 01 >i. 

~ 
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But as can be seen from Fig. 6 

n :0 n' g(Shl) 
J>artitioDBE1?t f.l 

and 

= [:0 il, g(si>l~ng(sJ>l) 
J>artitlonsEPt i-i-l ]J.l 

i 
=M(m-3i-l;n-i-l) n g(sJ,l) 

j.j 

I i 

n g(Sj,l)= n g(m- 3j,l). 
j.1 j.l 

Thus 

M(m,l;n)=f (3l(m-3i-l,1;n-i-l) 
1=0 

i 

X n g(m - 3j, l) . 
f.l 

Using Eq. (D4) and making the change of variable 
i - n - P - i and j - n - p - j we obtain 

M (3n - 2p + 1, 1; n) = f M (3i + p, 1; i + P - 1) 
100 

n..,..1 
X n g(3j + P + 1,1). 

j.l 

Furthermore 

n+l 
n g(3j + P + 1 , l) 

(D9) 

(DI0) 

32nr(n - p + (p + 4) 3)r(n - p + (P + 21 + 5) 3) 
= 32U+')r(i + (p +4) 3)r(i + (p + 21 + 5) 3) (DU) 

and when this is substituted in Eq. (DI0) we obtain the 
desired equation, 

t3t(3n - 2p + 1, 1 in) 

=32 ("..1lr(n - (2p - 4)/3)r(n + (2 - 2p + 5)/3) 

f {3t(3i+p,1;i+P-l) 
x i.O 32ti .,·llr(i + (p + 4)/3)r(i + (p + 21 + 5)/3) 

forp=1,2, ••• ,n. (D12) 

To use Eqo (D12) recursively we make the change of 
variable n - n + p - 1 and i - i-I to obtain 

M(3n+p- 2, l;n+p -1) 

= 32nr(n + (p + 1)/3)r(n + (p + 21 + 2)/3) 

x~ pt(3i+P-3,1;P+i-2) 
t'l 32; r(i + (p + 1)/3)r(i + (p + 2l + 2)/3) . (DI3) 

"-- (p-I)+ 3(n-p-l)~ I 31 ---I 

I --lroo 
I I I I 
I • \ I I I 
'r- f31 Cm-31-1. I.; n-i-IJ----H+-- TTg(m- 3J. I~ 
I I I J., 
FIG. 6. The partitions belonging to the set Pj and their corre
sponding representation by conjugate s'tructure functions. 
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We set i=il in Eq. (D13) and calculate f3i(3i j +p- 3, 1; 
P + il - 2) from Eq. (D13) by making the change of 
variable n - it, P - P - 1, i - i 2• This gives 

fJt(3i l + P - 3, 1; P + i l - 2) 

= 3Ul r(i j + p/3)r(i1 + (p + 21 + 1)/3) 

x t f3t(3i 2 +P-4,1;P+i2 -3) (D14) 
12.1 ~f2r(i2 + p/3)r(i2 + (p + 21 + 1)/3) 

Substituting Eq. (D14) into Eq. (D13) we obtain 

f3i (3n + p - 2, 1; n + p - 1) 

= 32n ['(n + (P + 1)/3)r(n + (P + 21 + 2)/3) 

(D15) 

After p iterations, we obtain the explicit expression 

f3t(3n + P - 2,1; n + p - 1) 

32 (n-1l ['en + (P + 1)/3)r(n + (p + 21 + 2)/3) ( ) 
= r(t)r«2l + 5)/3) a, n,p , 

P=0,1,2,···, (DI6) 

where we have made use of Eq. (D5b) for (3t(3i, - 2, 
l;i p -l), and (J1(n,p) is defined by 

a,(n, 0) = 1, 

with 

(DI7a) 

(D17b) 

. [,(i+(p+l-k) 3)r(i+(p+21+2-k) 3) 
y,(l,k,P)= r(f+(p+2-k) 3)r(i+(P+21+3-k) 3)' 

It is easy to see that 
n 

a,(n,P)=:0 Yr(i, 1,p)ar(i,p -1). 
;'1 

(D1S) 

(DI9) 

For l = 0, the expression for a r (n, P) simplifies con
siderably and is easily evaluated by using Eq. (B16L 
As an example 

3['(n + ±) , l 
ao(n, 1) = __ ,:....a..L - 1 (3). (D20) 

n. 

APPENDIX E: STUDY OF THE COEFFICIENTS 

According to Eqs. (4. 8c) and (4.8d), the eigenvalue 
equation for the energy parameter t is given by 

~ 

'0 2(1 + 1)Kn(1)t n- 1 = 0, (Ela) 
n=O 

where 

Kn(l) = limK~N) (l). (Elb) 
N*~ 

The general formula from which K~N)(l) is obtained is 
given by Eq. (4.27), and can be rewritten, for k > r, 

A.F. Antippa and A.J. Phares 317 



                                                                                                                                    

as 

K(3k+U(1) _ f; (_1)'-<I+i+1 (3(k +r- q) +l + 2 +i) 
3r+1 - ;;:0 a3(k+r_q)+,+2+1 3 (r - q) + i 

x{ (3t(3k + 1,1; f" + 2q) - (1 - <\ro,0)[3 (r - q) + iI 
x [3k+2J[3(k+l)+2IJ{3*(3k_l l'k+2 ) 

[ 3 (k + 1) + 1 J I , " q 

+ [1- 0.,(1- 0dl [3(1'- q) +i][3(r-q) + i - 1] 

3(k+l)[3(k+1)+2Z+1J * 
x [3(k+l)+Zl[3(k+l)+1+1] {3, (3k,1; 

Td2q +l}, i=0,1,2, (E2) 

Basically, three types of conjugate structure func
tions need to be evaluated, !31 (:::, -t- 1, 1; k + 2q), 
!3i (3k - 1,1; I? + 2q), and (3j(3k, 1; h + 2q + 1). Everyone 
of the above structure functions can be written as 
f3i (3n + p - 2,1; n + /) - 1), the first one corresponding 
to n = k - q + 1, P == 3q, the second to Ii == k - q, p = 3q + 1, 
and the last one to n=lz - q, p=3q +20 Using Eqo (D16), 
we then find 

f3t (3lz + 1, 1; I< + 2q) 

M(31< -1, 1; I? + 2q) 

32 (k-<l-llr(k + ~)r(k + 1 + 21/3) 
= -- r(t)r«2Z+ 5)/3) o,(k - q, 3q -I- 1), (E3b) 

!3i (3k , I; I? + 2q + I) 

32 (k-q-1)r(h -I- l)[,(k + (2l + 4)/3) 
r(t)r«21 + 5)73)--0,(1< - q, 3q + 2)0 

(E3c) 

By using the triplication formula for the gamma func
tions we can write the binomial appearing in Eq, (E2) 
as 

( 3 (k + r - q) -I- 1 + 2 + i) 
\ 3(r-q)+i 

217 ( 1 +i) =- r h+r-q+l+-
,f3 3 ( 

l+i+l) r k+r- q +l+-
3
-

( 
Z + i + 2)/ ( i -I- 1) x r k + r - q + 1 + --3- I' r - q + -3-

( 
i + 2) ( i + 3) ( 1 ) xI' r-q+-3- I' r-q+-3 r 1<+1+3 

x r(k + 1 + I ~ 1) I'(k + I + Z ~ 2) 0 (E4) 

To evaluate the Airy coefficients we set 

1=31'+j, j=O, 1 or 2, l'=0,1,2,'oo (E5) 

and make use of Eq, (406) to obtain 

a3 (10/: +r-Q+l' +1) +i +i-l 
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x 

0, 

1 
r(l?+r-q+l'+f) , 

I 

i +j =0 or 3, 

i+j=l, 

i +j=2, 

1 
2 8 i+j=4. 3 (Jz+r-q+l'+2)I'(k+T-q+Z'+3)' 

(E6) 

We note that using Eq. (E6) we have 

(- l)i+13 2(k-q)+1 r(k -I- r - q + l' + 1 + (i +j + 1)/3) 

x ['(!c + r - q + l' + 1 + (i +) + 2)/3)a3(k+r_q+/1+1l+i+1_1 

= (1- 0i0010 - 0i10J2 - 0'20J1) 

x (1- 20;2012)(- I)J 0 aor(t) 
32<;+;-\)/3 32(nPl+l 

(E7) 

Substituting Eqso (E3), (E4), and (E6) in Eqo (E2) and 
making use of Eqs. (E5) and (E7) we find 

K~~!;l) (3l' + j) 

x r(ldl'+2+j/3)r(k+Z'+I+(j+l) 3) 

X0 3I '+j(l? - q,3q + 1) + (y- q +i/3) 

[ . (. / 1 r(k + 2)r(1< + 21' + 1 + (2j + 4) 3) 
x 1 - q + l - 1) 3 I' (1< + l' + 2 + j73)'(k + l' + 2 + (j + 1) 3) 

x 0"",(1, - ".3" + 2)~ . (E8) 

From Eqo (E8) it is easily seen that 

](~~k+1> (37') = 0, K~;~21l (3l' + 1) = 0, Ki~~i1> (3l' + 2) = 00 

(E9) 

Also for y = 0, i = 0 the expression simplifies consider
ably, and we have 

K~3k+1>(3l')=0, (EI0a) 

Kri 3k+1) (31' +1) 

_ _ r(})ao r(k+t)I'(k+2I'+±) 
-- 32l'+ir(-})r(3l'+1l I'(k+l'+2)r(k+1'+t)' 

(EIOb) 

K~3k+1l (31' + 2) 

_ 31/3rmao I'(!?+~+21'-I-~ 
- 3W+2r(t)r(21' + 3) r(k + l' + i)r(k + l' + 2) , 

(ElOe) 
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By making use of the identity 

1· k~ar(k+CI)=1 
;.::: r(k + (3) 

(Ell) 

and Eqs. (E1b) and (E10), we obtain 

K o(3l') =0, (E12a) 

, r(~)ao 
Ko(3l +1)=- 321'+lr(t)r(2l'+ i-), (E12b) 

, 31/ 3r(i)ao 
Ko(3l + 2) = + 321i+2r(t)r(2l' + 3) (E12c) 

For n> 0, taking the limit as k - co is more complicated 
due to the summations over the l' functions. What is 
needed at this stage are summation theorems for prod
ucts of quotients of r functions; that is generalization 
of Eq. (B16). 

It is worth noting that, in the case 1 = 0, Eq. (4.4) is 
not only valid asymptotically but for every value of N, 

t e. , 

~ (N+i + 1) I b N(O, t) = '0 a N+l+1 . (- t) for N~ O. 
;=0 z 

(E13) 

The immediate consequence of the above results is that 
Eq. (4. 8c) holds for all values of Nat l =0, 1. e., 

(E14) 

or, in other words, K~N)(O) has to be N independent. 
Obviously, a consistency check would be to reproduce 
this property from the general formula (E8). Setting 
l' = 0, j = 0 in Eq. (E8), we have, 

Ko(O) =K63k+1) (0) = 0, 

K1 (0) = K~3k+1)(0) =ao/2, 

K (0) = K(3k+1)(0) = ~ 31/3
r(i) = _ a1 

2 2 2 .f'(t) 2' 

(E15a) 

(E15b) 

(E15c) 

Thus for 1 = 0, the energy eigenvalue equation becomes 
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~ 

Ho(t) =:B 2Kn(0)t"-1 ={ao + al(- t) + ... } 
noO 

=Ai(- t)=O, (E16) 

where Ai is the Airy function. 
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Generalization of Dirac's monopole to SU2 gauge fields 
Chen Ning Yang 

Institute for Theoretical Physics. State University of New York. Stony Brook. New York 11794 
(Received 31 May 1977) 

Dirac's monopole is generalized to SU2 gauge fields in five-dimensional flat space or four-dimensional 
spherical space. The generalized fields have SOs symmetry. The method used is related to the concept of 
orthogonal gauge fields which is developed in an appendix. The angular momenta operators for the S05 
symmetrical fields are given. 

I. INTRODUCTION 

The Dirac1 monopole, which is singular only at the 
origin in three-dimensional space, satisfies the follow
ing properties: 

(a) The magnetic flux through any closed surface 
around the origin, is 47Tg * O. 1. e. , 

i#f,," dx"" = 47Tg* 0, (1) 

where dx'''' is the surface element and is antisymmetri
cal in 11 and v. 

(b) It is spherically symmetrical. 

The Dirac monopole field is uniquely determined by 
(a) and (b) for each (allowed) value of g. We remark 
that if We remove condition (b) then the field is not 
uniquely determined by (a), since, e. g., the addition of 
a dipole or any higher order pole to the origin does not 
change (a). 

A further remark is useful. The integral in (1) is in
dependent of any distortion of the closed surface since2 

f"V,A + fv?," +flo.IJ.," = 0, 

or 
a 

~ffJ.V ,\=0. . (2) 

We want to generalize the Dirac monopole field to 
SU2 gauge field. Consider a five-dimensional space with 
metric 

ds2 
=: dxi + dx~ + dX5 + dx~ + dx~. (3) 

Consider an SU2 gauge field which is singular only at 
the origin. The generalization of (1), which is the first 
Chern class number, is the second Chern class3 

number, 

i4 11t.P f:vf~adxIJ.v"s = (87T2/3)C h (4) 

where the integral is taken over a closed four-dimen
sional surface enclosing the origin. This integral is 
also independent of any distortion of the surface. To 
see this we use the rules of the gauge Riemannian cal
culus of Ref. 4 and find in a straightforward manner, 
a a a 

2:; (j:,,f~5).r=~ (j:vf~f,)"y='E (jLHrf~f,+f~"f~f,,,y)=O, 

which is a natural generalization of (2). It follows im
mediately that (4) is independent of any distortion of the 
surface provided it always encloses the origin. 

a)Work partially supported by the NSF under Grant PHY 
7615328. 

We thus search for an SU2 gauge field satisfying 

(a/) C, ;to; 

(b / ) It is S05 symmetrical. 

As before, condition (b') is needed to make the field 
unique for a given value of C 2• 

We shall prove that there are two and only two solu
tions (')! and {3 satisfying (a/ ) and (b/). They are respec
tively characterized by 

(5) 

Furthermore, fields QI and (3 will be defined so that in 
orthogonal coordinates ;1, ;2, 1;3, e, r, where r is the 
radial variable and ~b ~2, 1;3, e are five-dimensional 
angular coordinates (to be defined later), 

b~=O, b~=O, (6) 

b{t.) = function only of e, ;, (7) 
I 

Thus b~ dr + b~ d e + b{, I) d ~ I = independent of rand dr. 

This means that the radial coordinate r and the 
angular coordinates can be separated, and the gauge 
fields (}' and f3 are only really dependent on the latter, 
One can thus view QI and (3 as gauge fields confined to 
any sphere 54 with its center at the origin, In this S4 
viewpoint, the field Cl' is self-dual and orthogonal every
where, and the field f3 is self-antidual and orthogonal 
everywhere. These concepts are defined in Appendix A. 

In the five-dimensional viewpoint, Cl' and {3 are both 
sourceless and analytic everywhere except at the origin. 
It is S05 symmetricaL 

In the S4 viewpoint, a and (3 are both sourceless and 
analytic everYWhere, and is S05 symmetricaL We de
fine a total "action" 

(8) 

over 54' We shall prove that solutions (}' and f3 have the 
least "action" among fields with their respective second 
Chern class numbers C2, 

The fieldS (}' and f3 will be defined in Secs. II and III 
in terms of nonintegrable phase factors. 4.6 A reader 
unfamiliar with this geometrical concept can take Eqs. 
(34) as the algebraic definition of the fields, 

The concepts of orthogonal self-dual and self-antidual 
fields seem to be very usefuL These fields are defined 
and discussed in Appendix A, where the relationship be
tween these concepts and S04 symmetry is also 
discussed. 
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The angular momentum operators in five-dimensional 
space are exhibited in Sec. X. They contain extra terms 
to take into account the angular momenta that reside in 
the field, just as the angular momentum operators for a 
charged particle in a Dirac monopole field contain extra 
terms. 

II. CONSTRUCTION OF THE SOLUTIONS 

We first recall the vector potential A for the Dirac 
monopole. They can be chosen in twoS regions Ra and Rb 
which are defined by (in spherical coordinates r, e, cp): 

Ra: 0"" e < (1T/2) + a, 

Rb: 1T ~ e> (1T/2) - a (0 < a < 1T/2). 

In the two regions they are respectively 

A~a) =AJ~) = 0, A!a) =g(l- cose), 

A~b)=A~b)=O, A~b)=-g(l+cose), 

(9) 

(10) 

where we use tensor notation for the components, so 
that the expression for A</) in these formulas is (r sine) 
times the corresponding Aop of Ref. 5. 

It has been emphasized4• 6 that a more intrinsic con
cept than A is the phase factor. For an infinitesimal 
path from P: (r, e, cp) to P+dP: (r+dr, e +de, cp +dcp), 
the phase factor is (in Ra) 

<I>~~)'dP)P = 1 + ieA" dx'" 

where 

= 1 + ieg(l - cose) dcp 

:::: [exp(+ 2iegdcp)]'(~), 

p(e) = ~(1 - cose). 

In Rb we obtain 

<I>~~).dP)P = [exp(- 2iegdcp)]1-p(~), 

Now consider a function, defined everywhere except 
along the z axis, 

T(r, e, cp) = exp(2ige1», 

(11) 

(12) 

(13) 

(14) 

which is single valued in view of Dirac's quantization 
condition 

2ge = integer, 

Thus, 

<I> ~';,)+dP)P = (T P+dP Tpl)p(~), 

<I>~~)+dP)P= (Tj,t.dPTp)l-p(~). 

(15) 

(16) 

(17) 

Since P(O) = 0, Eq, (16) is applicable near e = 0, Simi
larly, Eq. (17) is applicable near e=1T since I-P(1T) 
= O. Equations (16) and (17) define the Dirac field, 

We are now ready to generalize to a SU2 gauge field 
in five-dimenSional space. We shall choose coordinates 
~i' e, r (i = 1,2,3) such that 

r=(x~+'.'+x~)I!2, xs=rcose (O""e""1T), (18) 

~h ~2' ~3 parametrize the three-dimensional sphere 
(Fig, 1) 

r=fixed, e=fixed, or r=fixed, x5=fixed. (19) 
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For the time being we shall not specify how to choose 
~b b, ~3 to avoid unnecessary distraction at this stage. 
Consider any 

T(~I' ~2' ~3' e, r) 
which is an element of SU2 and is defined and differen
tiable at all points in the five-dimensional space except 
on the Xs axis, Consider any p(e) which satisfies 

p(O) = 1 - P(1T) = a, (20) 

Then (16) and (17) define a gauge field in Ra and Rb 
respectively. In the region of overlap, we find the 
following relationship between Eqs. (16) and (17) 

To prove this we start from 

<I>~';,)+dP)P = (T P.dP Tj,I)p(~)-I(T P+dP Tpl), 

Thus, 

T P~dP<I> ~';,).dP)P T P = T;,l+dp (T P+dp T i )(>-1 T P+dP 

= [Tj,I+dp(T P+dP Tj,I) T p+dp]H 

= [Tj,I Tp +dp 11>-1 

which leads to Eq. (21), 

Equation (21) shows that <I> (a) and <I> (b) define the same 
gauge field. T(> is thus the "transition function" S for 
the overlap. 6 It defines the gauge transformation from 
region b to region a. 

III. CONSTRUCTION OF THE SOLUTIONS 
(CON"FINUED) 

For any T and p(e) satisfying Eq. (20) we have a 
gauge field. It remains to choose an explicit form for 
T as a function of the coordinates and a p(e) that satis
fies Eq. (20) so that conditions (a) and (b) are satisfied. 
For p(e) we choose Eq, (12), the same as in Dirac's 
case, For T, we endeavor to define it as a function 
independent of rand e, again imitating (14) for the 
Dirac case, Thus T= T(~h ~2' ~3)' Since the sphere (19) 
has the same geometry as the SU2 group manifold it
self, it is natural to define T as the group element 
represented by the point ~h ~2' ~3 on the sphere (19), 
[We observe that this is an exact generalization of the 

FIG. 1. The coordinates {I. {2. ~3' 9. and r in five dimensions. 
r is the radius r cosO = x5 as illustrated. The equations r 
= const. 0 = const is a three-dimensional sphere symbolized by 
the dotted curve. It is the generalization of the azimuthal cir
cle in the usual spherical coordination system r,O, <1>. {to {2, {3 
parametrizes this Sa. as <1> parametrizes the usual azimuthal 
circle. 
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---tC]j---f-.
P

/,-p+-----t
l
,2,3 

A 

FIG. 2. Projective coordinate for three-dimensional sphere 
S3 (in four dimensions). ~ 1,2," is symbolically three-dimension
al flat space. A is the "south" pole of the unit sphere S3' The 
point p on S3 is prOjected to the point p' whose coordinates ~ 
parametrize the point P. The point A on S" corresponds to the 
point at"" in ~ space. 

Dirac case where (19) reduces to a circle (Fig, 1), In 
that case, if 2eg= 1, T as defined by (14) is the group 
element that corresponds geometrically to the point <P 

on the circle, ] 

The above description gives a geometrical definition 
of T. To translate it into an explicit formula, we adopt 
a projective coordinate system ~1> ~2> ~3 for the sphere 
(19) (Fig, 2): 

xi=(rsine)2~!(1+e)"1 where ~::=(~ ~iy/2~ 0, 

i=1,2,3, (22) 

X i ::= (r sine)(1 - e)(1 + e)-j. 
For fixed r> 0, and 0 < e < 1T, the complete ~1> ~2' ~3 
plane plus the point at 00 maps through Eq. (22) onto the 
sphere (19) in a one-to-one mapping. The transforma
tion xi> •• • ,xs - ~i> ~2' ~3' e. r defined by Eqs. (22) and 
(18) has the metric 

ds2 = drZ + r2 d 82 + r2 (sinZ e)4 (1 + ~2)"2 d ~2. (23) 

Furthermore. the Jacobian of the transformation is 
positive, 

o (xtX2X;!X4XS) 0 
a(~1~2~a8r) > • 

We nOW define the SU2 monopole gauge field a by Eqs. 
(12), (16), and (17) together with7 the following defini
tion of T, 

R(T)::= (1 + ~2)-1(1 _ ~2 + 2i~. a) [~= (~i + ~~ + ~~)1 /2], 

(240' ) 

where a are the Pauli matrices satisfying O"t0"2 = iaa• 
R(T) means the 2x2 representative of T. Similarly, we 
define the SU2 monopole j{auj{e field J3 by Eqs. (12), (16), 
and (17) together with 

R(T) = (1 + ~2)"1(1_ ~2 - 2i1;. a). (24)3) 

IV. POTENTIALS b i1a ) AND b db) 
II II 

Defining the gauge potential b~ by 

<P(P«IPlP = 1 - b~XJ' dx'", (25) 

we can compute in Ra and Rb respectively bt(al and b~\b) 
from Eqs. (24), (12), (16), and (17). We shall use ten
sor notations and write 

bt, bL b~, b~, b; 
for 
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bllt ), blt2 l> blt3l , b£. b~. 
By putting de=d~j=O in Eqs. (16), (24), and (25) we 

obtain b~. Since T is independent of r, <P(P«IPlP = identi
ty, we have 

b; = 0 in both Ra and R b• 

Similarly, 

(26) 

b~ = 0 in both Ra and R b• (27) 

Putting de=dr=0=d~2=d~3, we obtain by Eqs. (25) 
and (16), 

(28) 

where we have substituted - ia /2 for Xj which it rep
resents, and we write T for R(T). 

Substituting Eq. (24) into (28) we can calculate bj. To 
present the results we define 

and 

-
D=-B, 

where - means transposed, and 

<P=(:~\' N=(~3 -~3 -~~1\' 
~~) - ~2 ~1 0 !) 

The following formulas are useful ~ 

NI/!=O, N2=1/!~_ ~2, BB=16(1 + ~2)"2. 

Using these definitions, we find 

(29) 

(30) 

(31) 

(32) 

(33) 

b~ = b~ = 0 for both solutions Ci. and 13, in both Ra and R b• 

(34) 

For7 solution 0': 

bfa) = (1- cos8)Di2, b~(bl = (1 + cose)B;!2. (34' a) 

For solution (3: 

b~(a) = (1- cos8)B;!2, brb
) = (1 + cos8)D;!2. (34' J3) 

These equations are obtained from Eq. (28)0 We notice 

B~ (- ~ a j ) = - R,,.R-t, 

where R stands for R(T) of Eq. (2413). Similarly 

where R stands for R(T) of Eq. (240'). 

In the overlap region R ab, b}fal and b~(bl are related 
by a gauge transformation, since they were computed 
from (25) USing (16) and (17), which are related by the 
gauge transformation (21). The gauge transformation 
(i. e .• transition function) from bIb) to b(al is thus T 

which is given by (240') or (2413). 

In the rest of the paper, we concentrate on Ra. Re
sults for Rb are obtained by applying the gauge trans
formation (21) to that for Ra. 
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V. FIELD STRENGTHS fi FOR FIELD f3 
fJ.V 

Applying Eq. (34) to the definitions 

f~v== bt.v - b~." - qkb~b~, 

C!3== C5l ==q2 == - C!z == - C~3= - C~l = 1, 

we obtain for field {3, in region R a, 

f:8 =f:} = 0, 

f;} = - (sinB)BV2, 

and 

fA::= - p(p - I)ClmB~B;;'. 

We have used the relation 

(35) 

(35 'm 

(35"j3) 

Btk- Bt}- C:mB~B;;'=O (36) 

which can be verified directly from definition (30) of B}. 
It can also be verified by putting P(B) = 1 in Eq. (16). 
iP~~)+dP)P is then obviously gauge transformable to unity. 
Thus the field strength in such a case should vanish. 
Now when p(B)=I, Eq. (28) states that b[=B{. Equa
tion (36) is then the statement that the field strengths 
vanish, which we already proved. 

Explicit evaluation starting from Eq. (35) gives in R. 
for field j3: 

fll ::=4(sin8)(1 + ~2t2[~1;1 + (1- ~2)/2l, 

fi2 = 4 (sin 8)(1 + e,-2 [; 1;2 - ~3], 

f8)::= 4 (sinB)(l + er2[ ~1 ~3 + ~2l, 

fA::= 8(sin28){1 + ~2r3[~1 ~1 + (1- ~2)/2l, 

f31 = 8 (sin2B)(l + e)"3[~l~2 - bl, 

fl~ = 8 (sin28)(1 + ~2)-3[~lb + ~2l. 

(37M 

Other components of lil and fA can be obtained from Eq. 
(37fl) by cyclic permutation of all indices 1, 2, and 3 
(i. e., simultaneously of the SU2 index and the ~ sub
script). The field strengths f~v in Rb are obtained from 
(37{3) by a gauge transformation as discussed in Sec. N. 
In the rest of the paper Wi:: shall concentrate on Ra• 

The field strengths for field 0' are similar to these. 
They are discussed in Appendix B. 

Since conditions (6) and (7) are satisfied, we can take 
the S4 viewpoint mentioned in the Introduction. We apply 
then the concepts of Appendix A to field 13. Obviously, 
by (AI), 

T/"vOt/!= (8 sin3B)r4(1 + ~2)"3EfJ.VOlB' (38) 

One can then evaluate f* from Eq. (37m, arriving at 

f* =- f. (39m 

Similarly for field 0' one proves this way that 

f*=f. (390' ) 

Thus fields 0' and {3 are respectively self-dual and self
antidual. 

Using Eq. (37 (3) we can prove (Appendix C) that field 
f3 is self-antidual and orthogonal everywhere, and 

(40) 
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a = r-2
• (41) 

One can Similarly show that field 0' is self-dual and 
orthogonal everywhere, with the same amplitude a 
given by (41). The inverse square dependence of a on 
r is the same as in Dirac's monopole. 

VI. ANALYTICITY AT e = 0 AND e = 1r 

For the Dirac monopole, the choice (9) of b" in R. 
has an apparent Singularity at B = 0, since Act> cannot be 
defined there. However, in Cartesian coordinates at a 
point on the + z axis, 

A = _ 1- cosB sinn. = _ T 1 L 
x g r sin8 'I-' !5 1 + cos B r2' 

A _ 1- cosB cos¢ = 1 x 
y-g rsinS f{ I + cosB ?, (42) 

Az=O. 

Thus A Ca) is analytic at 8 = O. Similarly we can prove 
that A Cb) is analytic at e = 7T. 

For the fields 0' and (3 in five-dimenSional space we 
can, by using Cartesian coordinates at a point on the 
+x5 axiS, in exactly the same manner, prove that 
b~c.) in Cartesian coordinates is analytic at B=O. Simi
larly we find that b~(b) in Cartesian coordinates is 
analytic at IJ = 7T. Thus the fields a and {3 are bo th every
where analytic except at the origin. 

In the S4 viewpoint, fields ()I and 13 are analytic 
everYWhere, 

VII. PROOF OF 50s SYMMETRY 

An S05 rotation around the origin generates a new 
field a ' from field a. We shall prove now that field ex 
can be gauge transformed into field a'. This can be 
done by conSidering infinitesimal S05 rotations. We 
shall, however, present a different and better proof in 
the following steps: 

(a) Since fields ex and a' are both self-dual orthogonal 
everywhere in the S4 view, and they have the same am
plitude (41), theirf~v can both be gauge transformed 
into the same standard form (AIO). [Equation (35) in
sures that f/". = 0 always. 1 Thus their field strengths 
are gauge transformable into each othero 

(b) Now adopt gauges for 0' and (l' so that U~v),Y. 
= U1v)Ot'= standard form (AI0)o It remain to be proved 
that (b~)o;'= (b~)o;" To do this we observe that (b~)o; 
= (b~)o;' = 0 by definition (since the gauge transformants 
that we used are independent of Y). Next we write down 
the Bianchi identities for Ct and a' and subtract the cor
responding equations from each other, resulting in 

C;k(tl.b~)f~~ + (cyclic permutations of /11)A) = 0, (43) 

where 

tl.b~ = (b~) 0;' - (b~)". 

Choose /1,1), A to be three of the coordinates ~1~2~3e. 
There are four ways of doing this. Since i = 1, 2, or 3 
in Eq. (43), we thus have 12 equations in the 12 un
knowns tl.b~. The determinant of these two 12 equations 
are known from the standard form (All), It is simple 
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to evaluate and it is equal to 16a1Z = 167-24 '" 0. Thus 

t:.b~ = ° 
and we have proved that 0: and 0:' are gauge equivalent, 
The proof for the gauge equivalence of {3 and {3' is 
similar, 

VIII. ADDITIONAL PROPERTIES 

(a) Fields 0: and f3 are both sourceless, i. e. , 

f~~V= 0. (44) 

This is true both when the field is viewed from the five
dimensional viewpoint, if we exclude the origin, or 
from the S4 viewpoint. To prove it for the latter view, 
we use Eqs. (A2), (A3), and f* =±I, 

t'irrv =1] f*/,,811V/2=±1] ,/"811"/2 
_ 1 .. 1.1'" /J.vO:B 1l1J.{:y,8J 

which is zero because of the Bianchi identity. The 
proof of Eq. (44) for the five-dimensional view follows 
from this easily. 

(b) f~vfi",v can be evaluated, using Eqs. (A12) and 
(41), 

(45) 

(c) In the 54 viewpoint we can evaluate, via Eq. (A13), 

f~,J*I"-v=± 12r-4, (46) 

where + is for field (Y, - for field {3. We can now 
evaluate (4) on a sphere r = const, 

.1.A'ff-{:.. fi II dx"-vOl8=±r-4~ d(area)=± .§.1T2 (47) 
24~. ,,-v ,,8 ':J--::!--d--Y 3 , 

verifying (4) with C2 == ± L 

(d) Consider the 54 viewpoint. The sourceless condi
tion (44) which we just proved iS4 the condition that the 
"action" 

L =@ l~vfi~Vd(surface) 
over the sphere is stationary against changes of the 
gauge field. But we can prove a stronger statement. 
Consider any SU2 gauge field on the sphere, Using the 
notation of (A6) we see that 

f~vli",V= 2(E/. EI + Hi. Hi), 

.1. fi fl 1]",,, 01 8= l.EI . Hi 24 ,,-v.,,8 3 • 

(48) 

(49) 

Integrating Eq, (48) over the sphere we get L, Integrat
ing Eq. (49) over the sphere we get by definition (4), 
(87T2/3)(;2' Thus 

L? 12!87TZC2/3! == 321T2! C2 !, (50) 

Since the Chern class number (;2 is always an integer, 
we find that for all fields for which C2 "* 0, L attains an 
absolute minima 321T2 for fields Q and 13. This conclu
sion is the same as a corresponding one in Ret 10, 

For fields 0: and [3, Eq, (45) leads to L = 321TZ. 

IX. FIELDS a: AND ~ AS THE ONLY SOs 
SYMMETRICAL FIELDS 

We shall now prove that fields a: and f3 are the only 
805 symmetrical 8U2 gauge fields other than the trivial 
case of all f;v = 0, 
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To be precise, we assume that field y, whose 
strength is not equal to 0, defined on all five-dimen
sional space except the origin, can be gauge trans
formed to become any S05 rotation of itself, We shall 
prove that y is gauge transformable to either field ()' 
or field {3, 

(a) Use the coordinates ~1> ~2' ~3, 8, r. Consider a 
point P and write the twelve elements f/I (i = 1, 2, 3,8; 
j == 1,2,3) as a 4 x 3 matrix M, An 804 rotation around 
the r axis at P generates a transformation A on the i 
index. S04 invariance requires that there is a com
pensating gauge transformation R so that 

AMR=M. 

Thus, 
-

AMMA=MlVI. 

8ince A is_an irreducible r£presentation of S04 and the 
rank of A1M ~ 3, we find MM = 0, i. e" At = 0, Thus 

f/I = 0. (51) 

(b) Consider a sphere S4: r = const. The sphere is 
geometrically SOs symmetricaL y is clearly pointwise 
804 symmetric at any point P on the sphere. Using 
Lemma 3 of Appendix A we conclude that y is orthogonal 
and self-dual or self-antidual at P, Thus it can be gauge 
transformed to the standard form (A10) or (All). S05 
symmetry implies that a is a function of r alone, Thus 
a = a(r), Since the gauge transformation can be made 
independently at every point in five-dimensional space, 
we conclude that in a proper gauge, 

U;v)y= (ar2)U~,,)OI or s' (52) 

(c) Now we can imitate the arguments of Seco vn (b) 
and write down the Bianchi identities for the field 'Y, 

and for Q or (3o Multiplying the latter by (ar2) and sub
tracting from the former we obtain for Il, v, A "*r, 
C~k(Ab~)(ar2)(f:~) 01 or B + (cyclic permutation of J.LVA) = 0, 

(53) 

where 

t:..b~ = (b~)y - (b~)" or s, 

Just as in Sec, VII (b), Eq. (53) implies t.b~ = ° (wt r), 
Substitution into Eqo (52) further leads to 

(54) 

(d) We need only prove now that b~= 0. To do this we 
subtract the Bianchi identity again, like in Eqo (53), but 
in addition use ar2 = 1 and take one of J.L, v, A to be r. 
Because of Eq. (35) we get 

C~k(t:..b~) U:~)" or s= 0. (55) 

It follows trivially that t.b~ = 0, 1. e., b~ =0. 

X. ANGULAR MOMENTUM OPERATORS 

In Dirac's monopole field, the angular momentum of 
a particle of charge Ze is5,9 

L = r x (p - ZeAl - Zegrr-1, (56) 

We want to generalize this formula to the field C/ (or (3), 
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Consider the motion of a particle of isospin I in field 
0' or (3 in five-dimensional space. Let Yt> Y 2, Y3 be the 
representation of generators Xt.X2,X3 for isospin I. 
Then the generalization of Eq. (56) is 

L""=x,, (ill' + Ykb~) - xv(il" + Ykb~) - r"i!VYk' 

=-Lv" (jl,Il=I,2,3,4,5). (57) 

It is important to notice that the wavefunctions are 
sections. 5 The transition function S.b can be read off 
from Eq. (21), so that a section is defined by 

1/J(') = Rep(T)1/J(b), (58) 

where Rep(T) is the representation of T in the rep
resentation generated by the Y's. This formula is ex
actly the same as the corresponding one in Ref. 5. As 
in that reference, we consider the Hilbert space of 
sections. Equation (57) is then a Hermitian operator in 
the Hilbert space. The commutation rules of L "V can be 
obtained by direct calculation. After some algebra we 
obtain 

[L"v,L",al=ov",L"a- o"",Lva - ovaL"", + o"aLv"" (59) 

which shows that L "V are the angular momentum 
operators, 

One can now generalize the monopole harmonies of 
Ref. 5 to SU2 monopole harmonies which are harmonic 
sections on a sphere r = const in five-dimensional space. 
We shall return to this problem in a later paper, 

One notices that if we make the replacement 

(60) 

then Eq. (57) reduces to Eq. (56). 

XI. REMARKS 

(a) The fields 0' and (3 on a sphere S4 (in five dimen
sions) exhibit S~ symmetry. The sphere has a nonflat 
geometry. Does there exist corresponding solutions on 
a flat four-dimensional space with ds 2 = dxi + dx~ + dx~ 
+ dx~? The answer is no if we require maximum sym
metry consistent with the geometry, i. e., if we require 
S04 symmetry plus displacement symmetry. (The sym
metry group, which we shall call the Poincare group, 
has 10 generators and is the natural extension to flat 
R4 space of the S05 group for S4 geometry. ) 

To prove the nonexistence in R4 of a SU2 gauge field ° 
with Poincare symmetry we proceed exactly as in Sec, 
IX. If ° exists, it is pointwise S04 symmetrical at 
every point p. Lemma 3 of Appendix A then shows that 
it is orthogonal and self-dual or self-antidual at every 
point Lemmas 10' and 1{:l then lead to the conclusion 
that ° can be gauge transformed to the standard form 
(AI0) or (All), where a2 =G. Now Eq. (A5) and dis
placement symmetry imply G = numerical constant. 
Thus a = const in Eq. (AI0) or (All). i. e. , f~v is in
dependent of X1X2x3x4. The Bianchi identity then reads 

C~kb~f.!. + (cyclic permutation of jlllA) = o. (61) 

If a'" 0, this is 12 equations in the 12 numbers b~. The 
determinant is not equal to 0, as in Eq. (43). Thus b~ 
= O. Therefore, 

(62) 
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If a = 0, then automatically Eq. (62) also holds. Thus in 
R4 there is no SU2 gauge field with strengths not equal 
to 0 that is S04 invariant and displacement invariant. 

Belavin, Polyakov, Schwartz, and Tyupkin10 have ex
hibited a solution which they call a pseudoparticle solu
tion. It is a sourceless SU2 gauge field on R4 which is 
everywhere analytic. It has a second Chern class num
ber C2 =± 1. It does not have displacement invariance, 
in agreement with the conclusion above. The relation
ship between this pseudoparticle solution and 0(5) 
symmetry has been discussed by Jackiw and Rebbi, 11 

who found that the pseudoparticle when conformally 
mapped to a sphere S4 is 0(5) symmetrical. According 
to Sec. IX above, the conformally mapped solution is, 
exactly, the 0(5) symmetrical SU2 gauge field which is 
the generalization of Dirac's monopole. Further com
ments on this relationship will be communicated in a 
separate paper. 

(b) Does there exist a SOn symmetrical SU2 gauge 
field on the n-dimensional flat space (with positive 
signatures) minus the origin? (We do not consider the 
trivial case off~v=O.) We have seen in Sec. IX that for 
n= 5, there are two such fields Q and {:l, We shall now 
prove that for n ~ 6, there are no such fields. 

Take the case n = 6. Choose ortlwgonal coordinates 
~1~2~3~4~5r where r is the radius. We can first easily 
prove the generalization of Eq. (51), 

f/I=O (i=I,2,3,4,1J). 

Next consider a point P and choose the scales of 
~1~2~3~4~5 so that gu =g22=g33=g44=g55= 1 at P, Con
sider f~v for jl, Il = 1, 2, 3,4, S04 symmetry in the direc
tions of ~1 ~2~3~4 leads to 

fli2 =±f;4, 

by an argument similar to that in Sec. IX. Similarly, 
if we consider jl, Il = 1,2,3, 5 we obtain 

fl~=±hI5' 

Now take jl, Il = 2, 3, 4,5. S04 symmetry in the directions 
of ~2~3~4~5 implies orthogonality, so that 

f3
1
d3

1
4 =0. 

Thus 

i. e. , 

ftl
2 = O. 

We thus find all components of f= O. The proof for the 
case n> 6 is similar. 

(c) What happens for n = 4? One can find S04 sym
metric solutions, Singular only at the origin, in the 
following way: 

Consider a path A - B not passing through the origin. 
Project the path radially onto the unit sphere r= 1. Let 
the projection be called A'B'. Let p be a real number. 
Each point a, b, c,.", z along the path A'B' corresponds 
to an element of SU2 which we shall denote by a, b, •• , , 
~. If the path A'B' is A'ab·,· zB' we define --

<I> BA = <I> B'A'= @,~ol)I>(~ol)I> ••• (aA,ol)l>. 
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To show that this gauge field is S04 invariant, consider 
any two fixed elements of the group S,1]. Let Zo = sZ1], 
!iG = s!:!.'1], etc. - -

Then 

s<l> BA S-1 = (i;!:!.' z-1 S-l)"(szy-l i;-I)/> , , , (S~~'-l e1)/> 

= @o~iil)/>(~o1iil)P .. , (~~o-I)1> 

= <I> BOA6' 

Now the path Ao - Eo is an S04 rotation of A' - E', since 
the transformation 2 - 20 = S~1] is an 804 rotation. 
Furthermore, every 804 rotation is such a transforma
tion. Thus an 804 rotation only produces a gauge trans
formation, 

Notice that P is an arbitrary real number, So we have 
exhibited a 1 parameter family of 804 symmetrical 8U2 
gauge fields in R4 minus origin, 

(d) For n = 3, we are in more familiar geometry, To 
construct an 803 symmetrical 8U2 gauge field E we take 
a Dirac U(l) monopole 1IiJ. and put b1=b~ =0, b~=b". 
8uch gauge fields are, however, not really interesting 
because the space does not have enough dimensions to 
develop the full complexity of the group. One conse
quence of this lack of enough dimensions is the fact, 
demonstrated in Ref. 6, that field E is of the same 
gauge type (i, e., same fibre bundle) as the vacuum field 
f~v=O, 

This work was done in April, 1976 during the author's 
visit to Futan University, China, It is a pleasure to 
acknowledge the hospitality the author enjoyed during 
the visit. The work had been reported at the CERN 
conference of July, 1976, 

APPENDIX A: SOME PROPERTIES OF SU 2 
GAUGE FIELDS IN FOUR DIMENSIONS 

Consider a SU2 gauge field in four-dimensional space, 
with signature ++++, flat or otherwise. We define the 
antisymmetrical tensor 1] by 

(AI) 

where E = ± 1 is the antisymmetrical symbol. We define 
the dual f* of a field f by 

Clearly, 

f** = f. 

(A2) 

(A3) 

We only consider coordinate choices that leave 171234 

'> 0, In other words, a reflection in four-dimensional 
space is not considered a legitimate transformation. We 
adopt the terminology at any point P, 

f* =f at P -f is self-dual at P, 

f* = - fat P -f is self-antidual at P. 
(A4) 

We further call a gauge field "orthogonal" at a point P 
if at that point 

(A5) 

It is clear that the orthogonality and self duality prop
erties of a field f at a point is independent of the choice 
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of gauge or the choice of the coordinate system. We 
shall call the scalar a the amplitude of the orthogonal 
field at p. It is independent of the choice of coordinates 
and can be positive or negative. 

Consider any field f at a point P, Adopt a coordinate 
system so that at P the metric g "V = o"v' Write the field 
strengths in the following form: 

o H~ - H~ Ei 
- H~ 0 Hi E~ 
H~ - Hf 0 E~ l-Ri -Ei -Ei 0 J 

We shall consider ji (j = 1, 2, 3) as three 6-vectors. 
The matrices 

[
HI Hi 

H= H~ H~ 
H~ H~ 

will be called magnetic and electric matri.ces. It is 
obvious that 

{=H ~ self-duality, 

{= - H - self- antiduality. 

By substituting (A6) into (A5) we find 

{ = H, H = a r - self - duality + orthogonality, 

(A6) 

(A7) 

(A8) 

{= - H, H = ar - self-antiduality + orthogonality. 

(A9) 

In Eq. (A9), r is an orthogonal matrix with determinant 
+1. 

A gauge transformation multiples { and H from be
hind by an orthogonal 3 x 3 matrix R of determinant 
unity. Thus if H = ar, there always exists a gauge 
transformation to make H - a1. Hence, we have 

Lemma 10': Consider a gauge field which is self-dual 
and orthogonal at a point p. Consider any coordinate 
system so that at P, g!LV = ° "V' The field at P can be 
gauge transformed to a standard fOTm for such fields: 

[ 0 

0 0 

'J [' 
0 

-1 '] 1 0 0 1 o 2 0 0 o 1 
f"v=a 0 -1 0 ~ , j"v=a ~ 0 o 0 ' 

-1 0 0 -1 o 0 

[ 0 

1 0 

n 3 - 1 0 0 (AID) 
f"v=a ~ 0 0 

0 -1 

(e. g. , fl4 = a). Equation (AID) can also be written as 

{=H=a1 (I=unit matrix). (A10') 

Lemma 1,13; Consider a gauge field which is self
antidual and orthogonal at a point p. Consider any co
ordinate system so that at P, g"v= Ii"vo The field at P 
can be gauge transformed to a standard fonn for such 
fields, 
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[ 
0 0 

-~J [" 1_ 0 0 1 2 0 
fv.v- a ~ -1 0 o ' fv.v==a ~ 

0 0 0 

[ 0 1 
0 

-u 3 _ -1 0 0 
f",v- a 0 0 0 

o 0 1 

Equation (All) can also be written as 

-[==H==al (l==unit matrix). 

0 -1 -~J 0 0 
0 0 o ' 
1 0 0 

(All) 

(All') 

Lemma 2: A field which is orthogonal and self-dual 
or self-antidual at P satisfies, at P, 

f~vfi/J.v== l2a2, 

f~vf*jv.v== ~f~v1]/J.v"ty~I3=± 12a2, 

(A12) 

(A13) 

where the + sign is for the case of self-dual fields and 
the - sign is for the case of self-antidual fields, and a 
is the amplitude of f. 

The proof is trivial. 

Consider a four-dimensional space that has geometri
cally S04 symmetry at a point p. Examples are the flat 
space, a S4 sphere, or the more general space "'14, 

4d~2 
ds2=dp2+p2[e(p)p~, _oO<~<oO, (A14) 

where e( p) is any function of p, [If pe = sinp, we get the 
sphere S4, of Eq. (23). J M4 has S04 symmetry at the 
point p = 0, 

For a gauge field y defined on a space that has 
geometrically S04 symmetry at a point P, we can gen
erate another field y' by rotating the whole potential 
(and field around P by an S04 rotation. Is y gauge equiv
alent to y' as far as the field strength at P is concerned? 
If it is, we say that the field is pointwise S04 symmetri
cal at p, 

We shall call a field self-dual orthogonal or self
antidual orthogonal at a point P, regular at p. We now 
have a geometrical meaning of regularity (we shall show 
later that orthogonality is equivalent to regularity), 

Lemma 3; Consider a space that has geometrical S04 
symmetry at a point P, Then for a SU2 field, 

pointWise S04 symmetry at P- regularity at p. 

(AI5) 

Proof: 

(a) That the right- hand side implies the left- hand side 
follows from Lemmas lac and 113. To prove the converse, 
we start with the field f~v of Eq. (A6). An S03 rotation 
around P means, for the field strengths at P, 

H-rH, [-re, 

where r is an orthogonal matrix with determinant unity, 
Pointwise S04 symmetry at P implies that there exists a 
compensating gauge transformation which causes a mul
tiplication from the right by the 3 x3 representation R 
of the compensating SU2 gauge rotation at the point, 
i. e" for every r there exists an R so that 
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rHR=H, r[R=[. (A16) 

Thus 

(A17) 

Hence 

HH=h2/. (AlB) - -
Similarly we find that [[ and [H are proportional to the 
unit 3 x 3 matrix I, Thus [ and H are proportional to 
each other. 

(b) Now make a transformation at P that mixes the 
indices 1 and 4, It is easy to see that [+ Hand [ - H 
are independently rotated: 

[+H-rl([+H), 

[-H-r2([-H). 

For [ and H to remain proportional we must have either 

[+H==O or [-H=O, (A19) 

Equations (AlB) and (AI9) show that we can gauge trans
form the field at P to the standard form Eqs, (AI0) or 
(All). This completes the proof of the lemma. 

Lemma 4: Choose coordinates so that gv.v= 0/J.v at p. 
An orthogonal field at P satisfies at P 

flfl = f2f2 = f3f3 = - a2, (A20) 

fy2=-f2fl==-af3, and cyclic permutation, (A21) 

flf2f3 == a3, (A22) 

where fl is a 4 x4 antisymmetrical matrix with elements 

(J1./f i Iv) = f~v' 

The proof is easy, starting from definition (A5). 

Lemma 5: A field orthogonal at P is either self-dual 
or self-antidual at p. Therefore, it is regular at p. 

Proof: If a=O, f 1 ==f2=f3=0, and the lemma is 
proved, If a * 0, f3/ a is an antisymmetrical real matrix 
whose square is - 1, according to (A20). By a well
known theorem one can, by an S04 rotation of co
ordinates at P, bring f3 into the form displayed in (AID) 
or (All). Thus f3 is either self-dual or self-antidual. 
(i) If f3 is self-dual, f3 = aiu2 where at. U2, u3, T10 T2, T3, 
are the standard 4 x4 Pauli matrices. i(fl) is imaginary 
Hermitian, and anticommutes with U2. Thus i(fl) is a 
sum of U1T2 and U3T2 with real coefficients. By another 
S04 rotation of coordinates we can make fl == aUI (iT2), 

leavingf3=aiu2. i(f2) is imaginary Hermitian and anti
commutes with bothf1 andf3, Thusf2=Ha2)1/2(-iu3T2), 
~=±1, Thusf\f2,!3 are all self-dual. (ii) Iff3 is 
self-antidual, we can Similarly prove that fl and f2 are 
also self-antidual. 

Lemma 6: 

U;vfJ)'v + f~vfj),v = 2a2o" o~J - (A5), (A23) 

Proof; That (A5) implies the left-hand side is obvious, 
If the left-hand side holds, the sign of a is for us to 
choose, We choose coordinates at P so that g /J.V = 6/J.v' 
Then (A20) holds. In fact 

(A24) 
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Now the proof of Lemma 5 depends only on this equa
tion. Following that proof we conclude that there are 
only two possibilities. 

(i) We can by an S04 rotation at P bring the!'s into 
the following form, 

f1= laiat(iT2), f2=~lal(-iu3T2)' f3= laliu2• 

Thus f1 ,f2 ,f3 satisfy (A20) and (A21) with a = ~ 1 a I. 
(A20) and (A21) together imply (A5). 

(ii) f3 is antiselfdual. The proof is similar, 

APPENDIX B: FIELD STRENGTHS FOR FIELD a 

Using Eq. (31) we find how to obtain (f~v)" from 
(f~v)8: 

Uo\(~, 8)]", = - Ull(- ~, 8)]B (i = 1, 2, 3), (Bl) 

UI~(~' 8)]", = UI~(- ~,8)]8 (i,j:= 1,2,3). (B2) 

APPENDIX C: PROOF THAT FIELD {3IS ORTHOGONAL 
SELF-ANTIDUAl 

One proof consists in evaluating the left- hand side of 
Eq. (A5) using Eq. (37 i3J. The calculation is long but 
straightforward. 

Another proof follows the steps in Appendix A by 
starting with a scale change from variable ~t. ~2' ~3' ~4 
-YbY2,Y3,Y4, 

8=80+Y4r-1, ~1=(~I)o+YI(I+~~)(2rosin8t1. (C1) 

Then in the y variables, at Y I! = 0 the metric is unity. 
f~v in the Y variables are easily obtained from Eq. (371'3). 
We arrange it in the form of Eqs. (A6) and (A7), 
obtaining 

(C2f3) 

where we have dropped the subscript 0 in all variables, 
Using Eq, (33) we find 

(C3) 
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To determine the value of deW we put ; = 0, Then B 
=- 41. Thus 

detH> 0 everywhere. (C4) 

We can then make a gauge transformation to make 

- [=H -HR=r-21, 

Thus we have arrived at the standard form Eq. (All) 
showing that field !3 is orthogonal self-antidual with a 
=r-2

, in agreement with Eq. (41). 

The same calculations can be made for field o!. Using 
Eqs. (B1) and (B2), we see that all formulas are un
changed, except Eq. (C2(3) becomes in this case 

(C20!) 
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A vector subspace of a non degenerate partial inner product space is orthocomplemented if and only if it 
satisfies a certain topological regularity property. If a nondegenerate, positive definite partial inner 
product space has "many" orthocomplemented subspaces. it is a Hilbert space. 

1. INTRODUCTION 

In Refs. 1 and 2 we have studied nondegenerate par
tial inner product spaces. Their definition runs as 
follows: 

Call compatibility any symmetric binary relation # 
in a set V. F or any / E V, denote by {t}# the set of all 
gE V such that g#/. If Se: V, write 

S# = n {j}#. 
fES 

A compatibility is called linear if V is a vector space 
and if all {t}# are vector subspaces of V. 

A partial inner product space is a vector space V over 
<r, with a linear compatibility relation and with a Hermi
tian form /, g- <JIg), defined whenever / and g are com
patible, i. e., precisely when /# g. (The partial inner 
product <JIg) is antilinear in its dependence on the argu
ment on the left.) 

Two vector subspaces E, F of a partial inner product 
space V are said to form a dual pair if 

(il/#gfor all/E E , gEF 

and 

(ii) If / E E and (rIg) = 0 for all gE F, then/= O. If 
gE F and (rIg) = 0 for all/E E, then g= O. 

If V and Y# are a dual pair, we say that V is non
degenerate. So, a nondegenerate partial inner product 
space is a vector space with a linear compatibility re
lation, and a Hermitian form on compatible vectors, 
such that V and Y# are a dual pair. 

Nondegeneracy is a statement about both the Hermi
tian form (rIg) and about the supply of compatible pairs 
of vectors. Namely, Y# consists of vectors that are 
"infinitely good" in the sense of being compatible with 
all vectors of V; the assumption of nondegeneracy 
means that no / E V except 0 is orthogonal to all infinite
ly good vectors. 

Very many spaces in analysis (e. g., distributions or 
sequence spaces) have a natural partial inner product 
structures. See Refs. 1 and 2 for examples. 

a)Dedicated to Professor L. p. Bouckaert on the occasion of 
his seventieth birthday. 

If all vectors in V are mutually compatible, then V 
is a nondegenerate inner product space (Refs. 3 and 4). 
If, furthermore, (rlf; > 0 for /* 0, then V is a pre
Hilberl space. Finally, a pre-Hilbert space that is com
plete for the norm topology is a Hilbert space. So, a 
Hilbert space is a very special nondegenerate partial 
inner product space, 

A vector subspace W of a nondegenerate inner pro
duct space V is called orthocomplemented if every vec
tor in V can be written, in a unique way, as a sum of 
a vector in Wand a vector orthogonal to W. 

If V is Hilbert, its orthocomplemented subspaces are 
easily characterized: We: V is orthocomplemented if 
and only if it is closed, This result is one of the main 
reasons for the usefulness of Hilbert spaces. 

For arbitrary (nondegenerate) inner product spaces, 
one has the follOWing result: We: V is orthocomplement
ed if and only if the "intrinsic" weak topology a(W, W) 
on W coincides with the topology a(V, V) I w induced by 
V; this happens precisely when the intrinsic and in
duced Mackey topologies coincide: T(W, W)=T(V, V)l w• 
If V is Hilbert, this reduces to the statement above 
(see Refs. 3 and 4 and the references given there). 

The aim of the present paper is to define and charac
terize orthocomplemented subspaces of arbitrary non
degenerate partial inner product spaces. Our main re
sult is Theorem 4,3, which says that a subspace is 
orthocomplemented if and only if a suitable family of 
induced topologies coincides with a family of intrinsic 
topologies, Orthocomplemented subspaces can also be 
defined as ranges of orthogonal projections, Which have 
a natural intrinsic definition (Sec, 3). 

These results are remarkably similar to those ob
tained for inner product spaces. Stated otherwise, as 
soon as the inner product may be indefinite, it does 
not make much difference whether it is defined every
where or noL 

An interesting case is that of a space V, for which 
the partial inner product is positive definite, in the 
sense that <JI!> > 0 for every nonzero f E Y#. If such a 
space has" too many" orthocomplemented subspaces, 
then it is necessarily a Hilbert space (Sec. 8). This 
generalizes a known result about pre-Hilbert spaces 
(Proposition 7. 15 •6). 
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Notation 

We recall here some terminology and results of Refs. 
1 and 2. 

If E, F is any dual pair in the nondegenerate partial 
inner product space V, the weak topology (Mackey topo
logy) on E of the dual pair is denoted by aCE, F) (7(E, F»). 

The assaying subsets of V are defined as subsets 
S ~ V that satisfy 

S## =s. 
Every assaying subset is a vector subspace of V. Both 
V and v# are assving subsets. If V is an inner product 
space, then V = V is the only assaying subset. 

F(V) denotes the family of all assaying subsets of V, 
ordered by inclusion and considered as an abstract 
partially ordered set. If rE F(V), the corresponding 
assaying subset will be denoted by Vr • We write, 
furthermore, 

Vr and V" are a dual pair. 

2. REDUCTION OF COMPATIBILITY RELATIONS 

Let V be a vector space with a linear compatibility 
relation #. 

Given a direct sum decomposition V = V1 ffi V2, We can 
ask whether # can be reconstructed from its restriction 
to Vb V2 and the knowledge of compatible pairs f1 E: V1, 
f2 E V2• 

2. 1 Definition: A direct Sum decomposition V = VI ffi Vz 
reduces the linear compatibility # if the condition j # g 
(fE V, gE V) is equivalent to the four conditions 

fl # gl, fz # gz, fdt gz, f2 # gl 

(f1 E V1, f2 E V2, gl E Vi> f{z e: V2, it + f2 =f, g1 + gz =g), 

i. e., if # can be expressed in terms of components. 
The compatibility relation # is absolutely reduced if 
every vector in VI is compatible with every vector in 
V2• The condition f# g is then equivalent to fl # f{1 and 
/2 # gz; the spaces VI and Vz are decoupled from each 
other. 

2.2 Example: starting with two vector spaces Vb V2 

with linear compatibility relations #1, #2' one can easily 
endow V = VI EBV2 with compatibility relations that are 
reduced by the direct sum decomposition: It is enough 
to introduce any linear compatibility between VI and V2 

(1. e., a linear symmetric relation /1 #IZ gz) and declare 
j# g if and only if fl #lgl, fz #2 g2, h #lZg2, fz #12 gl). 

2.3 Example: Of direct sum decomposition that does 
not reduce a given compatibility: 

Let V = VI EB V z, VI one-dimenSional, spanned by a 
vector / that is not compatible with itself. 

2.4 Proposition: Let V be a vector space with a linear 
compatibility relation #. Let 

(1) 

be a direct sum decomposition of V, and PI> P z the cor-
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responding (algebraic) projections. Then the following 
four conditions are equivalent: 

(i) The compatibility relation # is reduced by the di-
rect sum decompoSition (1); 

(ii) {PJ}#:2 {j}# for every f e: V; 

(iii) {P:J}# ,J {j}# for every f E V; 

(iv) {j}1I ={PJ}# il{P:J}# for every fE V. 

The proof is straightforward and can be omitted. 

The compatibility relation 'It is absolutely reduced by 
the decomposition (1) if and only if PJ'# PIg implies 
PJ'#f{ andf#PIg; the same relations follow then for P 2 0 

When this happens, we shall say that PI and P z are 
absolute. 

If, say, Vl~ V#, then PI and P z are absolute. 

3. ORTHOGONAL PROJECTIONS 

3. 1 De/inition: Let V be a nondegenerate partial inner 
product space. We shall say that a linear map P from 
all of V into V is an orthof{onal projection if 

(i) p2 =P, 

(ii) {Pj}# ,J {j}# for every f E V, 

(iii) if/#f{, then (glpJ) = <PglJ)· 

The set of all orthogonal projections in V is denoted 
by Proj(V). 

Conditions (i) and (iii) mimic the familiar Hilbert 
space definition. Condition (ii) is natural in view of 
PropOSition 2.4. It says that the decomposition 
V=PV (fi(l-P)V reduces the compatibility in V. 

By Proposition 3. 3 of Ref. 2, P maps every assaying 
subset Vr into itself continuously for T(V" Vr ). Thus 
P E Op(V, V), the natural domain of P is all of V, and 
P*=P. 

An equivalent definition runs as follows: 

ConSider in Op(V, V) the subsef A (V, V) conSisting of 
aU operators such that A and A * improve behavior [i. e. , 
that{r, r}e:J(A) or, equivalently, AVr ;:;; Vr and A*Vr 

<;;; V, for all rEF(V)]. It is easy to see that A (V, V) is 
a *-algebra. Then the orthogonal prOjections are pre
cisely the symmetric (1. e., p* =,P) idempotents of that 
algebra. 

3.2 Proposition: Let V be a nondegenerate partial in
ner product space, and PI, P 2 orthogonal projections in 
V. Then 

(i) 1 (the identity) and 0 (the zero map) belong to 
Proj (V), 

(ii) if P IP 2 =PzPt> then P 1P 2 E Proj(V). 

(iii) ifP1P2=PZP 1 =O, thenP1 +PzEProj(Vl. 

(iv) in particular, 1- P E Proj(V) for every P 
E Proj(V). 

The proof is an immediate verification. 

Example: If f E vi and <JIJ) = 1, then P f = IJ)<JI 
E Proj(V). By (iii) above, this generalizes to a finite 
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sum of projections corresponding to a family of mutually 
orthogonal, normalized vectors. 

Additional examples of orthogonal proj ections will be 
discussed in Sec. 6. 

3.3 Proposition: LetPEProjV, and Q=l-P. Then, 
for every rE F(V), 

(i) Vr decomposes into a (topological) direct sum 
Vr =PVr d3QVn 

(ii) the representatives P rr. Qry are related by 
kerP yy = range Qrr. 

(iii) PVr and PV,. are a dual pair (and so are QVr and 
QV,.), 

(iv) one has 

(PVy)ilr, Vr =QVr , 

(v) if r<Ss, thenPVr is dense inPVs [for the topology 
T(V., Vs)]. 

Proof: (i) and (ii) follow immediately from PQ = 0 and 
PVr ::: Vr. QVr ::: Vy (continuously), In order to prove 
(iii) notice first that PVy and PV, are compatible. Now 
take IE PVr and IE (PV, )ll., The first relation shows that 
I is orthogonal to QV;. Since it is also orthogonal to 
PVr , it is orthogonal to Vr , and is consequently zero. 
In order to prove (iv), notice that 

(PVr)il n Vr::: [(PVr)il rl PV; 1 U [(PVy)ilr, QV; 1 

= (PVy)ilr QV, =QV;. 

The inclusion in the other direction is immediate. 

To prove (v), we compute the closure of PVr in Vs 
[with T(V., Vs)l using Proposition 5.1 of Ref. 1. We 
have 

cl(PVy) = «PVr).llrl Vs)il(1 Vs= «PVr).llr' Vr (~. Vs)il r Vs 

= (QV; (' V;)ill~' Vs = (QVs)il(" Vs=PVs • 

In the special case where V is an inner product space, 
this proposition reduces to a result stated in Ref. 3, 
Sec. III. 6. 

3.4 Remarfl: As a special case, we find the useful 
result: 

KerP = rangeQ = (PV"')il= (WI~i Vf'f 

3. 5 Corollary: If W is the range of an orthogonal pro
jection, then it is a nondegenerate partial inner product 
space with the inherited compatibility and partial inner 
product. 

4. ORTHOCOMPLEMENTED SUBSPACES 

4.1 Definition: Let V be a nondegenerate partial inner 
product space and Wa vector subspace of V. We shall 
say that W is orthocomplcmented if there exists a vector 
subspace Z e;;; V such that 

(i) Wr,Z ={o}, W +Z = V, 

(ii) the direct sum decompoSition V = WED Z reduces 
the compatibility relation in V, 

(iii) if IE W, gE Z, and if Iff g, then <tlg) = O. 
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4.2 Delinition: A vector subspace W of a nondegen
erate partial inner product space V is said to be topo
logicall'v regular if 

(i) for every assaying subset Vr'~ V, the intersec
tions W = W n Vr and wr = Wi' V; are a dual pair in V, 
and 

(ii) the intrinsic Mackey topology T(W, wr) coincides 
with the induced Mackey topology T(Vy , V,) Iwr • 

Rewar!?: We shall see that in this statement Mackey 
topologies can be replaced by weak topologies. 

4.3 Theorelll: For a vector subspace W of the non
degenerate partial inner product space V the following 
conditions are equivalent: 

(i) W is orthocomplemented, 

(ii) W is the range of an orthogonal projection, 

(iii) W is topologically regular. 

We shall divide the proof into several lemmas. 

4.4 Lemma: A vector subspace we;;; V is orthocom
plemented if and only if it is the range of an orthogonal 
projection. 

Proof: Let W be orthocomplemented, V = W·e!; Z. For 
every lEV, let I =.t;v + Ie be its unique decomposition. 
Write Iw = PI. Then P is an orthogonal projection. In
deed, P is idempotent and improves behavior by as
sumption. In order to verify that P is symmetric, let 
g'lllz, g=g",+ge, h=hw+h •. Then 

(Pgl 11) = (gw Ill", + liz) = (~w I IIw) = (gw I Ph) = (glplI) 

All the inner products exist since if is reduced. 

Conversely, let W =PV be the range of an orthogonal 
projection. Then W is clearly orthocomplemented with 
Z =(l-P)V. 

4. 5 Lemma: If W is the range of an orthogonal projec
tion, then, for every r, W, and wr are a dual pair. 

This is (iii) of Proposition 3.3. 

4.6 Lemma: If P is an orthogonal projection and T 
is any subset of V;, then 

TO " W = (PT) C (~, W 

where T G is the polar of T (see Ref. 1). 

Proof: Let II V" and IE: IV'". Then <tl II) = (PI I h) 
= (fl Ph). It follows that {lz} I. ,. W = {Plz} v r, W for every 
hE V;. Consequently, TOn W = (PT)"(, W for any T 
e;;; Vr . 

4.7 Lemma: If W is the range of an orthogonal pro
jection then, for every r r=. F(V) the topology a(wr, W) 
coincides with a(V" Vr ) Iw; 

Proof: In Lemma 4.6, take T a finite subset of V" 
obtaining 

yo n wr = (PT) on wr. 
As T runs over all finite subsets of Vr. the Ihs of the 

above equation goes over a basis of neighbourhoods for 
the inherited topology, and the rhs over a basis of 
neighborhoods for a(W, W}, 
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4.8 Lemma: Let P be an orthogonal projection and 
Vr an assaying subspace of V. Let Z c:;, V r be convex and 
a(Vr , Vr)-compact. Then PZc:;, W is convex and 
a(W, Wi-compact. Conversely, if S~ W is convex 
and a(W, W")-compact, then there exists a convex 
a(V;, Vr)-compact Z such that S=PZ. 

Proof: The convexity of PZ is clear. The a(V;, Vr)
compacity of PZ follows from a(V,." Vr)-continuity of 
Pr ; (Lemma 3.1 of Ref. 2) and the a(W, W)-compacity 
of PZ follows then from Lemma 4.7 above. Conversely, 
if S c:;, W T is a(Wr, WT)-compact, it is also a(v;:, V

T
)

compact by Lemma 4.7. Since PS=S, we can choose 
Z=S, 

4.9 Lemma: If W is the range of an orthogonal pro
j ection, then W is topologically regular. 

Proof: We hav~ to show that, for every r, the Mackey 
topology r(w, W) coincides with r(vr , V;-) Iw. A basis 
of neighborhoods for r(w, W) is ~iven by the sets So 
n W", with S ranging over all a(W, Wi-compact, con
vex subsets of I wr • A basis of neighborhoods for 
r(V" V;) I wr is given by the sets Z 0 n W with Z ranging 
over all a(V;, Vr)-compact, convex subsets of Vr • By 
Lemmas 4.6 and 4,8, the two families of neighborhoods 
coincide. 

Alternate proof of Lemma 4. 9: According to (i) of 
Proposition 3.3, Vr decomposes into a topological di
rect sum 

Vr =PVrEBQVr 
with W=PVT , Q=l-P, and so does Vr: 

V;=PVrEBQV;. 

By a standard theorem, S W", with the topology induced 
by r(v" V;:-), is then topologically isomorphic to the 
quotient Vr/QVn the latter being equipped with its quo
tient topology. By (iv) of the same Proposition 3.3 

QVr=(PV;).u(" Vr=(W).u n Vr· 

Since Vr carries its Mackey topology r(v" V,.,), the 
- Jl -

quotient topology on Vr/QVr is r(Vr/(W") n V" W) 
= r(W", W) (Mackey topologies are inherited by quo
tients; see Ref. 9, IV. 4.1 Coroll.3). This concludes 
the alternative proof of Lemma 4.9. 

In order to complete the proof of Theorem 4.3, we 
have to show that every topologically regular subspace 
is the range of an orthogonal projection. It is convenient 
to introduce here an auxiliary notion: 

If W is a vector subspace of V, one may consider on 
it the restriction of all linear forms (fl, with fEW, 
and ask in analogy to the above whether all such forms 
can be "internally generated." This gives the following: 

We say that W is seZf-sufficient in linear forms if 

the following holds: 

For every f E V, there exists a fw E W, at least as 
good as f, such that 

Vw i WI: (Il# = (fi wn {f)#'o 

The notation is explained in Sec. 3 of Ref. 1. 

4.10 Proposition: (i) If W is topologically regular, 
then it is self-sufficient in linear forms. 
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(ii) If W is self-sufficient in linear forms, then it is 
the range of a (unique) orthogonal projection. 

Proof of (i): LetfE V. We want to find afw E W such 
that Vw Iwn {f)# = (fl wn (fl#. Define r by Vr ={j}#, V; 
= {j}# # , and consider the intersections W" = W n V" 
W = W n V,.,. By the assumption of regularity, Wand 
Ware a dual pair, and r(W", W) coincides with the 
topology inherited from r(V" Vr ). Consequently, the 
restriction of (fl to W" = WI; {j}# is continuous for 
r(W", W). SO there exists a unique fw E W such that 
(fw1wr=(flwr. Since W"'~ Vr={j}##, one has thatVw}# 
d {j}#, i. e., fw is at least as good as f, which proves 
the statement. 

In order to prove part (ii) of Proposition 4. 10, we 
need two small lemmas. 

4.11 Lemma: Let W be self-sufficient in linear forms. 
Given f E V, there exists only one fw E W such that Vw}# 
d {j}# and that (fw I = VI on W n {tf# . 

Proof: Let f~ and f~ be two such vectors and g = f~ 
-tw. Then gE Wand (glh) =0 for every hEWn {t1-#. A 
fortiori, g is orthogonal to every hEW n V#, hence g 
= 0 by the lemma that follows. 

4.12 Lemma: Let W be self-sufficient in linear forms. 
Then 

(Wn V#)Jl n W={O}. 
. II 

Proof: LetfE V#, then {j}# = V, Wn {j} = W. By self-
sufficiency, there exists at least one fw E WI' v# such 
that Vw I w = (flw. Let g E W be orthogonal to W n V#. 
Then 

O=(fw ig) =vig), 

that is, g is orthogonal to every fE V#. Hence f{= O. 

Proof of Proposition 4.10 (ii): The correspondence 
f-/w is well defined by virtue of Lemma 4.11. Write 
fw =Pf. Then we claim that P is an orthogonal projec
tion. Since fw is at least as good as f, P improves be
haviour, For any fEW, f = Pf; thus W is the range of 
P, and P is idempotent since for any fE V, PfE W, and 
p 2f =Pf. Finally, let fi g. Since P improves behavior, 
f# Pg, Pf# g and Pf# Pg. By the definition of P, (Pfl II) 
=Vlh) for every fE W. In particular, we have (for any 
f# g) 

(fiPg) = (PfiPf{) = (Pfi g). 

This completes the proof of Theorem 4.3. 

This theorem gives a complete characterization of 
all orthocomplemented subspaces. It is gratifying to 
notice that exactly the same result holds for the simple 
case of inner product spaces (Ref. 3, Theorem III. 702). 

5. THE ORDER STRUCTURE OF PROJ (V) 

Since an orthocomplemented W defines uniquely the 
corresponding projection Pw, we may define a partial 
order in Proj(V) by 

Pw ~Py if and only if W'= Y. 

It is easy to see that this is equivalent to 

PWPy=PyPW =Pw ' 
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There are many questions about Proj(V) which we are 
unable to answer in general. For example: When is 
Proj(V) a (complete) lattice? 

We are able, however, to compare Proj(V) and the 
partially ordered set Proj(V#) of all the orthogonal 
proj ections in the inner product space Y#. 

5. 1 Theorem: Let V be an nondegenerate partial inner 
product space and W an orthocomplemented subspace 
of V. Then Wn Y# is an orthocomplemented subspace 
of the inner product space V#. The correspondence 
W - Wn V# defines an injective order-preserving map 
a from Proj(V) into Proj(V#). An orthogonal projection 
P E Proj(V#) lies in the range of a if and only if it is 
continuous in everyone of the topologies r(V#, Vr ). 

Proof: Let W be an orthocomplemented subspace of 
V and P w the corresponding projection. One verifies 
immediately that the restriction of P w to Y# is an ortho
gonal projection in V#; as such, it is continuous for 
r(V#, V#), which is the topology induced on v# by 
r(v, V#). Consequently, Pw V# is an orthocomplemented 
subspace of V#. Furthermore, P w V# = W n V#, which 
proves the first assertion. 

Notice that, for each rEF, the restriction of P w to 
Y# is continuous in the topology induced on Y# by Vn 
namely r(V#, v;L 

Conversely, let P E Proj(V#) be continuous for every 
one of the topologies r( V#, Vo )' Then P can be extended 
to a unique Pw E Proj(V). Indeed P can be considered as 
the representative (from V# to V#) of a unique element 
P w of Op(V, V); our assumptions guarantee that this 
element is an orthogonal projection. 

5.2 Proposition: Let V be a nondegenerate partial 
inner product space, Wa finite-dimensional subspace 
of V. Then W is orthocomplemented if and only if it is 
contained in V# and nondegenerate, i. e., W n Wll ={ o}. 

Proof: Let W be finite-dimensional and orthocomple
mented. By Proposition 3. 3(v), Wn v# is dense in W, 
which means W n V# = W, thus W;;;, Y#. By (iii) of the 
same proposition, PV", Wand py# = Ware a dual pair, 
i. e., Wn Y={O}. 

Conversely, if We: 01, we have Wn v# = Wand W 
n Vr = W for every rE F. Since Wn V ={O}, r(W, W) is 
well-defined and coincides with the topology induced by 
r(v" Vr ), for any r, since all separated topologies co
incide on a finite-dimensional subspace. Thus W is 
topologically regular, and, therefore, 
orthocomplemented. 

5.3 Corollary: An orthogonal projection of finite
dimensional range is absolute. 

Notice that every vector of Wn Wll is necessarily 
orthogonal to itself. So, if the partial inner product is 
definite (i. e., 1#1 and (fl.!> = 0 imply 1=0), the condi
tion of nondegeneracy is superfluous. Anyway it is re
markable that not even all finite-dimensional subspaces 
of V are orthocomplemented. We have already noted in 
the Introduction that, in the general case, the situation 
for orthocomplemented subspaces is essentially the 
same whether the inner product is defined everywhere 
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or not. We see here that, for finite-dimensional sub
spaces, there is no difference at all (so all the neces
sary information may be found in Ref. 3). 

6. EXAMPLES AND FURTHER REMARKS 

6.1 Examples: (1) Let v=4oc(Xid/l) (Example 5 of 
Ref. 1, Sec. 4) or, in particular, V = w (space of all 
complex sequences) (Example 2 of Ref. 1). Take any 
partition of X into two measurable subsets, of nonzero 
measure, X = Q U ~1'. Then V is decomposed in two or
thocomplemented subspaces: 

where /In, /In', are the restrictions of /l to n, n' resp. 
The orthogonal projection Po is the operator of multi
plication by the characteristic function Xo of n. Similar
ly, Po. = 1- P n is multiplication by Xn" They are both 
absolute. 

(2) An example of nonabsolute projection may be ob
tained as follows. Consider again V = L~oc(X, d/l) with 
the following compatibility relation: 1# g if at least one 
of them belongs to L;(X, dill. Then v# =L;(X, d/l) and 
the only assaying subspaces are V and V#. Let n be a 
measurable subset of X and P be the multiplication by 
Xn, the characteristic function of Q. This P is obviously 
an orthogonal proj ection. Take now an element I E V 
with support in Q and another one, g say, with support 
in the complement Q' =X \Q, but none of them in V#. 
Thus I and g are not compatible. By construction, we 
have PI=I and (l-P)g=g. Thus PI and (l-P)g are 
not compatible, i. e., P is not absolute. 

(3) Take again V = T(X, /l), the "partial Fock space" 
discussed in Ref. 2, Sec. 6, Example 6. The operator 
P n defined by (P I)k = o""ln is clearly an absolute proj ec
tion, with range OEB ••. EB v(n)EB 0· ••. On the other 
hand, the symmetrization operator S, defined by (Sj)n 
=Snlm where Sn symmetrizes the n arguments of in> is 
not an orthogonal projection. Indeed Snl. and gn are not 
necessarily compatible, whenever In and gn are, since 
the integral f!Snfnllgnld/l need not converge, even if 
fil"gn I d/l does. 

6.2 Quotients: Let W be an orthocomplemented sub
space of V. Let P be the orthogonal projection corre
sponding to W: W = PV and Q the proj ection 1 _ P. 

Consider the vector space V/W. (Its elements are 
W - cosets of the additive group of V). Notice that g E W 
is equivalent to Qg= 0, so that the vector QI is indepen
dent of the choice of I in a W-coset. 

If I and g are two elements of V /W, they will be 
called compatible (in V /W) iff QI and Qg are compatible 
(in V). The scalar product of j and g is defined as 
(Qjl Qg). 

In this way V /W becomes a partial inner product 
space which clearly may be identified with Wu). So, as 
for inner product spaces (in particular, Hilbert spaces), 
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the notions of orthocomplemented subspaces and quo
tient spaces coincide. 

6.3 Orthogonal sums: Let Vi and Vz be nondegenerate 
partial inner product spaces, with compatibilities #1 
and #z. Let #IZ be a compatibility between VI and Vz, 
such that every vector in V I #1 is #12-compatible to all 
of Vz, and every vector in Vz#z is #Iz-compatible to all 
of VI' Consider the direct sum V = VI El:J Vz, and define 
in it a compatibility following the procedure of Sec. 2. 

For all compatible pairs define the inner product 

It is nondegenerate. 

In order to extend this definition to infinitely many 
summands {VJ j EJ, one has to further restrict the com
patibility in V=DjEJ Vj by the requirement 

6 I < v j I W j) I < 00 • 

jEJ 

An example of this is the "partial Fock space" T(x, fJ.) 
discussed in Ref. 2, Sec. 6, Ex. 6. 

7. ORTHOCOMPLEMENTED SUBSPACES OF PRE
HILBERT SPACES 

The aim of this section is to illustrate the above re
sults by specializing them to the familiar case of a 
pre-Hilbert space E. At the end of this section we shall 
state a result of Piron, Amemiya, and Araki, which 
says that a pre-Hilbert space with "many" projections 
is necessarily a Hilbert space. This result will be gen
eralized in the next section. 

Let E be a pre-Hilbert space. Theorem 4.3 applies 
immediately: A subspace is orthocomplemented if and 
only if it is the range of an orthogonal projection, P, 
i. e., an idempotent (P 2 =P), symmetriC (p* =P), 
T(E, E)-continuous map. But now, E carries also the 
norm topology (II/liz = ([If») which is in general finer 
than the Mackey topology T(E, E). 

If E is norm-complete (that is, a Hilbert space), both 
topologies coincide, and the orthocomplemented sub
spaces are exactly the norm-closed ones. However, if 
E is not norm-complete, this is no longer true. The 
range of an idempotent, symmetric, norm-continuous 
operator may fail to be orthocomplemented. Also a 
subspace may be orthocomplemented without being 
norm-complete (e. g., E itself!). 

We have seen in Proposition 3.3 that every orthocom
plemented subspace is T(E, E)-closed. But the converse 
is not true in general: Not every T(E, E)-closed subspace 
is orthocomplemented. 

In order to give a counterexample, we remind the 
reader that a vector subspace W<:;; E is T(E, E)-closed 
[or equivalently ate, E)-closed] if and only if Wllll 

= W. 
Consider now E =S(lR) (Schwartz testing functions). Let 
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w ={q; Iq; E 5, q;(x) =0 for x~ o}. Then Wll={I/III/IE 5, 
I/I(x) =0 for X? o}. So Wllll= W. However, W is not ortho
complemented, since every X E W + Wll satisfies X(O) = 0; 
consequently, W + WlL;t 5. 

If we require that every T(E, E)-closed subspace of 
a pre-Hilbert space be orthocomplemented, we force 
E to be a Hilbert space. Namely, 5,6 

7.1 PropOSition: Let E be a pre-Hilbert space. As
sume that every a(E, E)-closed vector subspace [or, 
equivalently, every T(E, E)-closed vector subspace] is 
orthocomplemented. Then E is a Hilbert space. 

8. SPACES WITH MANY PROJECTIONS 

In this section we shall extend Proposition 7. 1 to 
nondegenerate partial inner product spaces, such that 
v# is pre-Hilbert. If, in such a space, every T(V, V)
closed subspace is orthocomplemented, then V is a 
Hilbert space, i. eo, all elements of V are compatible 
and V is complete in the norm topology. 

We shall prove a stronger statement in which the as
sumption is only that certain T(V, Vi-closed subspaces 
are orthocomplemented. 

8. 1 Theorem: Let V be a nondegenerate partial inner 
product space such that ([If) > 0 for every nonzero / 
E V#. Assume that the following condition holds: 

If a vector subspace W<:;; V is the T(V, V#)-closure of 
its "infinitely good core" W II vii, then W is 
orthocomplemented. 

Then V is a Hilbert space. 

Proof: Let S be any T(VIf, V#)-closed subspace of vii. 
The T(V, vII)-closure of S is then, according to Proposi
tion 3.3, w=(s"n vii)" and therefore, 

Wi vii = (Slln V#)lln vii 

= T(Vir , vII)-closure of S 

=S. 

By assumption, W is orthocomplemented in V. 

By Theorem 5.1, Wn V# =S is orthocomplemented in 
V. Since S was arbitrary, it follows from Theorem 
7.1, that V# is a Hilbert space. 

Now the topology induced on v# by T(V, 17)# is 
T(vII, 01). But T(V#, v#) is the norm topology on Vii, 
since vii is a Hilbert space. Thus vii is complete in the 
topology induced by V; hence it is closed in V. Since it 
is also dense, we have necessarily Vii = V. 

Our theorem says, in particular, that, say 5'(R), the 
space of tempered distributions (which is certainly not 
a Hilbert space), contains subspaces that are the clo
sure of their infinitely good core, and yet are not ortho
complemented. An example is provided by the set of 
distributions with support in a closed interval; the non
existence of a complementary (orthogonal) subspace is 
easily proved with the help of Theorem 5.1 and the ex
ample given in Sec. 7. 
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This paper is concerned with a scheme for finding approximate wavefunctions and energy levels of 
anharmonic oscillators with even power anharmonicities. Generally one can easily find simple asymptotic 
forms for wavefunctions for small and large oscillator displacements y. In the case of a quartic oscillator 
the wavefunction with anharmonicity parameter A, 

(A) 

E 6-(l/4)Eo-(1I3)A = 0, (B) 

while not exact for all y. does have the correct asymptotic properties. Furthermore, the appropriate root 
of the cubic equation for Eo deviates by no more than 4% from the exact values of Eo in the range 0:0; A < oc. 

In our interpolative method of improving ljIo(Y), the correct asymptotic behavior of ljIo(Y) is preserved by 
introducing an extra function of A into the exponential function (A) and changing the power of the 
polynomial in the exponent: 

(C) 

Through the proper choice of a 21 (A) and a22(A) one obtains ground state energies which deviate by no 
more than 0.5% over the full range 0:0; A < oc. Futher improvement is achieved by increasing the degree of 
the polynomial in the exponential. Excited state wavefunctions are obtained by mUltiplying exponentials 
such as (Al and Ie) by polynomials in y. 

I. INTRODUCTION 
Many physical processes are characterized by differ

ential equations whose independent variables are posi
tion, y, and time, f, and which involve a single dimen
sionless parameter, In the case of a Navier-Stokes 
fluid the parameter is the Reynolds number. The 
Schrodmger equation of an anharmonic oscillator con
tains a dimensionless anharmonic force constant A. For 
certain eigenvalue problems which are associated with 
the subject models, it is easy to find the asymptotic 
form of the eigenfunctions for very small y as well as 
for very large y, The aim of this report is to introduce 
a scheme for combining the available information on 

In the Schrodinger representation the energy levels E' 
are the eigenvalues of 

two regimes to obtain formulas for wavefunctions and 
energy levels which are valid over the full range of .Y 
and of the basic parameter of the model. Our strategy 
here is to discuss our method in considerable detail in 
terms of the manner in which it is applied to the calcu
lation of wavefunctions of an anharmonic oscillator. In 
future papers the methods will be applied to other 
systems, 

Consider an anharmonic oscillator with Hamiltonian 

H a(w, A) = ~(jJ2111-1 + II1W 2x2) + A'X2a with A'" D. (1.1) 

a)This rese~rch '.':3S partially supported by the Fluid Dynamics 
Branch of the Office of N~val Research. 

b)Pern1~nent address, Institute for Fundamental Studies, 
l'niVl'rsity of Rochester, Roehester, I\ew York 14627. 

[- (/'i2/2m)d2/ dx 2 + imw 2x2 + A'X2 "'jif! (x) = E'if!(x). (10 2) 

We direct our attention to the presentation of certain 
approximations to I/!n(x), especially for the case (\' = 2. 

Equation (10 2) has the simplified form 

(- ~ d~22+h2+Ay2"')if!(Y)=Eif!(Y)' (1. 3a) 

in terms of the dimensionless quantities 

E""E'/Jiw, y""x(mw/1'i)1/2, and A""A'/'i,,-1/m"w t
l+

1• 

(1. 3b) 

When y is small (in the limit A-D) the ground state 
wavefunction has the form 

On the other hand, if when Iy 1 is very large, and A*- 0, 
one may assume that 

(1.5) 

then substitution of (I. 5) into (1. 3a) and retention of only 
the highest order terms in y implies that 

(I. 6) 

Now let us consider, in the case a = 2, the interpola
tion function 
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(10 7) 

The function a(A) - i as A - O. It will be chosen general
ly in such a manner that as y - 0 

( 
1 d

2 
) -"2 dy2 +ty2_E' <Po(y)=o(y2). (I. 8) 

The function 1/'o(Y) is the exact ground state wavefunction 
for a potential 

V(y)= [(Eo + ~ :;2) 1/'0 (y)J/1/'O(yL (I. 9) 

It is easily shown from (I. 7) that, with a(A) '" a, 

d2<po(Y) 4ay2[1 + (Ay 2 3a) 2 

1/'0(y)dy2 = [1 + (2Ay2) 9a] 

(10 10) 

The necessary conditions for 1/'0 (y) to satisfy (10 8) are 
that 

_{iy2 asy-O, 
Ay4 as y -00

0 

Actually V(y) is an excellent approximation to 

VO(y)=iy2+ Ay4 

(I. 11) 

(I. 12) 

(I. 13) 

(10 14) 

over the entire range - 00 < y < 00 0 For example, when 
A = f, so that a = 1, the relative deviation of V(y) from 
Vo(y), 

r(y)=[V(y)- Vo(y)]/Vo(y), (1.15) 

never exceeds 4%0 We have the following values of r(y) 
for a number of selected values of y; 

Y 0 2 3 4 5 6 10 

r(y) 0 00026 0.038 00024 0.016 00012 0.0052 0.0035 

The fact that V(y) deviates so little from Vo(y) sug
gests that the ground state energy levels associated with 
the two potential energy functions should also be very 
close to each other. 

The required values of a and the ground state energy 
level Eo follow from Eq. (I. 11), with Eo being a solu
tion of the cubic equation 

E8-tEO-A/3=00 (1.16) 

~en A2 <-laone has the trigonometric form of Eo, 

(1.17) 

As/-O, Eo-3-1/2cos(1T/6)=iasitshould. WhenA2 

'> 48 one has the Cardan solution 

EO=[A/6+ t(A2- -ts)1!2j1!3+[A/6_ t(A2- ta)1/2j1/3 

=a1/ 2• (1.18) 

As A - 00 this yields 
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Eo - (A/3)1 /3 + (1/576A)1 /3 + ••. 

-0. 693A1/ 3 + 0.120A-1/ 3 + ••• (I. 19) 

which, when compared to the exact result of Ref. 1, 

Eo-O. 668A1 / 3 + 0.144A-1 / 3 + 0" (10 20) 

is shown to be in error by less than 4% as A - 00. This 
is the maximum error over the full range 0 c<; A < 00. At 
the intermediate points A = 1, 2, and 50 one obtains 
from (I. 18), 

A E a122roxo E (exact)1.2 % error 

1 00813 00804 1.1% 
2 0.969 00952 1.8% 

50 20568 2.500 2.7% 

A cubic equation analogous to (1.16) has been derived 
by a completely different method in Ref. 30 Equation 
(10) of that reference with N=2 corresponds to (10 16). 
The mean field theory approach of Ref. 3 leads, in the 
first approximation, to about the same uniform accura
cy as that given aboveo 

With these good results for a first approximation we 
now develop a systematic procedure for improving them 
and we show how the scheme can be extended for the 
calculation of wavefunctions and energy levels associat·
ed with excited states. 

II. SUCCESSIVE APPROXIMATIONS TO GROUND 
STATE WAVEFUNCTION 

In this section we introduce a set of successive im
provements to the interpolation formula (I. 7) for the 
ground state wavefunction <Po (v). In their increasing 
order of complexity, each will be associated with a po
tential which agrees with Vo(Y) to one higher power in 
y2 in the small y regimeo All will approach Ay4 as y - 00. 

We will find that to each new order there will be an im
provement in the precision of the ground state energy 
level over the full range of 0 c<; A < 00. The set of func
tions to be considered is 

etco 

<p~1)(y) = exp[ - (al1y 4 + a1zY6)1 /2], 

<p~2)(y) = exp[ - (a21y 8 + a22y10 + a23y12)1/4], 

1/'~3)(y) = exp[ - (a31 y12 + a32y14+ a33y16 

+a34y18)1/6], 

(11.1) 

(1102) 

(11.3) 

We will outline the procedure for the determination of 
the {a jK} and the ground state energy by using 1/'~2)(y) as 
an example, The calculations for higher order </!~j)(y) 
are longer but proceed in the same manner. As Iy I - 00, 

</!~2)(y) - exp(- aH41y 13). 

Hence, from (I. 6), aU 4 = (2A/9)1/2 so that 

a23= (2A/9)2. 

As y-O 

1/'~2) (y) - exp[ - aU4y2 - t a22air/4y4 

- t air/ 4(a23- ia~2ail)y6- ••• ] 

so that 
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x l/!~~), (II. 7) 

From the Schrodinger equation 

~ d~;~ = (_ E + ~ y2 + Ay4)<PO' (II. 8) 

we find by equating the constant term on each side of 
the equation as well as the coefficients of y2 and y\ 

(II, 9a) 

(II,9b) 

Notice that a22 Can be expressed in terms of a21 (and 
hence in terms of E), 

1 (4 1/2 1) 3[4 a 22 = 3 a21 - a2 ' (II. 10) 

When one sets aU 4 =E and a23= (2,\/9)2 [as given by 
Eq. (II, 5) 1 in (II, 9b) he obtains the following charac
teristic equation for E, 

6 ~ E4 .2.. 3 ..l5- E2 J.2.. 2 - 0 E - 62 - 31,\E + 496 - 219 A - , (II. 11) 

which has an alternative form 

1 16'\ (27 E3 + 5,\) 
E ="2 + 9E2(2E + 1)(124E2 - 15) . (II,12) 

When A is small, Eq. (II. 12) can be solved by itera
tion. The first iteration yields, if one neglects all re
sulting terms of 0 (A 2), 

(II, 13) 

which is the same result that one obtains from first
order perturbation theory, Upon a second iteration, now 
retaining terms linear in /\ in the numerator and de
nominator of (11,12) after the A coefficient is extracted, 
one finds 

(II,14) 

which is reminiscent of Pade approximant4,5 forms for 
E. As will be noted, when we use ifJJ3l the resulting E 
agrees with second order perturbation theory to within 
terms of 0(A2

), However, it is known from the work of 
Bender and Wu6 that there is no point in developing E 
as a series expansion in powers of ,\ since such a series 
diverges for all values of /\, 

When A is large, it has been shown1 that 

(II. 15) 

The coefficients b1> b2, b3 can be obtained by substituting 
(II. 15) into (II, 11) and setting coefficients of AS/3 , A4 / 3 

,\2/3"", etc, equal to zero. The first two resulting 
equations are 

b1- ft br - 2
1
7°9 = 0, 

5b 23,4 ~b2b 0 6b1 2 - 62 )1 - 31 1 2 = • 

(II. 16a) 

(II. 16b) 

The quadratic equation (II, 16a) in br can be solved 
immediately to yield the positive root 

bt = 0.309395 with b1 = O. 6763. (II, 17a) 

When this is substituted in (II. 16b) it gives the /)2 value 
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b2= 0,13302 

so that for large A 

(II. 17b) 

E - O. 676A1/ 3 + 0, 133A-1/ 3 +"', (II. 18) 

which is to be compared with the exact1 expression 
(I, 20), Note that it is a considerable improvement over 
the first order result (I, 19L As ,\ - co one obtains the 
greatest percentage deviation from comparing the re
sults of (II. 11) with exact ones, That maximum error of 
1, 2% is thus an improvement over the 4% error cited 
at the end of Sec, I, We compare the appropriate root of 
(II. 11) for a wide range of /\ to exact ground state en
ergy levels I. 2 in Table 10 

Given the ground state energy, the three constants 
required in the ground state wavefunction (II, 2) are, 
using (II. 9a) and (II, 5) 

aZI = E4, ((23 = (2/\/9)2, 

a22 = (4E2 - 1)E3/3. 

(II. 19a) 

(II,19b) 

It is easy to proceed to third order using (II, 3). We 
merely collect a few of the results here. First 
d2 (3) 

d~02 = r - 2aU6 + 1'2 (4aif3 - 12Cl) + y4(16claM6 - 30C2) 

+ (16ci + 24c2aU6 - 56c3)y6 +, , , ] ifJci 3) , (II,20) 

where 

cl=a32/6aU", (II,21a) 

c2=(a33 - :2~J/6aU", (II. 21b) 

- ( _ ~ ((32
a

33 + ~ a1)/6a5{6 (IL 21c) c 3 - a34 6 216 -:r 3, a31 a31 

By substituting (II. 20) into the Schrodinger equation 
(II. 8) we find by equating the constant term on each side 
of the equation as well as the coefficients of y2, y4, and 
yS, 

E=a~[6, 4a~(3-12cl=1, 

8claU6 - 15c2 = A, 

2CI + 3c2aU6 - 7 c3 = 0, 

((34= (2A/9)3, 

(II,22) 

(IL 23) 

(II,24) 

(II. 25) 

TABLE I. Comparison of approximate ground state energy 
levels with exact ones. 

E E 
A (2nd approx.) (3rd approx. ) E(exact)1.2 

0.05 0.53257 0.53264 0.53264 
0.10 0.55900 0.55913 0.55915 
O. ~~o 0.63808 0.63803 0.63799 
0.50 0.69683 0.69637 0.69618 
0.70 0.74517 0.74428 0.74390 
1. 00 0.80593 0.80444 0.80377 
2.00 0.95617 0.95312 0.95157 

50 2.5278 2.5107 2.49971 
200 :3.9781 3.9496 ~1. 9209 

103 6.7768 6.7272 6.6942 
8 x 103 13.5336 13.4336 13.3669 

20 x 103 18. 36~l8 18.2280 18.1372 
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In a manner analogous to that in which (II, 11) was 
derived we find 

187E 9 .!§£E7 ~'E6+495E5+315'E4 illE3 .aJj,3_0 - 16 - 2" "- 32 32 "- - 256 - 54 "- - . 

(IL 26) 

Once E is known, a32 and a33 are found from (II. 23) and 
(II. 24) to be 

a32 = iE5(4E2 - 1), 

a33 =fsE4(4E2 - 1)2 +15 E6(4E2 - 1) - iE5. 

Equation (II. 26) has the alternative form 

1 4A ( 42768E6 - 8505E4 + 560A 2 ) 
E=2+27 E3(2E+1)(176E2_35)(68E2_5)' 

(II. 27a) 

(II. 27b) 

(II. 28) 

If one substitutes the result that corresponds to first
order perturbation theory (II. 13) into this equation and 
expands in powers of A, he retains the traditional 
second- order perturbation theory result 

(II. 29) 

When this is substituted into (II. 28) and terms to order 
A 2 are retained in numerator and denominator, it yields 
a Pade type formula 

1 (1 +62 A +~A2) 
E=2+~A 1+¥A~~A2 (IL 30) 

which is fairly accurate for A < to As has already been 
noted, while the Pade method converges, it converges 
only slowly. Even for A as small as 1, the large A 
asymptotic formulas derived below are better. Roots 
calculated directly from (II. 26) however, over the full 
range of positive A, rrive excellent agreement with the 
exact results of Refs. 1 and 2. 

When A is large we postulate the form (II. 15) to be 
introduced into (II.26). By setting the coefficients of A 3 

and A 7 /3 equal to zero, as they must be, we find the 
conditions 

bf - 14 b~ - 10
3
0
5
98 = 0, 

b _ (1042b¥ - 105) 
2-1056b1(17bI-3) , 

which yield the asymptotic expression 

E-O,6713Al/3+0.1384A-l/3+ .. o 

(II. 31a) 

(II. 31b) 

(II. 32) 

which is to be compared with the exact expression1 

E -0. 6680A1/ 3 + O. 143n-1/ 3 +"'. 

As A - 00, the relative error of the estimate (II. 32) is 
0.49%, about half that given by the second-order 
estimate (II. 18). We compare the appropriate root of 
(II. 26) for a wide range of A with the second- order roots 
and with the exact ground state energy levels in Table 1. 
With knowledge of E the a3} are given by (II, 22), (II. 25), 
and (II. 27). 

We have used the following scheme to calculate the 
appropriate roots of (II. 11) and (II. 26), which we call 
respectively second and third order ground state en
ergies, while we refer to the Eo of Eqs. (1.17) and 
(1. 18) as first order ground state energies. The first 
order energies are used as the first approximation in 
a standard iterative process to find the roots of (It 11), 
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The final roots of (II.ll) are the numbers in the second 
column of Table I. These second order energies are 
used as the first approximation for an iterative root 
search of Eq. (II. 26). The results of that search are the 
third order energies which are tabulated in the third 
column of Table 1. 

Were we to proceed to higher order expressions for 
1/J~n) (y) we would obtain recurrence formulas analogous 
to (II. 22)- (II. 25). Then we would use the exact value of 
Eo calculation in Ref, 1 (or apply the computer program 
developed to produce the tables in Ref. 1) to calculate 
a Jl' From aJi> the analog of the recurrence formulas 
in (II. 22) would be applied to calculate aj2, etc. This 
would save us the trouble of calculating the new esti
mate to the energy levels in each order of approxima
tion. Actually we have developed a computer program 
for calculating the an/s of the generalization of Eq. 
(II. 3) to higher order. This will be discussed elsewhere. 

We now proceed to extend the ideas used in this sec
tion to find wavefunctions of excited states of our 
anharmonic oscillator. 

III. WAVE FUNCTION FOR FIRST FEW EXCITED 
STATES 

We follow in the spirit of the last section and con
struct first order approximations to excited state wave
functions by multiplying functions of the form chosen 
for the ground state by polynomials. Thus we postUlate 
that 

1/J{1)(y)=y exp[- (al1y4+ a12y6)1/21, (III. 1a) 

.p~l)(y) = (1 + b12y2) exp[- (al1y4 + a12y6)1/2], (III, 1b) 

lj!~l)(y)=y(1 + c12y 2)exp[- (al1y4+ a12y 6)1/21, (III,1c) 

etc. 

The second order approximations will be written as 

1/J?)(y)=yexp[- (a21y8+a22yl0+a23y12)1/4], etc, 

(III. 2) 

Higher order approximations follow in a similar pattern. 

When I y I is very large 

1/J~1)(y) - Pn(y) exp(- a~{2IY 1
3), (III. 3) 

Pn(y) being a polynomial of degree n so that 

d
2
1/Ji:)2(Y) = ([P: (y) - 3aWy2p~(y) - 6al{2y P

n
(Y) I 

- 3[P~(y) - 3al{2y2pn(:V)]y2at{2} exp(- al{2y 3) 

(III.4a) 

- 9a12y4pn(y) exp(- aWy 3) as y - 00. (Ill.4b) 

As in the last section we note that in the limit Iy I - 00 

the Schrodinger equation becomes 

1 d21/J(1)( ) 
- '2 dy2 Y - Ay4pn(Y) exp(- al{2ly 1

3). (III. 5) 

When (III.4b) is substituted into (III. 5), and ap
propriate coefficients are equated, we again find, as in 
the ground state 

(III. 6) 
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In the regime of small y we approximate the first excit
ed state wavefunction by 

<p~1)(y) -y exp(- ai[2y2 - ~aI2alb4) (IlL 7a) 

so that 

1 d2<p~j) (y) [ 3 1{2 (2 -1/2) 2 (1) "2 dy2 = - a1 + a11 - 5a12a l1 y +". ]<Pl (y). 

(1II,7b) 

When one sUbstitutes this expression into the Schro
dinger equation 

1 d2,f,! 1) ( .,) 
"2 -~= (ty2+ ;>..y4_ E1)<P1 1)(y) 

and he equates the constant term on each side of the re
sulting equation as well as the coefficients of y2, he 
finds 

(III. 8a) 

(III.8b) 

This pair of equations yields the characteristic equa
tion for El [remembering (lIt 6)] 

(III. 9) 

When ;>..2 < 460' the trigonometric form of the solution of 
this cubic is appropriate, 

El = 31/2 cost cos-1(20;>... 31/2), (III, 10) 

When;>.. 2 > 4~0 the Cardan solution is appropriate, 

E1 = (¥ i\)1/3{[ 1 + (1- 40
3
0;>..3Y

/ 2r 13 

[ ( 
3 )1/2JI /3} + 1- 1---2 400i\ ' 

As ;>.. - 0, (III, 10) reduces to El - ~ as it should; and as 
;>.. - 00, (III, 11) becomes 

E 1- (15)1/3;>..113 + ~ (15 t 1/3;>.. -1/3 + ' , , 

= 2, 466;>..1/3 + O. 304i\-1/3 +, , , 

which when compared to the exact1 asymptotic 
expansion 

EI -2, 394;>..113 + 0, 358;>..-1/3 +", 

(III, 12a) 

(III, 12b) 

(III. 13) 

indicates that as i\ - 00 the relative error of the estimate 
is only 3%. The percentage error of (III. 12b) for 
several intermediate values of ;>.. are tabulated below, 

;>.. EI (approx.) EI (exact) 1, 2 % error 

1 
2 

50 

2.738 
3,293 
8,915 

1,1% 
1,7% 
2,8% 

By comparing this with the table below Eq, (10 20) we 
observe that the relative errors for the first order 
approximation of the first excited state are about the 
same as for the ground state, 

We now proceed to develop a scheme for producing 
the wavefunctions for all excited states, We postulate 
the small y form of the excited state wavefundions to be 
[generalizing (III.7a)] 

<p(y) = P(y) exp(- ai[2y2 - ~aI2aiiy4) '" P(Y)<Po(y). 

(III, 14) 
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Then 

!~ _![d
2
P 1/2 _1/2 2 dP 

2 dy2 - 2 dy2 - 4y(al1 +a12a jj y) dy 

+ 2 (2ajj y2 - al/2 - 3a12ait 12y2)p J<po, 
Since 

(III, 15) 

we find that P(y) must satisfy (neglecting the term ;>..y4 
which was also neglected in the calculation of the co
efficient ajj in <Po and <Pi; in second order this term is 
always included) 

d
2
P 4 ( 1{2 -1/2 2 dP -d2 - Y a1 + a12aU y)-

Y dy 

+ [(4al1 - 6a12ail/2 - 1)y2 + 2(E - ai(2)]P= 0, (III,17) 

The series solution for P(y) now to be constructed is 

P(y)=L: a,yi+p
, ,.0 (III, 18) 

where p is to be set equal to zero for the even order 
wavefunctions <Po, 1/!2> <P4,'" and to one for odd order 
<PI, <P3, </15,'" 0 When (Ill, 18) is substituted into (III, 17) 
the coefficient of each power y'+p for j = 0, 1, 2"" 
vanishes, This yields a two term recurrence formula 
for the aj) 

(j + p + 1)(j + p + 2)aJ+2 + 2a,(E - aW[1 + 2j + 2p]) 

+ a j _2 (4au - 1 - 2aI2ai[2[2j - 1 + 2p]) = O. (III, 19) 

Since the series (IlL 18) starts with ao, we set a_2 = a_4 
'" 0, 

We first consider in detail this set of equations in the 
even order wavefunction case where P= ao + a2y2 
+ a4y4+", sothatj=2mandp=0. Then 

(2m + 2) (2111 + 1 )a2m+2 + 2a2m (E - ai{2[1 + 4111 1) 
+ a2m_2 (4a 11 - 1- 2a12aii 12(4m - 1) = 0, (m. 20) 

The first few members of this set are, for In 

= 0, 1, 2,., 0, 
2(E - ai(2)ao + 2, 1a2 = 0, 

(4a11 - 6aj2a~(2 - 1 lao + 2(E - 5aj(2)a2 + 4 0 3a4 = 0, (III, 21) 

[4au - 2(4n - 1 )aI2a!f/2 - 11a2n_2 + 2[E - (4n + 1)dj{2]a2n 

+ 2(n + 1)(2n + 1)a2 ... 2 = O. 

Now suppose we wish to terminate the series for P(y) 
so that it will be a polynomial of order (2n - 2), When 
n = 1, P(y)</IoCy) corresponds to the ground state wave
function, n = 2 the second excited state, n = 3 the fourth 
excited state, n = 4 the sixth. This termination would 
result from setting 

(III, 22) 

Since we wish a2n_2 to be nonvanishing, we then require 
that 
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On this basis the nonvanishing members of the set of 
equations (III. 21) are 

(E - a~(2)ao + 1.la2 = 0, (Ill. 24a) 

4(n - 1)aI2ail/2ao + (E - 5a1(2)a2 + 2· 3a4 = 0, (Ill. 24b) 

4(n - 2)a12ail/2a2 + (E - 9aW)a4 + 3· 5as = 0, (Ill. 24c) 

.""." •• " •• """"""""" 0".00"""""" 0""".0"" 

(III. 24d) 

The condition that this set of equations has a solution is 
that the determinant of the coefficients vanish: i. e., if 
we define 

w = 4a12ai1/2, (III. 25) 

(E-alf) 1.1 0 0 0 
(n - l)U' (E - 5al(2) 2·3 0 0 

0 (n- 2)w (E - gale) ••• 0 0 =0. 

o ... l·U' [E- (4n-3)al{2l 

(III. 26) 

Since a12 is given by (III. 6) and a~(2 is a solution of the 
cubic equation (lIT. 23), which we write in the form 

aU2 - ta1{2 - (4n - 1)X/9 = 0, (IIL 27) 

the only unknown in the characteristic equation (III. 26) 
is the energy E. To make contact with the results of 
Sec. I, let n = 1. Then (III. 26) and (III. 27) become 

E = a1{2 and a~f2 - ta~(2 - h = 0, (III. 28) 

which is equivalent to (L 11), and yields the ground 
state characteristic equation (1.16). 

When n= 2, which corresponds to the second excited 
state, Eqs. (Ill. 26) and (III. 27) yield [with a12 given by 
(Ill. 6)] 

E2 _ 6Ea1{2 + 5au - 4a12ail /2 = 0, 

aW- taf(2- tx=O. 

(rn. 29a) 

(III. 29b) 

The form of the solution of the cubic equation for al(2 
depends on the value of X. If X <31/2/28, then 

ai{2 = 3-1!2 cos[ t cos-1 (28. 3-1 /2X)]. (III.30a) 

When X> 31/2/28 one uses the Cardan solution 

{[ ( )
II"JI/3 

ai{2=(tsx)I/3 1+ 1- 78~X2 < 

+[ _ ( __ 3 )1 /2JI
/
3} 

1 1 784X2 • 

With au known, 

E2 = alf2[3 + 2(1 + aI2aif/2)1/2]. 

As X - 0, al(2 - t and E - t as it should. 

aI/2_(7A) 113 ( 1 )1/3 
U - + -- + •.. 

9 1344x 

so that 

1 +aI2aif/2_f- [1- (~)1/3X"2/3+ ••• ] 

and 
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(Ill.30b) 

(Ill. 31) 

As X - 00, 

(Ill. 32) 

(Ill. 33) 

(IlL 34a) 

which is to be compared with the exact asymptotic form 

E2 - 4. 697X 1/3 + O. 494x -1/3 + • . • • (Ill. 34b) 

The relative error in E2 from (III.34a), in the limit as 
X - 00, is 3.1 %. As in the case of lower energy levelS, 
this is the largest relative error in the positive X range. 
At the intermediate points X = 1, 2, and 50, one obtains 
from (Ill. 34a) and (III. 34b): 

X E (aEErox.) E (exact)I.2 % error 

1 5.257 5.179 1.5% 
2 6.430 6.304 2.0% 

50 17.96 17.44 3.0% 
Notice that when n = 2 in the characteristic equation 

(III.26), it has the form 

I (E - a~(2) 7 1-
3w (E _ 5al(2) - O. (IlL 35) 

As X - 0, from (ITI.25), W - 0 so that one of the result
ing energy levels approaches t and the other t. The t 
corresponds to E2 as given by (III. 31) while that which 
corresponds to t is the ground state. It is the other 
root of (IlL 29a), i. e. , 

Eo =al(2[3 - 2(1 +aI2ai~/2)1/2]. (III. 36) 

When X is large this equation combined with (III. 32) 
yields the following asymptotic expansion for Eo, 

Eo - O. 6734x 113 + O. 1348x -1/3 + • . . (Ill. 37) 

which is to be compared with the exact result (1.20). 
Notice that this is a slightly better apprOximation to the 
exact asymptotic form than was the second order ap
proximation (II. 18). 

It is now apparent that the wavefunction (III. 14) with 
P(y) defined by (III. 18) with p = 0 can be interpreted as 
the ground state wavefunction. When the series is 
terminated at y2n_2, Eo is the smallest root of the 
characteristic equation (111.26). The eigenfunction is an 
alternative to the generalization of (II.3). To a given 
order a terminated form of (lIT. 18) might give energy 
levels which are as good or better than a generaliza
tion of (IT.3). However, when the series is terminated, 
the resulting ground state wavefunction does not 
vanish in the proper manner for large y since it 
becomes 

<Po(Y) _ cy 2n-2 exp[ - (2X/9)1/2y 31, 
rather than exp[ - (2X/9)1/2y 3]. When one is not con
cerned with the precision of <Po (y) for large y this is 
not a serious difficulty. 

The higher even order energy levels E 4, Es,· •• are 
easily obtainable from (III.24), (III.25), and (III. 27) if 
n is not too large. The large n energy levels will be 
discussed in the next section. 

We now extend the above discussion to the case of 
odd numbered energy levels and wavefunctions by let
ting p=l in Eqs. (ITL18) and (IlL 19). Then the analog 
of (IIL 21) is 

(III. 38a) 

(4a u - 10a12aii /2 - l)ao + 2(E - 7al(2)a2 + 2(5 • 2)a4 = 0, 

(III. 38b) 
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(4a11 - 18a12ai1 /2 - 1)a2 + 2(E - 11a1(2)a4 + 2(7, 3)as = 0, 

(Ill,38c) 

+ 2(2n + 3)(n + 1)a2n+2 = 0, (III,38d) 

etc, 

In the case of the odd quantum numbers we wish to 
terminate the polynomial pry) to be of order (2n - 1). 
When /1 = 1, P(Y)Z!!o(y) corresponds to the wavefunction 
of the first excited state; 17 = 2 to that of the third, n = 3 
the fifth, etc. The termination with 

(IlL 39) 

is accomplished by setting 

(4a11 - 1) = 2(4n + 1)aI2a1i/2 = 4A(4n + 1)/9a1(2. (IlL 40) 

Then the set (Ill. 38) becomes 

(£ - 3a;(2)ao + 3· 1a2 = 0, 

(17 - 1)was + (£ - 7alf2)az + 5· 2a4 = 0, 

(17 - 2)wa2 + (E - 11ai/2)a4 + 7· 3a6 = 0, 

(1)u'a2n_4 + [£ - (4n - 1)a;[21a2n_2 = 0, 

where 1(' is defined by (III. 25). 

(Ill.41a) 

(III. 41b) 

(III. 41c) 

The condition that this set of equations has a solu
tion is that the determinant of the coefficients of the a2j 

vanish, i. e. , 

(1: - 3a!f2) 
(n - 1)11' 

o 

o 

3·1 
(E-7aJ(2) 
(n- 2)w 

o o 

o 
o 
o 

The equation for the determination of ai{2 is 

1lf[2 - t a;(2 - (4n + 1)A/9 = O. 

o 
o 
o =0. 

(Ill. 42) 

(III. 43) 

Since 1112 (which appears in w) is 2A/9, Eqs. (III. 40), 
(III. 41), (lIt 42), and (III. 43) are sufficient to determine 
(111, the energy level £2n-b and the coefficients 
ao, (/2, ••• of pry). To make contact with the beginning 

IV. FIRST ORDER LARGE QUANTUM NUMBER STATES 

of this section, let n = 1. Then 

£1=3 a1[2, 

aW- tal(2- 5A/9=0 

which is equivalent to (III. 8). 

When n=2 

E2 -10a;[2 + 21a11 -12012a;:1/2 = O. 

(Ill. 44a) 

(III, 44b) 

(III,45) 

The larger of the two roots of this equation will yield 
the energy of the third excited state £3, while the small
er will yield the first, E1; 

E = 5a1(2± (411 11 + 12aI2a'[1/2)1/2, 

In this case aif2 is a root of 

ai[2- t al(2- A=O. 

When A 2 < 4~2 the solution of this cubic is 

aW = 3-1 /2 cosMcos-1(12A' 3112)10 
When \2 > 4~2 

a1 /2 = (l'A)1 /3{[1 + (1 ___ 1_) 1 /2J 1/3 
11 2 432\2 

+[ _ ( __ 1 )1/2]1/3} 
1 1 432\2 ' 

In the large \ regime 

aW - \1 /3 + (1728\t1!3 + , . , 

(lIt 46) 

(III,47) 

(III. 48) 

(III. 49) 

_\1/3 + 12 \-1/3 +,.. (I1I,50) 

so that 

~:}- \1/3[(5± 2M) +(fz±-f5 M )\-2/3 +, .. J (III. 51) 

_{7. 582\1/3 + 0.5027\-2/3 +, .. 
2.418\1/3 + O. 3306>..-2/3 +,., (I1I,52) 

which are to be compared with the exact results1 

E3} _{7. 336\1/3 +0. 6183>..-2/3 +"', (III. 53a) 
El 2, 394A1 /3 + 0, 3578\-2/3 +,.. . (III. 53b) 

In the limit as \ - cc, the percentage error in our 
approximate £3 is 3,3% while that in our approximate 
El is 100%. 

The energy levels E 5, E 7 , etc. for small odd integers 
follow in a similar manner from (III, 42) as do the wave
functions from (III. 41) and (III. 42). 

We now consider the case of n large and A not too small, As was noted in Ref. 7 the "large" \ regime begins for 
smaller and smaller \ as n inc reases, the condition being that 1]:: 2\n '> 1, i. e., if n = 20, \ '> -to; hence when \ is 
relatively small, say 0.02. 

Since, in Eq. (III. 21), E is always associated with a;f2, we set 

(N.1) 

so that we are required to determine E. Our basic equations (III. 21), then, when put in inverted order, have the 
form 

[E - (4n - 3) 1a2n_2 + 4 . 1aI2a'[la2n_4 = 0, 

(n - 1) (211 - 1)1111 /2a2n_2 + [E - (417 - 7) 1a2n_4 + 4· 2a12aila2n_6 = 0, 

(n- 2)(217- 3)a;jl2112n_4 + [E - (4n -11)1a2n_6 +4' 3aI2aila2n_s=0, 
(N.2) 
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(2, 3)a;'i/2a4 + [E - 5]a2 + 4(n - 1)aI2aj"lao = 0, 

(1·1)a;:1/2a2 + [E -1]ao = 0, 

When n is large, in the first few equations E always appears in the combination (E - 4n)+ O(n). Hence we scale it with 
n and define 1: so that 

E=n!;. (IV. 3) 

Then it remains to find values of 1: as eigenvalues, Our characteristic equation which must be satisfied if (IV. 2) is 
to have a solution is 

(b'-4)+(3/n) 4,lal2aj"Vn 0 0 
(n - 1)(2n - 1)/ (nat(2) (1; - 4) + (7/n) 4· 2aI20j"1/n 0 

o (n - 2)(2n - 3)/(na1[2) (1: - 4) + (l1/n) 4· 3aI2aj"1/n 
=0. (IV. 4) 

We now show that as n - 00 and ;I. - 00, the upper part of the determinant becomes diagonal. While the lower part 
does not, the scheme is sufficient to find the largest eigenvalue. 

Notice that when n is large [cc (III. 27) 1 
aW - 4n;l./9 while generally a12 = 2;1./9. (IV. 5) 

Hence the upper off-diagonal elements of (IV, 4) are of order 

0(aI2ai1ln) = 0([;l.1/3n -4/3])/n1/ 3 (IV. 6) 

while the lower off-diagonal elements are 

0(n2/nal{2) =0([n4/ 3;1.-4/31)/n2 / 3, (IV. 7) 

If we let ;I. - 00 and n - 00 in such a manner that 

(IV. 8) 

then all off-diagonal elements near the "top" of the determinant (IV. 4) vanish so that part of the determinant be
comes diagonal even though the bottom might noto 

It should be emphasized that the set of equations (IV. 2) corresponds to the even energy levels Eo, E2, E4, 00', and 
as was mentioned below, Eq, (III,21), a given value of n in (IV. 2) yields E2n_2 as the largest characteristic value of 
(III, 26) and (IV. 4), 

The largest characteristic value of (IV. 4) is b'=4. Hence, from (IV. 3) and (IV. 1), as n-oo 

E2n -4no1(2 - 4n(4n;l./9)1/ 3 

-1. 21 (2n)4/3;1.1/ 3, (IV, 9) 

The dependence of E2" on (2n) and ;I. is precisely that obtained in a WKB type calculation, 2, 8 The coefficient 1,21 is 
13% below the exact value 1. 38, Similar results can be found for the odd quantum numbers. 

We now proceed to show how a second order apprOXimation can be developed for excited states, 

V. EXCITED STATES, SECOND ORDER 

The procedure for finding second and higher order 
apprOXimations to wavefunctions and energy levels of 
excited states follows in a similar manner, We first 
derive the second approximation to the first excited 
state quantities by choosing 

¢£2)Cv) =Y exp[- (a21y 8+ a22yl0 +a23yI2)1/4J (Vo 1) 

with 

a23= (2;1./W, 

In the small y regime 

¢~2)(y)-yexp[_ (C2y2+c4y4+csy6+, •• )J 

with 

c2=aU4, c4=i aZ2a2r /4 , 

Cs = i(a23air/4 - t a~2a2i 14), 

so that 
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(V. 2) 

(V, 3) 

(Vo 4c) 

Since 

d2p(2) d) = [- 6C2 + 4(d - 5C4)y2 + (16c2c4 - 42cs)y4 +. , , Ji/il2), 

(V.4d) 

the Schrodinger equation 

dZIjJ 
dy21 = 2(- El + biZ + ;l.y4)ibj (Vo 5) 

implies that 

E1=3c2, 4(c~-5c4)=1, (V o 6) 

;I. == 8C2C4 - 21cs • (V. 7) 

By combining (V. 7) with (Vo 4c) a relation between C2 

and c4 follows, 

(V. 8) 
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Since from (V. 6), 

c2=%E1 and c4=1(§l_!) 
5 9 4' 

we obtain the characteristic equation for E11 

E6 _ 927 E4 _ 1350, E3 + ~ E2 1il!l 2 0 
1 286 1 143" 1 2288 1 - 143 X = , 

which has the equivalent form 

E = ~ + 80(135)A(7X +Et) 
1 2 (2E1 + 3) (572E1- 567)Ei ' 

(V, 9) 

(V, 10) 

(V. 11) 

Clearly as X - 0, El - ~ as it should. Once El is known 
for a given value of X, C2 and c4 follow (V. 9), and Cs 
from (V.8). From these c's, a21 and a22 are to be ob
tained from (V.4a). 

The large X asymptotic expression for El is obtained 
by substituting 

into (V, 10) and setting the coefficient of X2 and ;\4/3 

equal to zero, One finds 

143E~ - 1350d - 9450 = 0, (Vo 13) 

E2=309Ei/[4(143d- 675)1 (V, 14) 

so that 

(Vo 15) 

which is considerably closer to the exact asymptotic 
expression (III, 13) than is the first approximation 
(III, 12b), As ;\ - 00 it deviates by less than 1 (;{ from the 
exact result, 

The general improvement over the first approxima
tion is evident from the table below for intermediate 
values of ;\ [the first approximation and exact values 
being extracted from the table below Eq. (III. 13) 1. 

;\ El (1st approx. ) El (2nd~~~~ ~exact)I.2 

1 2.769 2.747 2.738 
2 3.348 3.309 3.293 

50 9.168 8.995 8.915 

The basic form which we choose for the second order 
approximation to excited states is 

zjJ(y) co., P(y) exp[ - (a21 Y 8 + a22 Y 10 + anY 12)1/41 

:= P(V)Wci21 (y), 

where the correct approach to zero as ty t - 00 is 
guaranteed by defining a23 by (V. 2). 

(V. 16) 

When ,V'(y) is calculated [using the form of zjJ~2) (for 
small y) given in (V. 3)], retaining terms to order y4, 
and set into 

(V. 17) 

it is found that the function P(y) satisfies the differen
tial equation 

d2P dP 
dy2 - 4y dy (C2 + 2c4y2 + 3csy4) - P[ (2C2 - E) 

+ y2(1_ 4d + 12c4) + 2y4(X + 15cs - 8c2c4)1 = O. (V. 18) 

This is the analog of (III, 17) except that now terms to 
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order y4 are retained, If we were to proceed to a third 
order calculation we would use (11.3) and retain terms 
to order y6. 

We seek polynomial solutions of (V.8). To this end 
we construct the series expansion 

P(Y)=6 a2Jy2J+p (V. 19) 
i=O 

and choose energy levels in such a way that the series 
terminates into polynomials. The parameter p [in (V, 9)] 
is set equal to zero in the consideration of the even 
order states Eo, E2, E4, 0' 0 and 1 for odd order states 

E b E 3,·'·' 

By substituting (whenp=O) (V. 19) into (V. IS) and 
setting the coefficients of various powers of y equal 
to zero we find that 

2a2 + 2ao (E - c2) = 0, (V. 20a) 

12a4 + 2a2(E - 5cz) - ao(l + 12c4 - 4c~) = 0, (V,20b) 

30a6 + 2a4(E - 9C2) - a2(1 + 28c4 - 4d) - 2ao(15co - 8CZc4 + X) 

=0, 

etc, , 

(V.20c) 

with the general recurrence formula connecting the 
(l2j being 

(2j + 2 + p)(2j + 1 + p)a2;+2 + 2a2;[E - c2(1 + 4j + 2p)1 

- a2;_2[1- 4d + (16j - 4 + 8p)c41- (l2;_4[ - 16c2c4 + 2;\ 

+6(4j-3+2p)co]=O, (V,21) 

Let us find the energy and wavefunction associated 
with the second excited state of our oscillator. From 
Eq. (V. 20), we wish to terminate the series (V. 19) 
with the term j = I (and p = 0). To this end we set 

a4 =06 =0. (V, 22) 

Then the hierarchy (V. 7) is restricted to the four 
equations 

2a2 + 2ao(E - c2) = 0, 

202(E - 5C2) - ao (1 + 12c4 - 4c~) = 0, 

a2(1 + 28c4 - 4c~) + 2ao(15cs - 8C2c4 +;\) = 0, 

a2(- 16c2c4 + 2;\ + 54co) = o. 

(V. 23a) 

(V, 23b) 

(V. 23c) 

(V. 23d) 

The four unknowns in our problem are E 2, aJ ao, a22, 
and a21 [see Eqs. (V. 1)- (V. 4)]. While the three c/s, 
c 2, c4, and c6 appear in the above four equations and 
(V.4), only two are independent since a23 in (V. 4) 
given by (V. 2). 

Since ~ is not to vanish we have from (V. 23d) the 
following relation for cs, 

(V. 24) 

which when combined with (V. 4c) yields an expression 
for c4 in terms of ;\ and c2, 

c4 = _ J!. +rl(~)2 + ~(l ;\2 + 2. )~1J2 
Cf 81 L 81 81 3 c~ c~ ~ 

(V, 25) 

which vanishes as ;\ - 0, We eliminate the ratio az/ ao 
between (V,23a) and (V.23b), and between (V. 23c) and 
(V.23b). The resulting equations are 
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2(E - 5C2)(E - C2) + (1- 4c~) = - 12c4, 

9(E - c2)(1 + 2Sc4 - 4c~) + S(ScZc4 - X) = 0. 

(V, 26a) 

(V, 26b) 

From each of these equations one could solve for 
(c/cD + aiand eliminate c4 with the aid of (V. 25) ob
taining two nonlinear equations for C2, one being of the 
eight degree and the other of the sixth, with the coeffi
cients of powers of C2 being polynomials in Eo The 
characteristic determinant for E which in this case is 
of 14 x 14 is obtained by Sylvesters' dialytic method of 
elimination. 9 Since the algebra is long and tedious we 
sketch a numerical successive approximation 
alternative, 

We prefer to expand each variable in the set (V. 25)
(V, 26) around a good estimate of its value as perhaps 
would be obtained from the first order calculations 
(III, 29a), We thus write 

E z =Eo(l + E), Cz = co(l + y), 

c4 = clO}(1 + O'y), 

(V. 27a) 

(V, 27b) 

where EO, Co, and clO} are postulated to be good esti
mates of E2, cz, and c4 so that E and y can be treated as 
numbers so small that EZ, i, and Ey can at first be 
neglected, The values of EO and Co might be chosen from 
(III. 29a) for given values of X. The linearized basic 
equations are obtained by substituting (V, 27) into (Vo 26) 
retaining only first order terms in E and Yo Then 

(d - 6EOCO + 3d + 6clO) + ~) + 2E(E~ - 3cOEo) 

[9(EO - co)(l - 4c~) + 4(63Eo - 47co)clO} - sx] 

+ 9EEo (1- 4c~ + 28clO}) 

- y[9co(1- 4c~) +72c~(EO - co) + 18ScoclO} 

- 4aclO}(63Eo - 47co)] = 0. 

(Vo 2Sa) 

(V.2Sb) 

The values of c~O} and a in (V. 27b) are obtained by sub
stituting cz=co(l +y) into (V. 25) and obtaining the con
stant term and that linear term in 1'. 

We sketch the procedure for using the above equations 
by considering the case X = 2. Then from Eqs. (III.30b) 
and (ITI. 31) useful estimates for EO and Co are EO = 6.4 
and Co = 1. 2. Then 

clO)=001777 and 0'=-0.7701. 

Upon substituting these parameters into (V. 2S) we 
find the pair of equations for E and y, 

0.02003 + 00 93672E = y, 

0,01078 + 0, 01730E = 1', 

which yield 

E = - 0, 01006 and y = 0.01061, 

E2 =6.34 and cz=1 021. 

(V. 29a) 

(V. 29b) 

(V. 30) 

When EO is chosen to be 6.34 and Co = 1. 21, and the cycle 
is repeated, the calculated energy level E z becomes 

(V,31) 

which deviates by only 00 5% from the exact result 
6 0 304 tabulated below Eqo (III. 34b) as compared with 
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the first order approximation 6,430 which was high by 
2%, 

We close this section by making a second order cal
culation of E z in the regime of large Xo We start with 
the first order estimates and 

Ez -4,8XI/3 and c2-al[2-(n/9)1/3"'0.92XI/3 (V032) 

from which we deduce from (Vo 25), choosing (0- 4, 8X1/3 
and co-O. 92X1/3 , 

cl0)-0.1149n2/3 and (r-O.77040 (V. 33) 

Then Eqs, (Vo 28a) and (V. 28b) imply that 

0, 89225E - )' = 00 0103411, 

0, 02246E +) = - 0, 021998, 

so that 

(=-0001274 and y=-0,0217, 

Therefore, the new approximation to E2 is 

E2 =40 SXI/3 [1- 0,012741 "'4, 739XI/3 

(V, 34a) 

(V,34b) 

(Vo 35) 

(V, 36) 

which deviates by only 0, 9(){ from the exact value 4,697. 

VI. REMARKS ON THE POTENTIAL %y 2 +ay 4 

+ Ay 6 = V(y) 

A potential whose highest power is yG (with X" 0) can 
be treated in the manner employed in previous sections 
of our discussion of potentials with a quartic anharmon
icity. While we limit ourselves here to some remarks 
about the ground state of our new oscillator, it will be 
evident that the analysis can be extended to cover ex
cited states as welL 

We consider a ground state wavefunction of the form 

(VL 1) 

which has the proper behavior for large Iy I provided 
that we choose 

(VL la) 

so that (V, 1) is consistent with Eqs, (t 5) and (I. 6) when 
0' = 3. 

Following the practice of previous sections, for small 
y, we set 

iPoC\,)-exp(-C2:,,2_C4y4_CS.l,G, 0) 

where 

c2=al(2, c4=~aI2ail/2 

c6 = (X/16aW) - (ai2/8a~f2), 

so that 

(Vt2) 

(VI. 3a) 

(VL 3b) 

1 d2<p 
"2 d:i = [- c2 + 2(d - 3C4)y2 - (15c 6 - 8C2(1)1,4 + 0 0 0 1iPoo 

(VI. 4a) 

When this is compared with the Schrodinger equation 

1 d
2 

<Po I 2 4 " ---=(-E +-v +av + Xv")"! 2 dy 2 0 2 . . _ ~ 0, (VI.4b) 

it is apparent that to obtain agreement to terms of order 
y4 we set 
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(VI. 5) 

(VI. 6) 

The ,\yS term which is important for large y is account
ed for in our choice of a13• 

The coefficient Cs is eliminated by combining (V. 6) 
and (V.3b) to yield a relationship between c4 and C2, 

,\ 5. 8C2C4 a 
16c2 - 2C2= 15 -15' 

since from (V. 5) 

c4 = t(E~ - t). 

(VI. 7) 

(VI. 8) 

This yields the following characteristic equation for the 
ground state energy, 

(E2_ .!.)(lE2_.l)= 3'\+ 20'Eo 
o 4 5 0 12 8 5' (VI. 9) 

This gives the energy level Eo = i in the limit ,\ - 0, 
0'-0 as it should. The expected worst case is that of 
0'=0 and ,\ very large. Then Eo is very large and 

(VI. 10) 

so that 

Eo - (~)1/4,\1 14 = 0.719,\1/4 (VI. 11) 

which is to be compared with the exact result? 

Eo -0. 681A1 14. (VI. 12) 

As in the case of the quartic oscillator this can be im
proved by adding another parameter to the approximat
ing wavefunction, putting it into the form 

<Po (y) = exp[ - (a21y 6 + a22 y8 + a23 yl0 + a24yI2)1 13J. 

(VI. 13) 

When certain relations exist between the quartic and 
sextic force constants a and '\, an exact ground state 
wavefunction can be found of the form 

(N.14) 

In this case 

(VI. 15) 

346 J. Math. Phys., Vol. 19, No.1, January 1978 

which, when compared with (VI. 4b), yield 

E = a, (VI. 16a) 

t = a2 
- 3b, (VI. 16b) 

a=8ab, '\=8b2
, <VI. 16c) 

since 

b=(~y/2 and a= :b = ~ (~y/2=(~:)1'2. (VI. 17) 

(VI. 14) is an exact wavefunction when a and ,\ are relat
ed by 

! = 0'2 _ 3(!:)1 /2 
4 8'\ 8 

(VI. 18) 

or 

(VI. 19) 

when 

a = {2,\ + 3'\(8,\)I!2F /2, 

E= i[1 +3(2,\)1/2Jl/2 -{t.})1/4,\1/4 
'\-0, 
as ,\ -00. 

(VI. 20) 

(VI. 21) 

The exact wavefunction (V!. 14) with 0' and A related 
by (VI. 18) has been found independently by Gillespie. 10 
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The Gaussian version of Ampere's law 
E. J. Post 

8606 Pershing Drive, Playa del Rey, California 90291 
(Received 5 July 1977) 

Ampere's law of magnetostatics and Gauss' law of 
electrostatics are one- and two-dimensional period 
integrals in the sense of de Rham,l by virtue of their 
invariance under deformation of their cyclic integration 
domains. The spacetime 2-form C (tilde denoting impair 
properties) defined by the fields D and H, permits the 
two spatial laws to be simultaneously expressed by the 
two-dimensional period integral in spacetime, 

¢c/ = algebraic sum of charges with world lines 
linked by C 2 • (1) 

If the cycle C2 is a closed spatial surface, Eq. (1) 
expresses the traditional Gauss law. If C2 is a closed 
surface involving a direction of time, Eq. (1) can reduce 
to the historic version of Ampere's law, provided the 
Maxwell displacement vanishes. In this Gaussian ver
sion of Ampere's law a constant circuital current 
relates to a cyclic time domain C t' the magnitude of 
which is given by a complete circulation of the 
charge in the circuit. The cyclic domain C2 so becomes 
the topological product of C t with a meridional Ampere 
lbop C m; i. e., C2 = C t xC m' The reader will note that 
C m only links with the current loop in three dimensions; 
in four dimensions a two-dimensional cycle C2 is needed 
to link with the current loop. 

A clean application of the Gaussian version of 
Ampere's law is provided by a current Circulating in 
a superconducting ring; say a superconductor of the first 
kind so as to have a well-defined penetration domain. 

The collective quantum state of the BeS charge 
carriers makes it meaningful to postulate a unique 
circulation time t for the collective of BeS pairs, which 
in turn gives a well defined C t so that C 2 =C t XC m• If 
s is the number of BCS pairs with a charge 2e, Eq. (1) 
yields 

(2) 

Hence the Gaussian version of Amp~re's law counts the 
number of BeS pairs partaking in the supercurrent. 

The result given by Eq. (2) can be used to calculate 
the periods of the 3-form of "spin" given by Kiehn2

: 

gi
C3

'S = ¢C3A!\ C. (3) 

The three-dimensional cyclic domain C3 is now taken 
to be the topological product of C2 in Eq. (2) and the 
equatorial integration loop C. of the I-form A, thus 
permitting the decomposition rule 

PC3A/1C=¢ A'¢ C withC 3 =C.xC2 • (4) ce c2 

Experiment has confirmed the period integral ~ A to 
be a multiple, say n, of the flux quantum (hI2e), hence 
substitution in Eqo (4) and using Eq. (2) yields, as 
periods of Eq. (3), 

the orbital angular momentum associated with the 
charge carriers. 

(5) 

Since the gyromagnetic ratio of a superconductor is 
known to be of the orbital type, result (5) then implies 
a magnetic moment, 

I JlI = (sn) Bohr magnetons, (6) 

with s the number of BeS pairs and n the flux quantum 
state of the superconducting ring. 

A careful inquiry among solid state experimentalists 
has not led to an argument against or in favor of the, 
in principle, observable result (6). 

The reader will note that the quantum state of S i~ 
given by the product of the quantum states of A and G, 
hellce one has the corollary ~that prime number states 
of S imply that either A or G is in a ground state with 
quantum number 1. 

Since period laws are not restricted by metric con
siderations of size, it is mathematically permissible to 
make the step of extrapolating their validity into the 
subatomic domains. Following Jehle3 one may associate 
a flux unit (hie) with particles having a magnetic 
moment. The spin features of a particle demand a 41T 
cycle of C

e
, which in turn demands C. to be a self

knotted, double loop (trefoil). The self -knotting is 
essential to prevent a topological equivalence of the 41T 
cycle to a 21T cycle through a continuous unfolding of the 
double loop to a single loop. The actual situation is, 
however, more involved, because a I-cycle can be 
unknotted in four dimensions. 

This very preliminary topological model of a Dirac 
particle permits an asymptotic interpretation of its 
stability in terms of a "balance" between attractive 
magnetic forces and repelling Coulomb forces between 
the two branches of the double, self -knotted loop; of 
course, falling short of telling what is being attracted 
and repelled. Such speculative thought has some 
potential for identifying the nature of mass as a carrier 
of charge, yet its further pursuit is outside the typical 
realm of mathematical physics and should be made 
contingent on a test of the physical relevance of Eqs. 
(5) and (6) in a macroscopic situation. 

Ie. de Rham, Vari~te~ Di!ferentiables (Herman, Paris, 1955). 
2R. M. Kiehn, J. Math. Phys. 18, 614 (1977). [See also 
comments by E.J. Post, J. Math. Phys. 18, 2084 (1977). J 

3H. Jehle, Phys. Rev. D 3, 306 (1971); 6, 441 (1972); 
11, 2147 (1975). 
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ERRATA 

Erratum: The n -bubble series in the theory of the 
classical one-component plasma 
[J. Math. Phys. 18, 292 (1977)] 

Y. Furutania) and C. Deutsch 

Laboratoire de Physique des Plasmas. Universite de Paris-Sud. Centre d'Orsay. 91405 Orsay. France 
(Received 30 August 1977) 

~ 2( 2v+l) 

Eq. (1): Sum over n should read: 2J Below Eq. (30): .0 
n=2 /=0 

2v+l 

should read .0 
/ =0 

Eq. (4): Last line, criterion for Q' should read: Q' > O. 

Eq. (10): In third term of rhs, 8n cos(n -1)8n) should 
read: &ncos(n -2)&n)' 

Page 297: On the top of the second column, f' ("") 
should read /' (00). 

Eq. (19): lhs. should read: k 2C(k)/47TA. 

a)Present address: Department of Electronics, Okayama 
University, Okayama 700, Japan. 
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